
GaussDB

Best Practices

Issue 01

Date 2025-09-12

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Best Practices Overview... 1

2 Suggestions on GaussDB Security Configuration.. 3

3 Best Practices for Scaling...8

4 Best Practices for Backup and Restoration... 10
4.1 Overview.. 10
4.2 Instance Restoration.. 18
4.2.1 Restoring an Instance from the Recycle Bin.. 18
4.2.2 Restoring an Instance from a Backup.. 24
4.3 Database and Table Restoration..31
4.3.1 Restoring Databases or Tables to a Specific Point in Time...31
4.3.2 Restoring Databases or Tables Using a Backup..35

5 Suggestions on GaussDB Metric Alarm Configuration...39

6 Best Practices for Row Compression...46
6.1 Scenario Overview.. 46
6.2 Manual Scheduling...46
6.3 Automatic Scheduling... 49

7 Best Practices for SQL Queries... 52
7.1 Best Practices for SQL Queries (Distributed Instances)...52
7.2 Best Practices for SQL Queries (Centralized Instances)...54

8 Best Practices for Permission Configuration...57
8.1 Best Practices for Permission Configuration (Distributed Instances)..57
8.2 Best Practices for Permission Configuration (Centralized Instances)... 63

9 Best Practices for Data Skew Query (Distributed Instances)..................................... 70
9.1 Quickly Locating Tables That Cause Data Skew.. 70

10 Best Practices for Stored Procedures.. 72
10.1 Best Practices for Stored Procedures (Distributed Instances)... 72
10.1.1 Permission Management..72
10.1.2 Naming Convention... 74
10.1.3 Access Object.. 76
10.1.4 Statement Functions.. 77

GaussDB
Best Practices Contents

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

10.1.4.1 Package Variables..77
10.1.4.2 Cursors...78
10.1.4.3 Compatibility... 79
10.1.4.4 Exception Handling... 82
10.1.4.5 User-defined Types.. 82
10.1.5 Transaction Management.. 84
10.1.5.1 Transactions... 84
10.1.5.2 Autonomous Transactions.. 85
10.1.6 Others... 86
10.1.6.1 DDL... 86
10.1.6.2 Complex Dependencies... 86
10.1.6.3 IMMUTABLE and SHIPPABLE... 87
10.2 Best Practices for Stored Procedures (Centralized Instances)... 89
10.2.1 Permission Management..89
10.2.2 Naming Convention... 90
10.2.3 Access Object.. 93
10.2.4 Statement Functions.. 93
10.2.4.1 Package Variables..94
10.2.4.2 Cursors...95
10.2.4.3 Compatibility... 95
10.2.4.4 Exception Handling... 98
10.2.5 Transaction Management.. 98
10.2.5.1 Transactions... 99
10.2.5.2 Autonomous Transactions.. 100
10.2.6 Others... 101
10.2.6.1 DDL.. 101
10.2.6.2 Complex Dependencies... 101
10.2.6.3 IMMUTABLE.. 102

11 Best Practices for Import and Export Using COPY.. 104
11.1 Best Practices for Import and Export Using COPY (Distributed Instances)... 104
11.1.1 Typical Scenarios... 104
11.1.1.1 Using the Recommended CSV Format...104
11.1.1.2 Importing and Exporting Data with Extreme Performance..106
11.1.1.3 Exporting Data Files for Manual Parsing.. 108
11.1.1.4 Importing and Exporting Data When Only the TEXT Format Is Available..109
11.1.1.5 Importing and Exporting Data Files on a GSQL Client.. 112
11.1.1.6 Importing and Exporting Data Through the JDBC Driver... 113
11.1.1.7 Importing Erroneous Data Through Error Tolerance.. 113
11.1.2 Guide to Exporting Erroneous Data... 114
11.1.3 Guide to Importing Erroneous Data.. 116
11.2 Best Practices for Import and Export Using COPY (Centralized Instances)... 119
11.2.1 Typical Scenarios... 119

GaussDB
Best Practices Contents

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

11.2.1.1 Using the Recommended CSV Format...119
11.2.1.2 Importing and Exporting Data with Extreme Performance..121
11.2.1.3 Exporting Data Files for Manual Parsing.. 123
11.2.1.4 Importing and Exporting Data When Only the TEXT Format Is Available..124
11.2.1.5 Importing and Exporting Data Files on a GSQL Client.. 127
11.2.1.6 Importing and Exporting Data Through the JDBC Driver... 128
11.2.1.7 Importing Erroneous Data Through Error Tolerance.. 128
11.2.2 Guide to Exporting Erroneous Data... 129
11.2.3 Guide to Importing Erroneous Data.. 130

12 Best Practices for Import and Export Using Tools...133
12.1 Best Practices for Import and Export Using Tools (Distributed Instances).. 133
12.1.1 Database-Level Import and Export.. 133
12.1.2 Schema-Level Import and Export..136
12.1.3 Table-Level Import and Export.. 137
12.2 Best Practices for Import and Export Using Tools (Centralized Instances).. 138
12.2.1 Database-Level Import and Export.. 138
12.2.2 Schema-Level Import and Export..141
12.2.3 Table-Level Import and Export.. 141

13 Best Practices for JDBC.. 146
13.1 Best Practices for JDBC (Distributed Instances).. 146
13.1.1 Batch Insertion...146
13.1.1.1 Scenario Overview.. 146
13.1.1.1.1 Usage Scenarios... 146
13.1.1.1.2 Requirements and Objectives.. 148
13.1.1.2 Architecture Principles... 148
13.1.1.3 Preparations.. 148
13.1.1.4 Procedure... 148
13.1.1.4.1 Process Overview... 149
13.1.1.4.2 Detailed Procedure.. 149
13.1.1.4.3 Complete Example.. 151
13.1.1.5 Typical Issues.. 152
13.1.2 Streaming Query...152
13.1.2.1 Scenario Overview.. 152
13.1.2.1.1 Usage Scenarios... 152
13.1.2.1.2 Requirements and Objectives.. 153
13.1.2.2 Architecture Principles... 154
13.1.2.3 Preparations.. 155
13.1.2.4 Procedure... 155
13.1.2.4.1 Process Overview... 155
13.1.2.4.2 Detailed Procedure.. 156
13.1.2.4.3 Complete Example.. 156
13.1.2.5 Typical Issues.. 157

GaussDB
Best Practices Contents

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

13.1.3 User-defined Type...158
13.1.3.1 Scenario Overview.. 158
13.1.3.1.1 Usage Scenarios... 158
13.1.3.1.2 Requirements and Objectives.. 159
13.1.3.2 Architecture Principles... 159
13.1.3.3 Preparations.. 159
13.1.3.4 Procedure... 160
13.1.3.4.1 Process Overview... 160
13.1.3.4.2 Detailed Procedure.. 161
13.1.3.4.3 Complete Example.. 163
13.1.3.5 Typical Issues.. 164
13.1.4 Batch Query.. 165
13.1.4.1 Scenario Overview.. 165
13.1.4.1.1 Usage Scenarios... 165
13.1.4.1.2 Requirements and Objectives.. 165
13.1.4.2 Architecture Principles... 166
13.1.4.3 Preparations.. 166
13.1.4.4 Procedure... 166
13.1.4.4.1 Process Overview... 166
13.1.4.4.2 Detailed Procedure.. 167
13.1.4.4.3 Complete Example.. 169
13.1.4.5 Typical Issues.. 170
13.2 Best Practices for JDBC (Centralized Instances).. 170
13.2.1 Batch Insertion...170
13.2.1.1 Scenario Overview.. 170
13.2.1.1.1 Usage Scenarios... 171
13.2.1.1.2 Requirements and Objectives.. 172
13.2.1.2 Architecture Principles... 173
13.2.1.3 Preparations.. 173
13.2.1.4 Procedure... 173
13.2.1.4.1 Process Overview... 173
13.2.1.4.2 Detailed Procedure.. 174
13.2.1.4.3 Complete Example.. 175
13.2.1.5 Typical Issues.. 176
13.2.2 Streaming Query...177
13.2.2.1 Scenario Overview.. 177
13.2.2.1.1 Usage Scenarios... 177
13.2.2.1.2 Requirements and Objectives.. 178
13.2.2.2 Architecture Principles... 178
13.2.2.3 Preparations.. 179
13.2.2.4 Procedure... 179
13.2.2.4.1 Process Overview... 179

GaussDB
Best Practices Contents

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. v

13.2.2.4.2 Detailed Procedure.. 180
13.2.2.4.3 Complete Example.. 180
13.2.2.5 Typical Issues.. 181
13.2.3 User-defined Type...182
13.2.3.1 Scenario Overview.. 182
13.2.3.1.1 Usage Scenarios... 182
13.2.3.1.2 Requirements and Objectives.. 183
13.2.3.2 Architecture Principles... 183
13.2.3.3 Preparations.. 183
13.2.3.4 Procedure... 184
13.2.3.4.1 Process Overview... 184
13.2.3.4.2 Detailed Procedure.. 185
13.2.3.4.3 Complete Example.. 187
13.2.3.5 Typical Issues.. 188
13.2.4 Batch Query.. 189
13.2.4.1 Scenario Overview.. 189
13.2.4.1.1 Usage Scenarios... 189
13.2.4.1.2 Requirements and Objectives.. 189
13.2.4.2 Architecture Principles... 190
13.2.4.3 Preparations.. 190
13.2.4.4 Procedure... 190
13.2.4.4.1 Process Overview... 190
13.2.4.4.2 Detailed Procedure.. 191
13.2.4.4.3 Complete Example.. 193
13.2.4.5 Typical Issues.. 194

14 Best Practices for ODBC.. 195
14.1 Best Practices for ODBC (Distributed Instances).. 195
14.1.1 Scenario Overview..195
14.1.1.1 Usage Scenarios... 195
14.1.1.2 Requirements and Objectives... 197
14.1.2 Architecture Principles.. 197
14.1.3 Preparations..198
14.1.4 Procedure...199
14.1.4.1 Process Overview...199
14.1.4.2 Detailed Procedure... 200
14.1.4.3 Complete Example.. 201
14.1.5 Typical Issues.. 205
14.2 Best Practices for ODBC (Centralized Instances).. 205
14.2.1 Scenario Overview..205
14.2.1.1 Usage Scenarios... 205
14.2.1.2 Requirements and Objectives... 207
14.2.2 Architecture Principles.. 208

GaussDB
Best Practices Contents

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vi

14.2.3 Preparations..208
14.2.4 Procedure...209
14.2.4.1 Process Overview...209
14.2.4.2 Detailed Procedure... 210
14.2.4.3 Complete Example.. 211
14.2.5 Typical Issues.. 215

15 Best Practices for Go.. 216
15.1 Best Practices for Go (Distributed Instances)...216
15.1.1 Scenario Overview..216
15.1.1.1 Usage Scenarios... 216
15.1.1.2 Requirements and Objectives... 218
15.1.2 Architecture Principles.. 218
15.1.3 Preparations..219
15.1.4 Procedure...219
15.1.4.1 Process Overview...219
15.1.4.2 Detailed Procedure... 220
15.1.4.3 Complete Example.. 225
15.1.5 Typical Issues.. 228
15.2 Best Practices for Go (Centralized Instances).. 228
15.2.1 Scenario Overview..228
15.2.1.1 Usage Scenarios... 229
15.2.1.2 Requirements and Objectives... 230
15.2.2 Architecture Principles.. 231
15.2.3 Preparations..231
15.2.4 Procedure...232
15.2.4.1 Process Overview...232
15.2.4.2 Detailed Procedure... 233
15.2.4.3 Complete Example.. 237
15.2.5 Typical Issues.. 240

16 Best Practices for Index Design... 241
16.1 Best Practices for Index Design (Distributed Instances)...241
16.1.1 Scenario Overview..241
16.1.2 Preparations..241
16.1.3 Procedure...242
16.2 Best Practices for Index Design (Centralized Instances)...243
16.2.1 Scenario Overview..244
16.2.2 Preparations..244
16.2.3 Procedure...244

17 Best Practices for Table Design... 247
17.1 Best Practices for Table Design (Distributed Instances)... 247
17.1.1 Scenario Overview..247

GaussDB
Best Practices Contents

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vii

17.1.2 Architecture Principles.. 247
17.1.3 Preparations..248
17.1.4 Procedure...248
17.2 Best Practices for Table Design (Centralized Instances)...254
17.2.1 Scenario Overview..254
17.2.2 Architecture Principles.. 255
17.2.3 Preparations..255
17.2.4 Procedure...255

GaussDB
Best Practices Contents

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. viii

1 Best Practices Overview

This section describes best practices for working with GaussDB and provides
operational guidelines that you can follow when using this service.

Table 1-1 GaussDB best practices

Document Description

Suggestions on GaussDB
Security Configuration

Provides guidance on GaussDB security
configurations.

Best Practices for Scaling Describes the use cases of different scaling
operations.

Best Practices for Backup
and Restoration

Describes typical accidental operations and their
corresponding recovery methods.

Suggestions on GaussDB
Metric Alarm Configuration

Describes how to configure GaussDB metric
alarm rules.

Best Practices for Row
Compression

Describes how to use manual and automatic
scheduling to compress data.

Best Practices for SQL
Queries

Describes how to adjust SQL statements to
improve SQL execution efficiency.

Best Practices for
Permission Configuration

Describes the responsibilities and capabilities of
different permission types and roles, as well as
how to configure permissions.

Best Practices for Data
Skew Query (Distributed
Instances)

Describes how to identify tables that cause data
skew.

Best Practices for Stored
Procedures

Describes key aspects of stored procedures,
including permission management, naming
conventions, access to database objects,
statement functions, and transaction
management.

GaussDB
Best Practices 1 Best Practices Overview

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Document Description

Best Practices for Import
and Export Using COPY

Describes how to use the COPY syntax to import
and export data.

Best Practices for Import
and Export Using Tools

Describes how to use gs_dump and gs_dumpall
to import and export data.

Best Practices for JDBC Describes how to use JDBC for efficient data
operations, including inserting data in batches,
executing streaming queries, handling user-
defined data types, and performing batch
queries.

Best Practices for ODBC Describes how to use the ODBC driver for batch
data insertion.

Best Practices for Go Describes how to use the Go driver for batch
data insertion.

Best Practices for Index
Design

Compares the performance of querying large
tables containing over a million rows both with
indexes and without them, and evaluates the
effectiveness of single-column indexes versus
composite indexes for optimizing query
efficiency.

Best Practices for Table
Design

Describes distribution mode and key design,
data type selection, partitioning policies,
constraint configuration, index optimization, and
tuning of storage parameters.

GaussDB
Best Practices 1 Best Practices Overview

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2 Suggestions on GaussDB Security
Configuration

Security is a responsibility shared between Huawei Cloud and yourself. Huawei
Cloud ensures the security of cloud services for a secure cloud. As a tenant, you
should utilize the security capabilities provided by cloud services to protect data
and use the cloud securely. For details, see Shared Responsibilities.

This section provides actionable guidance for enhancing the overall security of
GaussDB. You can continuously evaluate the security of your GaussDB instances
and enhance their overall defensive capabilities by combining different security
capabilities provided by GaussDB. By doing this, data stored in GaussDB can be
protected from leakage and tampering both at rest and in transit.

You can make security configurations from the following dimensions to match
your workloads.

● Maximum Number of Connections
● Security Authentication
● Client Authentication Configuration
● User Password Security
● Permissions Management
● Database Audit
● WAL Archiving
● Backup Management

Maximum Number of Connections
Excessive GaussDB connections can consume excessive server resources, leading to
sluggish operation responses. You can adjust the maximum allowed connections
using the max_connections parameter. For details, see Connection Settings.

max_connections: the maximum number of concurrent connections to the
database. This parameter affects the concurrency capability of the cluster.

GaussDB
Best Practices 2 Suggestions on GaussDB Security Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/productdesc-gaussdb/gaussdb_01_048.html
https://support.huaweicloud.com/intl/en-us/distributed-devg-v3-gaussdb/gaussdb-10-0259.html

Security Authentication
To ensure user experience and prevent accounts from being cracked, you can
configure the following parameters to limit the number of login attempts before
an account is locked and how long it is locked for:

● failed_login_attempts: the maximum number of failed login attempts
permitted

● password_lock_time: the number of days before a locked account is
automatically unlocked
If an account is identified as stolen or the account is used to access a
database without proper authorization, administrators can manually lock the
account. Administrators can manually unlock the account if the account
becomes normal again.
For example, run the following commands to manually lock and unlock the
user, joe:
– Manually lock the account.

gaussdb=# ALTER USER joe ACCOUNT LOCK;
ALTER ROLE

– Manually unlock the account.
gaussdb=# ALTER USER joe ACCOUNT UNLOCK;
ALTER ROLE

Client Authentication Configuration
When a host needs to connect to a database remotely, its information must be
added to the database system's configuration file, along with client authentication
rules. To simplify the process, GaussDB automatically includes the following
default rules in the client authentication configuration file when an instance is
created:
● Default configurations for a centralized instance (assuming that the subnet

CIDR block of the instance is 192.168.0.0)
TYPE DATABASE USER ADDRESS METHOD
host all all 0:0:0:0/0 sha256
host all all 192.168.0.0/16 sha256
host replication all 192.168.0.0/16 sha256
host replication all 0:0:0:0/0 sha256

– The first record allows all users from any IPv4 client to access all
databases using the SHA-256 authentication method.

– The second record allows all users from IPv4 clients within the current
instance's subnet to access all databases using SHA-256.

– The third record allows all users from IPv4 clients within the current
instance's subnet to request a replication connection using SHA-256.

– The fourth record allows all users from any IPv4 client to request a
replication connection using SHA-256.

● Default configurations for a distributed instance
This record allows all users from any IPv4 client to access all databases using
the SHA-256 authentication method.
TYPE DATABASE USER ADDRESS METHOD
host all all 0:0:0:0/0 sha256

In most cases, the default configurations are sufficient for typical remote
connection requirements. However, if you require more granular control over client

GaussDB
Best Practices 2 Suggestions on GaussDB Security Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

access or the existing authentication settings do not meet your operational
requirements, you can customize custom client authentication configurations.

For robust security, adjust the default configurations to fit your specific application
requirements and adopt fine-grained authentication control to precisely manage
client access.

User Password Security
GaussDB enhances user account security in the following ways:

● User passwords are stored in the system catalog pg_authid. To prevent
password leakage, GaussDB encrypts user passwords before storing them. The
cryptographic algorithm is determined by the configuration parameter
password_encryption_type.

● All passwords in GaussDB must have a validity period. You can configure the
password_effect_time parameter to set a validity period for each database
user password.

Permissions Management
● A VPC provides an isolated virtual network for GaussDB instances. You can

configure and manage the network as required. A subnet provides dedicated
network resources that are logically isolated from other networks for security.
If you need to assign different permissions (also known as privileges) to
different employees in your enterprise to access your DB instance resources,
IAM is a good choice. For details, see Permissions Management.

● To ensure database security and reliability, configure security groups before
using a DB instance. For details, see Configuring Security Group Rules.

● Run the following SQL statement to check whether the PUBLIC role has the
CREATE privilege in public schema. If yes, any user can create and modify
tables or database objects in public schema.
SELECT CAST(has_schema_privilege('public','public','CREATE') AS TEXT);
– If TRUE is returned, run the following SQL statement to revoke the

privilege:
REVOKE CREATE ON SCHEMA public FROM PUBLIC;

● All users are assigned the PUBLIC role. If all privileges of an object are
granted to the PUBLIC role, any user can inherit all the privileges of the
object, which violates the principle of least privilege. For security reasons, this
role should have only minimal privileges. Run the following SQL statement to
check whether all privileges have been granted to the PUBLIC role:
SELECT relname,relacl FROM pg_class WHERE (CAST(relacl AS TEXT) LIKE
'%,=arwdDxt/%}' OR CAST(relacl AS TEXT) LIKE '{=arwdDxt/%}') AND
(CAST(relacl AS TEXT) LIKE '%,=APmiv/%}' OR CAST(relacl AS TEXT) LIKE
'{=APmiv/%}');
– If the query returns an empty result set, all privileges have been granted.

In this case, run the following SQL statement to revoke the privileges:
REVOKE ALL ON <OBJECT_NAME> FROM PUBLIC;

● The pg_authid system catalog in the pg_catalog schema contains information
about all roles in a database. To prevent sensitive information from being
disclosed or modified, the PUBLIC role is not allowed to have any access to

GaussDB
Best Practices 2 Suggestions on GaussDB Security Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_871.html
https://support.huaweicloud.com/intl/en-us/distributed-devg-v8-gaussdb/gaussdb-10-0260.html#section35
https://support.huaweicloud.com/intl/en-us/productdesc-gaussdb/gaussdb_01_057.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_171.html

this system catalog. Run the following SQL statement to check whether
privileges on the pg_authid system catalog have been granted:
SELECT relname,relacl FROM pg_class WHERE relname = 'pg_authid' AND
CAST(relacl AS TEXT) LIKE '%,=%}';
– If the returned result set is not empty, privileges have been granted. In

this case, run the following SQL statement to revoke the privileges:
REVOKE ALL ON pg_authid FROM PUBLIC;

● Regular users are non-administrator users who perform common service
operations. Regular users should not have administrative privileges beyond
their normal scope of responsibilities. For example, they should not have the
privileges needed to create roles, create databases, audit, monitor, perform
O&M operations, or manage security policies. To ensure the principle of least
privilege is enforced for regular users, unnecessary administrative privileges
should be revoked while meeting normal business requirements.

● The SECURITY DEFINER function is executed with the privileges of the creator.
Improper use of SECURITY DEFINER may cause the function executor to
perform unauthorized operations with the privileges of the creator. For this
reason, ensure that this function is not misused. For security purposes, the
PUBLIC role is not allowed to execute functions of the SECURITY DEFINER
type. Run the following SQL statement to check whether the PUBLIC role has
access to any SECURITY DEFINER functions:
SELECT a.proname, b.nspname FROM pg_proc a, pg_namespace b where
a.pronamespace=b.oid and b.nspname <> 'pg_catalog' and a.prosecdef='t';
– If the returned result set is not empty, run the following SQL statement

to check whether it has the EXECUTE privilege:
SELECT CAST(has_function_privilege('public',
'function_name([arg_type][, ...])', 'EXECUTE') AS TEXT);

▪ If TRUE is returned, the role has the privilege. In this case, run the
following SQL statement to revoke the privilege:
REVOKE EXECUTE ON FUNCTION function_name([arg_type][, ...])
FROM PUBLIC;

● The SECURITY INVOKER function is executed with the privileges of the
invoker. Improper use of SECURITY INVOKER may cause the function creator
to perform unauthorized operations with the privileges of the executor. Before
invoking a function not created by yourself, check the function content to
prevent the function creator from performing unauthorized operations with
your privileges.

Database Audit
● GaussDB can record operations you perform on your DB instances. However,

only operations supported by Cloud Trace Service (CTS) can be recorded. View
the supported operations before performing operations. For details, see Key
Operations Supported by CTS.

● Ensure that auditing is enabled for the creation, deletion, and modification of
database objects. For details, see Database Audit.

● To view audit logs in a visualized manner, enable Upload Audit Logs to LTS.
For details, see Interconnecting with LTS and Querying Database Audit
Logs.

GaussDB
Best Practices 2 Suggestions on GaussDB Security Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_248.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_248.html
https://support.huaweicloud.com/intl/en-us/centralized-devg-v3-gaussdb/gaussdb-42-0027.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_250.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_250.html

WAL Archiving
The Write Ahead Log (WAL) is another term for the transaction log, which is also
referred to as the Xlog. It records changes made to the database before they are
written to the main storage, ensuring data consistency and durability in case of
failures. The wal_level parameter specifies the level of information to be written
into a WAL. To enable read-only queries on a standby node, you need to set the
wal_level parameter to hot_standby on the primary node and set hot_standby to
on on the standby node.

Backup Management
GaussDB provides instance backup and restoration to ensure data reliability.
Backups are stored in unencrypted form. To prevent data loss caused by
misoperations or service exceptions, you can:

● Configure automated backups and create manual backups. For details, see
Working with Backups. When you create a GaussDB instance, the instance-
level automated backup policy is enabled by default. After your instance is
created, you can modify the automated backup policy as needed.

● Configure an automated backup policy to periodically back up databases. For
details, see Configuring an Automated Backup Policy.

● Export backup information.

GaussDB
Best Practices 2 Suggestions on GaussDB Security Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_214.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_216.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_222.html

3 Best Practices for Scaling

With GaussDB, you can scale your instance by changing CPU and memory
specifications, increasing or decreasing storage, and adding or removing nodes
and shards as needed. This allows for flexible adjustment of database
performance and capacity to adapt to changing workload demands.

Changing CPU and Memory Specifications

To adjust to changing workloads, you can scale up or down an instance by
changing its CPU and memory specifications. For details, see Changing the CPU
and Memory Specifications of a GaussDB Instance.

Increasing or Decreasing Storage

You are advised to resize your instance storage in the following scenarios:

● As GaussDB instances continue to operate over time, the amount of data to
be stored can grow rapidly, potentially surpassing the original storage
capacity. At this point, you can scale up the storage of your DB instance.

● When the storage usage exceeds a certain threshold (85% by default, but this
can be modified using the cms:datastorage_threshold_value_check
parameter), the GaussDB instance is set to a read-only state and no more
data can be written to it. You can avoid this situation by scaling up the
instance storage to ensure service continuity.

For details, see Scaling Up Storage Space.

Adding or Deleting Coordinator Nodes

When the number of concurrent requests increases significantly, you can add more
coordinator nodes (CNs) to increase the concurrent processing capacity of your
instance. For details, see Adding Coordinator Nodes for an Instance.

On the other hand, if business activity decreases, some CNs are left idle. You can
reduce the number of CNs to improve resource efficiency. For details, see Deleting
Coordinator Nodes for an Instance.

CNs can only be added or deleted for distributed instances using independent
deployment.

GaussDB
Best Practices 3 Best Practices for Scaling

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_168.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_168.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_636.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_162.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_163.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_163.html

Adding or Deleting Shards
As data volume continues to grow, the existing data nodes (DNs) may become
unable to accommodate the increased load. To address this, you can scale out the
instance by adding more shards to it to distribute data. For details, see Adding
Shards for an Instance.

Conversely, there may be more than enough DNs in your instance after read/write
splitting is enabled or redundant data is cleared. You can delete shards as needed
to avoid cost waste. For details, see Deleting Shards for an Instance.

Shards can only be added or deleted for distributed instances using independent
deployment.

GaussDB
Best Practices 3 Best Practices for Scaling

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_634.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_634.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_489.html

4 Best Practices for Backup and
Restoration

4.1 Overview
GaussDB ensures high availability, but accidental or intentional deletion of a
database or table will result in data loss across both primary and standby nodes,
making it unrecoverable from the standby node. In this case, you can only restore
the deleted data from backup. GaussDB enables data restoration from backup,
either to the state it was in when the backup was created or to a specific point in
time.

This section outlines typical accidental operations and their corresponding
recovery methods. For details, see Table 4-1. It also presents typical use cases and
performance specifications for backup and restoration. For details, see Table 4-2.
You can choose different data restoration methods based on service requirements.

Restoration Methods for Misoperations

Table 4-1 Restoration methods for different misoperations

Scenario Restoration Method Restoratio
n Scope

Instructions

An instance
is deleted by
mistake.

Locate the deleted instance in
the recycle bin and rebuild it.

All
databases
and tables

Restoring an
Instance from
the Recycle Bin

If a manual backup was created
before the instance was
deleted, restore the instance on
the Backups page.

All
databases
and tables

Restoring an
Instance from a
Backup

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Scenario Restoration Method Restoratio
n Scope

Instructions

A table is
deleted by
mistake.

Use the database and table
restoration method to restore
the table.

● All
databas
es and
tables

● Certain
databas
es and
tables

● Restoring
Databases or
Tables to a
Specific Point
in Time

● Restoring
Databases or
Tables Using
a Backup

A database
is deleted by
mistake.

Use the database and table
restoration method to restore
the database.

● All
databas
es and
tables

● Certain
databas
es and
tables

An entire
table is
overwritten,
or the
columns,
rows, or
data in a
table is
deleted or
modified by
mistake.

Use the database and table
restoration method to restore
table data.

● All
databas
es and
tables

● Certain
databas
es and
tables

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Backup and Restoration Use Cases and Performance Specifications

Table 4-2 Backup and restoration use cases and performance specifications

Use
Case

Key
Perform
ance
Factor

Typical
Data
Volume

Performance Specifications

DB
instanc
e
backu
p

● Data
size

● Netw
ork
confi
gurat
ion

Data
volume:
Petabyte
s
Object
quantity:
about 1
million

OBS backup and restoration specifications:
1. In a standard environment, a full backup or

restoration of 2 TB of data can be completed
within 8 hours.

2. With the right hardware, plenty of OBS
bandwidth, a high compression ratio, and
independent deployment, the full backup or
restoration duration can be calculated using
the following formula:
● Distributed instances

Backup or restoration duration = (Total data volume of
the DB instance/Number of shards)/min(Disk I/O read
bandwidth, Compression bandwidth, Single-thread OBS
transmission bandwidth/Compression ratio)

● Centralized instances
Backup or restoration duration = Total data volume of
the DB instance/min(Disk I/O read bandwidth,
Compression bandwidth, Single-thread OBS
transmission bandwidth/Compression ratio)

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Use
Case

Key
Perform
ance
Factor

Typical
Data
Volume

Performance Specifications

NOTE
● min() means that the smallest of the values

listed is used.
● Disk read bandwidth:

● SATA SSD: 200 MB/s to 300 MB/s
● SAS SSD: ~500 MB/s
● NVMe SSD: ~1 GB/s
Reserving enough bandwidth for database
workloads is critical, or backup tasks may
severely degrade performance.

● Compression bandwidth: LZ4 compression is
used by default. Generally, the compression
bandwidth ranges from 300 MB/s to 400 MB/s.
The compression level ranges from 1 (default)
to 9. Higher levels slow down compression and
cause the backup to take longer. The exact
time varies depending on data attributes.

● Single-thread OBS transmission bandwidth: 100
MB/s to 300 MB/s in unrestricted mode or the
specified limit in speed-restricted mode.

● Compression ratio: LZ4 compression is used by
default, achieving a compression ratio between
0.1 and 0.5. The compression ratio depends on
various data attributes.

● Setting the parallel upload parameter to 2 or
higher increases CPU and other resource usage
during backups. Backup performance improves
based on the ratio of OBS single-stream
transmission bandwidth to total OBS
bandwidth. However, if single-stream
bandwidth multiplied by the parallel upload
parameter exceeds the total bandwidth, no
further performance gains are achieved.

3. During the restoration of a backup set for
hash bucket tables undergoing scale-out and
redistribution in a distributed instance:
Restoration time (excluding the redistribution
process after restoration) ≤ 2 x Restoration
duration of a backup set with the same data
volume in the same way during non-scale-
out + Redistribution duration of hash bucket
tables with the same data volume.
When restoring a backup set for hash bucket
tables undergoing scale-out and
redistribution, there are three steps:
● Step 1: Restore the full backups of all

nodes, restore all incremental backups of

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Use
Case

Key
Perform
ance
Factor

Typical
Data
Volume

Performance Specifications

the old DNs before scale-out, and replay
logs.

● Step 2: Physically migrate the hash bucket
files to be redistributed from the old DNs
to the new DNs.

● Step 3: Restore all incremental backups of
the new DNs and replay logs.

4. The time it takes to start up a distributed
instance after data restoration depends on
the number of sequences and databases
involved.
● During startup after restoration, the

sequence information of each database is
obtained and set in ETCD. Most of the
time is spent on acquiring sequence
information and configuring sequences in
ETCD.
– Connecting to each database to acquire

sequence information: The more the
databases, the longer the time
required.

– Configuring sequences in ETCD: The
more the sequences, the longer the
time required.

● Updating PGXC catalog information:
When you connect to each database to
update the pgxc_class and pgxc_slice
catalog information, the more the
databases, the longer the time required.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Use
Case

Key
Perform
ance
Factor

Typical
Data
Volume

Performance Specifications

Datab
ase-
level
physic
al
restora
tion

● Data
size

● Netw
ork
confi
gurat
ion

- Database-level physical restoration based on
OBS consists of four steps:
● Step 1: Read all data for database-level

restoration from the backup media. In a
standard Huawei Cloud environment, 2 TB of
data can be read within 8 hours.

● Step 2: Run VACUUM FREEZE on database-
level data in the auxiliary database. The
VACUUM FREEZE performance is as follows:
– Distributed instances:

1,400 GB/hour per shard. Parallel
replication is allowed between shards.

– Centralized instances:
1,400 GB/hour.

● Step 3: Replicate the database-level data
after VACUUM FREEZE to each DN replica of
the production instance. The replication
performance is as follows:
– Distributed instances:

Replication performance = Data volume of
a single shard/min(Network bandwidth,
Disk I/O bandwidth). Parallel replication is
allowed between shards.

– Centralized instances:
Replication performance = Database-level
data volume to be restored/min(Network
bandwidth, Disk I/O bandwidth)

● Step 4: Import data to the production
instance. The import performance is as
follows:
– Distributed instances:

Depending on the data volume per shard
and disk I/O bandwidth. Parallel
replication is allowed between shards.

– Centralized instances:
Depending on the database-level data
volume to be restored and disk I/O
bandwidth.

Recommended scenarios:
● Performance: For equivalent data volumes,

database-level physical restoration achieves
approximately 70% of the performance of
instance-level physical restoration. If the total

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Use
Case

Key
Perform
ance
Factor

Typical
Data
Volume

Performance Specifications

database-level data requiring restoration is
below 70% of the instance-level data
volume, database-level physical restoration is
recommended.

● Availability: During a database-level
restoration, other databases within the same
instance remain operational, ensuring higher
availability compared to an instance-level
restoration. For uninterrupted access to other
databases throughout the process, database-
level physical restoration is recommended.

Impacts:
● Before a database-level data import, ensure

that flow control is disabled and the GUC
parameter recovery_time_target is set to 0.
Note that during this process, the throughput
of the production environment may be
impacted, typically reduced to 50% of its
peak capacity, or, in extreme cases, as low as
25%.

● To avoid impacting services, perform fine-
grained restorations during off-peak hours.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Use
Case

Key
Perform
ance
Factor

Typical
Data
Volume

Performance Specifications

Table-
level
physic
al
restora
tion

● Data
size

● Netw
ork
confi
gurat
ion

● Table
stora
ge
type

● Table
attrib
ute
(colu
mn)
type

- Table-level physical restoration based on OBS
consists of three steps:
● Step 1: Read all data for table-level

restoration from the backup media. In a
standard Huawei Cloud environment, 2 TB of
data can be read within 8 hours.

● Step 2: Export table data from the auxiliary
database to a local file. The export
performance is about 25 MB/s.

● Step 3: Import the locally exported file into
the production instance. When the GUC
parameter page_version_check is set to off,
the import speed is about 25 MB/s (setting
this parameter to memory reduces the
performance by about 15%). Additionally,
factors such as the row count, table indexes,
and triggers can further decrease import
speeds to roughly 10 MB/s.

Recommended scenarios:
● Performance: For equivalent data volumes,

table-level physical restoration operates at
approximately one-fifth the speed of
instance-level restoration. Table-level
physical restoration is recommended when
the total data requiring restoration is below
one-fifth of the instance-level data volume
and does not exceed 1 TB.

● Availability: During a table-level restoration,
other databases and tables within the same
instance remain operational, ensuring higher
availability compared to an instance-level
restoration. For uninterrupted access to other
databases and tables throughout the process,
table-level physical restoration is
recommended.

Impacts:
● During a table-level restoration, the

throughput of the production environment
may be impacted, typically reduced to 50%
of its peak capacity, or, in extreme cases, as
low as 25%.

● To avoid impacting services, perform fine-
grained restorations during off-peak hours.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

4.2 Instance Restoration

4.2.1 Restoring an Instance from the Recycle Bin

Scenarios

The recycle bin retains a backup generated when an instance was deleted. If the
backup has not expired, you can restore the deleted instance by rebuilding it from
the recycle bin.

Procedure

Step Description

Step 1: Prepare Data Use Data Admin Service (DAS) to create a database
and table and insert data into the table.

Step 2: Delete the
Instance

Delete the instance.

Step 3: Restore the
Instance from the
Recycle Bin

Restore the deleted instance from the recycle bin.

Step 4: Check the
Results

Log in to the DAS console and check whether the data
was restored.

Step 1: Prepare Data
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.
Alternatively, click the instance name on the Instances page. On the displayed
Basic Information page, click Log In in the upper right corner.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. On the menu bar on top, choose SQL Operations > SQL Query.
7. In the SQL execution window, run the following statement to create a

database:
CREATE DATABASE db_tpcds;

If information shown in the following figure is displayed, the creation was
successful.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://console-intl.huaweicloud.com/?locale=en-us

Figure 4-1 Creating a database

Switch to the newly created database db_tpcds in the upper left corner.
8. Use SQL statements to create a table and insert data.

– Create a schema.
CREATE SCHEMA myschema;

Switch to the newly created schema in the upper left corner.
– Create a table named mytable that has only one column. The column

name is firstcol and the column type is integer.
CREATE TABLE myschema.mytable (firstcol int);

– Insert data into the table.
INSERT INTO myschema.mytable values (100);

9. Query table data.
SELECT * FROM myschema.mytable;

Step 2: Delete the Instance
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance you want to delete, click More in
the Operation column, and choose Delete.

5. In the Delete DB Instance dialog box, enter DELETE, select the confirmation
check box in the Confirm field, and click OK. Refresh the Instances page later
to confirm that the deletion was successful.

Step 3: Restore the Instance from the Recycle Bin
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://console-intl.huaweicloud.com/?locale=en-us
https://console-intl.huaweicloud.com/?locale=en-us

4. In the navigation pane on the left, choose Recycle Bin.
5. Locate the instance to be restored and, in the Operation column, click

Rebuild.
6. On the Rebuild DB Instance page, select the billing mode, enter the instance

name, and specify other parameters such as the AZs and time zone.

Figure 4-2 Billing mode and basic information

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Table 4-3 Parameter description

Parameter Example
Value

Description

Billing Mode Pay-per-use GaussDB provides yearly/monthly billing and
pay-per-use billing.
● Yearly/Monthly: You pay upfront for the

amount of time you expect to use the DB
instance for. You will need to make sure
you have a top-up account with a
sufficient balance or have a valid
payment method configured first.
For distributed instances using the
combined deployment model, yearly/
monthly billing is only available to
authorized users. To apply for the
permissions needed, submit a service
ticket.

● Pay-per-use: You can start using the DB
instance first and then pay as you go.
Pricing is listed on a per-hour basis, but
bills are calculated based on the actual
usage duration.

DB Instance
Name

gauss-7e3d The instance name is case-sensitive, must
start with a letter, and can contain 4 to 64
characters. Only letters, digits, hyphens (-),
and underscores (_) are allowed.

Failover
Priority

Reliability This parameter is only available for
distributed instances using independent
deployment.
Additionally, this parameter is only available
for authorized users. To apply for the
permissions needed, submit a service
ticket.
● Reliability: Data consistency is prioritized

during a failover. This is recommended
for applications with highest priority for
data consistency.

● Availability: Database availability is
prioritized during a failover. This is
recommended for applications that
require their databases to provide
uninterrupted online services.

AZ AZ1 An AZ is a physical region where resources
have independent power supply and
networks. AZs are physically isolated but
interconnected through an internal network.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex

Parameter Example
Value

Description

Time Zone (UTC+08:00)
Beijing,
Chongqing,
Hong Kong,
Urumqi

You need to select a time zone for your
instance based on the region it is hosted in.

7. Configure instance specifications.

Figure 4-3 Specifications and storage

Table 4-4 Parameter description

Parameter Example Value Description

Instance
Specifications

Dedicated(1:8); 8
vCPUs | 64 GB

The vCPUs and memory of an
instance.

Storage Space 40 GB The storage space contains the file
system overhead required for inodes,
reserved blocks, and database
operations.

Disk
Encryption

Disable Enabling disk encryption improves
data security, but slightly affects the
read and write performance of the
database.
If a shared KMS key is used, the
corresponding CTS event is
createGrant. Only the key owner can
receive this event.

8. Retain the default settings for the network configuration.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Figure 4-4 Network configuration

9. Configure the administrator password and enterprise project.

Figure 4-5 Database configuration

Table 4-5 Parameter description

Parameter Example Value Description

Administrator
Password

- Enter a strong password and
periodically change it to improve
security, preventing security risks such
as brute force cracking.

Confirm
Password

- Enter the administrator password
again.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Parameter Example Value Description

Enterprise
Project

default If the instance has been associated
with an enterprise project, select the
target project from the Enterprise
Project drop-down list.
You can also go to the Enterprise
Project Management console to
create a project. For details, see
Enterprise Management User Guide.

10. Click Next.

11. Confirm the information and click Submit.

12. After the task is submitted, check the instance status on the Instances page.
The rebuild is complete when the status shows Available.

Step 4: Check the Results
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. Check the database name and table data to verify that the restoration is
complete.

4.2.2 Restoring an Instance from a Backup

Scenarios

If a manual backup was created before an instance was deleted, you can restore
the instance on the Backups page.

Procedure

Step Description

Step 1: Prepare Data Use Data Admin Service (DAS) to create a database
and table and insert data into the table.

Step 2: Delete the
Instance

Delete the instance.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0108763975.html
https://console-intl.huaweicloud.com/?locale=en-us

Step Description

Step 3: Restore an
Instance Using a
Backup File

Restore your instance data from a backup.

Step 4: Check the
Results

Log in to the DAS console and check whether the data
was restored.

Step 1: Prepare Data
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.
Alternatively, click the instance name on the Instances page. On the displayed
Basic Information page, click Log In in the upper right corner.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. On the menu bar on top, choose SQL Operations > SQL Query.
7. In the SQL execution window, run the following statement to create a

database:
CREATE DATABASE db_tpcds;

If information shown in the following figure is displayed, the creation was
successful.

Figure 4-6 Creating a database

Switch to the newly created database db_tpcds in the upper left corner.
8. Use SQL statements to create a table and insert data.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://console-intl.huaweicloud.com/?locale=en-us

– Create a schema.
CREATE SCHEMA myschema;

Switch to the newly created schema in the upper left corner.
– Create a table named mytable that has only one column. The column

name is firstcol and the column type is integer.
CREATE TABLE myschema.mytable (firstcol int);

– Insert data into the table.
INSERT INTO myschema.mytable values (100);

9. Query table data.
SELECT * FROM myschema.mytable;

Step 2: Delete the Instance
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance you want to delete, click More in
the Operation column, and choose Delete.

5. In the Delete DB Instance dialog box, enter DELETE, select the confirmation
check box in the Confirm field, and click OK. Refresh the Instances page later
to confirm that the deletion was successful.

Step 3: Restore an Instance Using a Backup File
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. In the navigation pane, choose Backups. On the Backups page, locate the
backup to be restored and click Restore in the Operation column.

5. Set Restoration Method to Create New Instance and click OK.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://console-intl.huaweicloud.com/?locale=en-us
https://console-intl.huaweicloud.com/?locale=en-us

Figure 4-7 Restoring data from a backup

6. On the Create New Instance page, select the billing mode, enter the instance
name, and specify other parameters such as the AZs and time zone.

Figure 4-8 Billing mode and basic information

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Table 4-6 Parameter description

Parameter Example
Value

Description

Billing Mode Pay-per-use GaussDB provides yearly/monthly billing and
pay-per-use billing.
● Yearly/Monthly: You pay upfront for the

amount of time you expect to use the DB
instance for. You will need to make sure
you have a top-up account with a
sufficient balance or have a valid
payment method configured first.
For distributed instances using the
combined deployment model, yearly/
monthly billing is only available to
authorized users. To apply for the
permissions needed, submit a service
ticket.

● Pay-per-use: You can start using the DB
instance first and then pay as you go.
Pricing is listed on a per-hour basis, but
bills are calculated based on the actual
usage duration.

DB Instance
Name

gauss-7e3d The instance name is case-sensitive, must
start with a letter, and can contain 4 to 64
characters. Only letters, digits, hyphens (-),
and underscores (_) are allowed.

Failover
Priority

Reliability This parameter is only available for
distributed instances using independent
deployment.
Additionally, this parameter is only available
for authorized users. To apply for the
permissions needed, submit a service
ticket.
● Reliability: Data consistency is prioritized

during a failover. This is recommended
for applications with highest priority for
data consistency.

● Availability: Database availability is
prioritized during a failover. This is
recommended for applications that
require their databases to provide
uninterrupted online services.

AZ AZ1 An AZ is a physical region where resources
have independent power supply and
networks. AZs are physically isolated but
interconnected through an internal network.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex

Parameter Example
Value

Description

Time Zone (UTC+08:00)
Beijing,
Chongqing,
Hong Kong,
Urumqi

You need to select a time zone for your
instance based on the region it is hosted in.

7. Configure instance specifications.

Figure 4-9 Specifications and storage

Table 4-7 Parameter description

Parameter Example Value Description

Instance
Specifications

Dedicated(1:8); 8
vCPUs | 64 GB

The vCPUs and memory of an
instance.

Storage Space 40 GB The storage space contains the file
system overhead required for inodes,
reserved blocks, and database
operations.

Disk
Encryption

Disable Enabling disk encryption improves
data security, but slightly affects the
read and write performance of the
database.
If a shared KMS key is used, the
corresponding CTS event is
createGrant. Only the key owner can
receive this event.

8. Retain the default settings for the network configuration.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Figure 4-10 Network configuration

9. Configure the administrator password and enterprise project.

Figure 4-11 Database configuration

Table 4-8 Parameter description

Parameter Example Value Description

Administrator
Password

- Enter a strong password and
periodically change it to improve
security, preventing security risks such
as brute force cracking.

Confirm
Password

- Enter the administrator password
again.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Parameter Example Value Description

Enterprise
Project

default If the instance has been associated
with an enterprise project, select the
target project from the Enterprise
Project drop-down list.
You can also go to the Enterprise
Project Management console to
create a project. For details, see
Enterprise Management User Guide.

10. Click Next.
11. Confirm the information and click Submit.
12. After the task is submitted, check the instance status on the Instances page.

The restoration is complete when the status shows Available.

Step 4: Check the Results
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. Check the database name and table data to verify that the restoration is
complete.

4.3 Database and Table Restoration

4.3.1 Restoring Databases or Tables to a Specific Point in Time

Scenarios

When a table-level automated backup policy is enabled, you can use existing
backups to restore lost table data to a specific point in time in the case of
accidental or intentional deletions.

Procedure

Step Description

Step 1: Prepare Data Use Data Admin Service (DAS) to create a database
and table and insert data into the table.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0108763975.html
https://console-intl.huaweicloud.com/?locale=en-us

Step Description

Step 2: Delete Table
Data

Delete the instance.

Step 3: Restore Table
Data

Restore the deleted table data using table-level point-
in-time recovery (PITR).

Step 4: Check the
Results

Log in to the DAS console and check whether the data
was restored.

Step 1: Prepare Data
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.
Alternatively, click the instance name on the Instances page. On the displayed
Basic Information page, click Log In in the upper right corner.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. On the menu bar on top, choose SQL Operations > SQL Query.
7. In the SQL execution window, run the following statement to create a

database:
CREATE DATABASE db_tpcds;

If information shown in the following figure is displayed, the creation was
successful.

Figure 4-12 Creating a database

Switch to the newly created database db_tpcds in the upper left corner.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

https://console-intl.huaweicloud.com/?locale=en-us

8. Use SQL statements to create a table and insert data.
– Create a schema.

CREATE SCHEMA myschema;

Switch to the newly created schema in the upper left corner.
– Create a table named mytable that has only one column. The column

name is firstcol and the column type is integer.
CREATE TABLE myschema.mytable (firstcol int);

– Insert data into the table.
INSERT INTO myschema.mytable values (100);

9. Query table data.
SELECT * FROM myschema.mytable;

Step 2: Delete Table Data
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.
Alternatively, click the instance name on the Instances page. On the displayed
Basic Information page, click Log In in the upper right corner.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. On the menu bar on top, choose SQL Operations > SQL Query.
7. Delete table data.

DELETE FROM myschema.mytable WHERE firstcol = 100;

Step 3: Restore Table Data
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, click the name of the instance to access the Basic
Information page.

5. In the navigation pane, choose Backups. On the displayed page, click the
Table Backup tab.

6. Click Restore to Point in Time. In the displayed dialog box, specify the time
range and point for restoration, and set Restoration Method to Restore to
Original.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://console-intl.huaweicloud.com/?locale=en-us
https://console-intl.huaweicloud.com/?locale=en-us

Figure 4-13 Restoring data to a specified point in time

7. Select the tables to be restored and click Submit.

Figure 4-14 Selecting tables to be restored

8. Go to the Instances page and check that the target instance is in the
Restoring state. When the instance status changes to Available, the
restoration is complete.

Step 4: Check the Results
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://console-intl.huaweicloud.com/?locale=en-us

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. Check the database name and table data to verify that the restoration is
complete.

4.3.2 Restoring Databases or Tables Using a Backup

Scenarios

When a table-level automated backup policy is enabled or a manual backup is
available, you can restore tables to the exact state captured by an existing backup,
recovering any accidentally or intentionally deleted data.

Procedure

Step Description

Step 1: Prepare Data Use Data Admin Service (DAS) to create a database
and table and insert data into the table.

Step 2: Delete Table
Data

Delete the instance.

Step 3: Restore Table
Data

Restore the deleted table data using a table-level
backup.

Step 4: Check the
Results

Log in to the DAS console and check whether the data
was restored.

Step 1: Prepare Data
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.
Alternatively, click the instance name on the Instances page. On the displayed
Basic Information page, click Log In in the upper right corner.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. On the menu bar on top, choose SQL Operations > SQL Query.
7. In the SQL execution window, run the following statement to create a

database:
CREATE DATABASE db_tpcds;

If information shown in the following figure is displayed, the creation was
successful.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

https://console-intl.huaweicloud.com/?locale=en-us

Figure 4-15 Creating a database

Switch to the newly created database db_tpcds in the upper left corner.
8. Use SQL statements to create a table and insert data.

– Create a schema.
CREATE SCHEMA myschema;

Switch to the newly created schema in the upper left corner.
– Create a table named mytable that has only one column. The column

name is firstcol and the column type is integer.
CREATE TABLE myschema.mytable (firstcol int);

– Insert data into the table.
INSERT INTO myschema.mytable values (100);

9. Query table data.
SELECT * FROM myschema.mytable;

Step 2: Delete Table Data
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.
Alternatively, click the instance name on the Instances page. On the displayed
Basic Information page, click Log In in the upper right corner.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. On the menu bar on top, choose SQL Operations > SQL Query.
7. Delete table data.

DELETE FROM myschema.mytable WHERE firstcol = 100;

Step 3: Restore Table Data
1. Log in to the management console.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://console-intl.huaweicloud.com/?locale=en-us
https://console-intl.huaweicloud.com/?locale=en-us

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, click the name of the instance to access the Basic
Information page.

5. In the navigation pane, choose Backups. On the displayed page, click the
Table Backup tab.

6. Locate the backup and click Restore in the Operation column.

7. Set Restoration Method to Restore to Original, and click Next.

Figure 4-16 Restore Table Backup

8. Select the tables to be restored and click Submit.

9. Go to the Instances page and check that the target instance is in the
Restoring state. When the instance status changes to Available, the
restoration is complete.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Step 4: Check the Results
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, locate the instance and, in the Operation column,
click Log In to access the DAS console.

5. Enter the database username and password and click Test Connection. After
the connection test is successful, click Log In.

6. Check the database name and table data to verify that the restoration is
complete.

GaussDB
Best Practices 4 Best Practices for Backup and Restoration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://console-intl.huaweicloud.com/?locale=en-us

5 Suggestions on GaussDB Metric Alarm
Configuration

You can set alarm rules on the Cloud Eye console to specify the monitored objects
and notification policies for your instances and keep track of the instance status.
This section describes how to configure GaussDB metric alarm rules.

Creating a Metric Alarm Rule

Step 1 Log in to the management console.

Step 2 Under Management & Governance of the service list, click Cloud Eye.

Step 3 In the navigation pane on the left, choose Cloud Service Monitoring.

Step 4 Click GaussDB in the list.

Step 5 Locate the instance for which you want to create an alarm rule, click More in the
Operation column, and choose Create Alarm Rule.

Step 6 On the displayed page, set parameters as required.

Table 5-1 Alarm rule information

Parameter Description

Name Alarm rule name. The system generates a random name, and
you can change it if needed. The value can contain only letters,
digits, underscores (_), and hyphens (-), and cannot exceed 128
characters.

Description Description of the alarm rule. The value can contain a maximum
of 256 characters. This parameter is optional.

GaussDB
Best Practices

5 Suggestions on GaussDB Metric Alarm
Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://console-intl.huaweicloud.com/?locale=en-us

Parameter Description

Method Mode for configuring an alarm policy. You can select Associate
template or Configure manually.
● Configure manually: You can create a custom alarm policy

as needed.
● Associate template: If the same alarm rule needs to be

configured for multiple GaussDB instances, you can use an
alarm template to simplify operation.

Template This parameter is only available if you select Associate
template for Method.
You can select a default alarm template or create a custom one.
After an associated template is modified, the policies contained
in this alarm rule to be created will be updated accordingly.

Alarm Policy This parameter is only available if you select Configure
manually for Method.
An alarm is triggered when the metric configured for this alarm
reaches the preset threshold in consecutive periods. For
example, an alarm is triggered if the average CPU usage is 80%
or higher for three consecutive 5-minute periods.
A maximum of 50 alarm policies can be added to an alarm rule.
If any of these alarm policies is met, an alarm will be triggered.

Table 5-2 Alarm notification

Parameter Description

Alarm
Notifications

Specifies whether to notify users when alarms are triggered.
Notifications can be sent by email or text messages, or through
HTTP/HTTPS requests to servers. This function is enabled by
default.

Notified By The following three options are available:
● Notification policies: Flexible alarm notifications by severity

and more notification channels are provided.
● Notification groups: Configure notification templates on the

Cloud Eye console.
● Topic subscriptions: Configure notification templates on the

Simple Message Notification (SMN) console.

Notification
Policies

This parameter is only available if you select Notification
policies for Notified By. Select one or more notification policies.
You can specify the notification group, window, template, and
other parameters in a notification policy.
For how to create a notification policy, see Creating, Modifying,
or Deleting a Notification Policy.

GaussDB
Best Practices

5 Suggestions on GaussDB Metric Alarm
Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://support.huaweicloud.com/intl/en-us/usermanual-ces/ces_01_0229.html
https://support.huaweicloud.com/intl/en-us/usermanual-ces/ces_01_0229.html

Parameter Description

Notification
Group

This parameter is only available if you select Notification
groups for Notified By. Select the notification groups to which
alarm notifications will be sent.
For details about how to create a notification group, see
Creating a Recipient and Notification Group.

Recipient This parameter is only available if you select Topic
subscriptions for Notified By. You can select the account
contact or a topic as the object to which alarm notifications will
be sent.
● The account contact is the mobile phone number and email

address of the registered account.
● A topic is a specific event type for publishing messages or

subscribing to notifications. If the required topic is
unavailable, create one first and add subscriptions to it. For
details, see Creating a Topic and Adding Subscriptions.

Notification
Template

This parameter is only available if you select Notification
groups or Topic subscriptions for Notified By. You can select
an existing template or create a new one to send alarm
notifications.

Notification
Window

This parameter is only available if you select Notification
groups or Topic subscriptions for Notified By.
Cloud Eye sends notifications only within the notification
window you specified.
If Notification Window is set to 08:00-20:00, alarm
notifications are sent only from 08:00 to 20:00.

Trigger
Condition

This parameter is only available if you select Notification
groups or Topic subscriptions for Notified By.
You can select either Generated alarm or Cleared alarm, or
both.

Enterprise
Project

Enterprise project that the alarm rule belongs to. Only users
who have the permissions of the enterprise project can view and
manage this alarm rule.

Tags Key-value pairs that you can use to easily categorize and search
for cloud resources. You are advised to create predefined tags in
Tag Management Service (TMS).
If your organization has configured tag policies for Cloud Eye,
you need to add tags to alarm rules based on tag policies. If a
tag does not comply with the policies, an alarm rule may fail to
be created. Contact your organization administrator to learn
more about tag policies.
● A key can contain up to 128 characters, and a value can

contain up to 225 characters.
● You can add up to 20 tags.

GaussDB
Best Practices

5 Suggestions on GaussDB Metric Alarm
Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/usermanual-ces/ces_01_0219.html
https://support.huaweicloud.com/intl/en-us/usermanual-ces/en-us_topic_0085216039.html
https://support.huaweicloud.com/intl/en-us/usermanual-ces/en-us_topic_0084572343.html

Step 7 Click Create. The alarm rule is created.

For details about how to create alarm rules, see Creating an Alarm Rule.

----End

Metric Alarm Configuration Suggestions
Metric ID Metric Name Definition Threshold in Best

Practices
Alarm
Severi
ty in
Best
Practi
ces

io_bandwidth_usa
ge

Disk I/O
Bandwidth
Usage

Percentage
of the
maximum
disk I/O
bandwidth
currently
used

Raw data > 80%
for three
consecutive
periods

Major

iops_usage IOPS Usage Percentage
of the
maximum
disk IOPS
currently
used

Raw data > 80%
for three
consecutive
periods

Major

rds001_cpu_util CPU Usage CPU usage
of a
measured
object

Raw data > 80%
for three
consecutive
periods

Major

rds002_mem_util Memory
Usage

Memory
usage of a
monitored
object

Raw data > 90%
for three
consecutive
periods

Major

rds007_instance_di
sk_usage

Instance Disk
Usage

Real-time
data disk
usage of
the
monitored
instance

Raw data > 75%
for three
consecutive
periods (The
threshold should
not be set above
80%.)

Major

GaussDB
Best Practices

5 Suggestions on GaussDB Metric Alarm
Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/usermanual-ces/en-us_topic_0084572213.html

Metric ID Metric Name Definition Threshold in Best
Practices

Alarm
Severi
ty in
Best
Practi
ces

rds020_avg_disk_m
s_per_write

Time Required
for per Disk
Write

Average
time
required for
a data disk
write on the
monitored
node in a
measureme
nt period

Raw data > 8 ms
for three
consecutive
periods

Major

rds021_avg_disk_m
s_per_read

Time Required
for per Disk
Read

Average
time
required for
a data disk
read on the
monitored
node in a
measureme
nt period

Raw data > 8 ms
for three
consecutive
periods

Major

rds036_deadlocks Deadlocks Incremental
number of
database
transaction
deadlocks in
a
measureme
nt period

Raw data > 5
counts for three
consecutive
periods

Major

rds048_P80 Response
Time of 80%
SQL
Statements

Real-time
response
time of 80%
of database
SQL
statements

Raw data >
10000000 μs for
three consecutive
periods

Major

rds049_P95 Response
Time of 95%
SQL
Statements

Real-time
response
time of 95%
of database
SQL
statements

Raw data >
15000000 μs for
three consecutive
periods

Major

GaussDB
Best Practices

5 Suggestions on GaussDB Metric Alarm
Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Metric ID Metric Name Definition Threshold in Best
Practices

Alarm
Severi
ty in
Best
Practi
ces

rds060_long_runni
ng_transaction_exe
ctime

Maximum
Execution
Duration of
Database
Transactions

Real-time
maximum
execution
duration of
database
transactions
execution
on a
monitored
object

Raw data > 7200s
for three
consecutive
periods (You are
advisable to
manually
terminate a
transaction if its
duration is longer
than 2 hours.
Adjust this
threshold based on
workload
requirements.)

Major

rds063_slowquery_
user

Slow SQL
Statements in
the User
Database

Real-time
number of
slow SQL
statements
in the user
databases
on the
primary DN
or CN in a
measureme
nt period

Raw data > 15
counts for three
consecutive
periods

Major

rds065_dynamic_u
sed_memory_usag
e

Dynamic
Memory
Usage

Real-time
dynamic
memory
usage of a
monitored
object

Raw data > 80%
for three
consecutive
periods

Major

rds066_replication
_slot_wal_log_size

WAL Log Size
in the
Replication
Slot

Real-time
size of WAL
logs
reserved in
the
replication
slot of a
primary DN

Raw data > [10%
of the storage]
bytes for three
consecutive
periods (10% is
the recommended
value. Adjust this
threshold based on
the purchased
storage.)

Major

GaussDB
Best Practices

5 Suggestions on GaussDB Metric Alarm
Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Metric ID Metric Name Definition Threshold in Best
Practices

Alarm
Severi
ty in
Best
Practi
ces

rds070_thread_poo
l

Thread Pool
Usage

Real-time
thread pool
usage on a
CN or DN

Raw data > 85%
for three
consecutive
periods

Major

GaussDB
Best Practices

5 Suggestions on GaussDB Metric Alarm
Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

6 Best Practices for Row Compression

6.1 Scenario Overview
One of the purposes of row compression is to reuse the space saved after
compressing tables. The process can be summarized as follows:

● Compression execution. The system traverses each page of tables with
Information Lifecycle Management (ILM) enabled and performs compression.
The compressed data is referred to as BCA and remains stored in the original
page. After compression, the page has more available space. Note that the
space saved after compression is not released back to the operating system.
For details about ILM, see Data Lifecycle Management: OLTP Table
Compression.

● Data insertion. When new data is inserted, the system prioritizes pages with
enough remaining space to accommodate the new rows. By increasing the
amount of free space available in pages, row compression reduces the actual
storage occupied by the table.

The following examples demonstrate how row compression can be scheduled and
executed:

● Manual scheduling: You need to manually call the compression interface,
and only one task can be generated at a time.

● Automatic scheduling: After the prerequisite configuration is complete, the
system automatically creates compression tasks in the background through
scheduled jobs, and one scheduling cycle can generate multiple tasks.

6.2 Manual Scheduling
Step 1 Log in to the GaussDB management console. On the Instances page, click the

name of the target instance to go to the Basic Information page.

Step 2 Locate the Advanced Features field and click View and Modify. On the displayed
page, set the value of Advanced compression to on. For details, see Viewing and
Modifying Advanced Features.

GaussDB
Best Practices 6 Best Practices for Row Compression

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://support.huaweicloud.com/intl/en-us/fg-gaussdb-dist-v8/gaussdb-18-0152.html
https://support.huaweicloud.com/intl/en-us/fg-gaussdb-dist-v8/gaussdb-18-0152.html
https://console-intl.huaweicloud.com/gaussdb/?locale=en-us#/gaussdb/management/list
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_473.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_473.html

Step 3 Connect to the database and run the following command to enable ILM: For
details about how to connect to the database, see Using gsql to Connect to an
Instance.
alter database set ilm = on;

Step 4 Change the ILM time unit to seconds.

This step is mainly for accelerating testing. By default, ILM uses days as the time
unit. When you run manual compression, the first scheduling only records a
timestamp, and the second scheduling performs the actual compression. The
interval between the two must exceed the cold data threshold to trigger
compression. Using seconds as the time unit shortens this waiting period.

1. Change the ILM time unit to seconds.
BEGIN
DBE_ILM_ADMIN.CUSTOMIZE_ILM(11, 1);
END;
/

2. Check the modification result.
select * from gs_ilm_param;

Step 5 Adjust the maximum amount of data that can be compressed in a single
scheduling task.

In this example, the limit is changed to 4 GB.

GaussDB
Best Practices 6 Best Practices for Row Compression

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_503.html#section4
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_503.html#section4

BEGIN
 DBE_ILM_ADMIN.CUSTOMIZE_ILM(13, 4096);
END;
/

Step 6 Create a table with an ILM policy.
● Method 1: Add the policy when creating the table.

The clause 3 DAYS OF NO MODIFICATION defines the threshold for
identifying cold data.
CREATE TABLE t (
 id1 int,
 id2 int,
 id3 int,
 id4 int)
WITH (orientation=row, compression=no, storage_type=astore)
ILM ADD POLICY ROW STORE COMPRESS ADVANCED
ROW AFTER 3 DAYS OF NO MODIFICATION;

● Method 2: Create the table first, and then add the policy.
CREATE TABLE t (
 id1 int,
 id2 int,
 id3 int,
 id4 int)
WITH (orientation=row, compression=no, storage_type=astore);
ALTER TABLE t ILM ADD POLICY ROW STORE COMPRESS ADVANCED
ROW AFTER 3 DAYS OF NO MODIFICATION;

Step 7 Run the following command to insert data into the table:
insert into t (id1, id2 ,id3 , id4) select s, s, s, s from generate_series(1, 1000000) AS s;

Step 8 Run the following command to check the original size of table t, and record the
result as size1. In this example, size1 = 42 MB.
\d+

Step 9 Execute compression.

1. Run the following command:
declare
v_taskid number;
begin
 dbe_ilm.execute_ilm('public','t',v_taskid,NULL,'ALL POLICIES',2);
end;
/

2. Wait for 10 seconds and run the command in Step 9.1 again.
3. Check the compression result.

select * from gs_adm_ilmresults order by task_id desc limit 2;

GaussDB
Best Practices 6 Best Practices for Row Compression

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

You can view the compression results in the gs_adm_ilmresults table. In this
example, 13,664,840 bytes of space were saved.

Step 10 Verify reusable space. The saved space obtained in Step 9 may not be fully
reusable. To evaluate the real compression ratio, insert the same dataset again
and check the space usage of table t.

1. Insert data.
insert into t select * from t;

2. Check the size of table t, and record the result as size2. In this example, size2
= 71 MB.
\d+

Step 11 Compare the space usage of table t after the first and second data insertions to
calculate the compression ratio.

Compression ratio = size1/(size2 – size1) = 42/(71 – 42) = 1.45

----End

6.3 Automatic Scheduling
Step 1 Log in to the GaussDB management console. On the Instances page, click the

name of the target instance to go to the Basic Information page.

Step 2 Locate the Advanced Features field and click View and Modify. On the displayed
page, set the value of Advanced compression to on.

Step 3 Connect to the database. Create a data table with an ILM policy, and insert data
into the table. For details about how to connect to the database, see Using gsql
to Connect to an Instance.
create database adb;
\c adb
alter database set ilm = on;
create table t1 (id int) with (orientation=row, compression=no, storage_type=astore) ilm add policy row
store compress advanced row after 3 days of no modification;
insert into t1 select * from generate_series(1, 10000000);

The following is an example of the command output.

Step 4 Configure system parameters for enabling automatic ILM scheduling.

Call the DBE_ILM_ADMIN.CUSTOMIZE_ILM interface to modify the scheduling-
related system parameters by passing the corresponding parameter IDs and

GaussDB
Best Practices 6 Best Practices for Row Compression

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

https://console-intl.huaweicloud.com/gaussdb/?locale=en-us#/gaussdb/management/list
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_503.html#section4
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_503.html#section4

values. In this example, three parameters are modified: Set the automatic
scheduling frequency to once per minute; change the time unit for identifying cold
data rows to seconds; set the maximum data size compressed per job to 10 MB.
Retain the default values of other parameters.
\c adb
CALL DBE_ILM_ADMIN.CUSTOMIZE_ILM(1, 1);
CALL DBE_ILM_ADMIN.CUSTOMIZE_ILM(11, 1);
CALL DBE_ILM_ADMIN.CUSTOMIZE_ILM(13, 10);

The following is an example of the command output.

Step 5 Wait 3 seconds for data rows to become cold, and then enable automatic
scheduling.
\c adb
select pg_sleep(3);
CALL DBE_ILM_ADMIN.DISABLE_ILM();
CALL DBE_ILM_ADMIN.ENABLE_ILM();
\c template1
call DBE_SCHEDULER.set_attribute('maintenance_window_job','start_date',NOW());

The following is an example of the command output.

Step 6 Check the compression results of scheduling tasks.
\c adb
select * from gs_adm_ilmresults;

GaussDB
Best Practices 6 Best Practices for Row Compression

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

The following is an example of the command output.

Automatic scheduling runs once per minute, so a new compression job is
generated every minute. SpaceSaving indicates the amount of space saved by
compression. A larger value indicates a greater compression benefit.

If you want the table to be compressed more quickly, you can increase the data
size processed by each compression job, for example, set it to 1024. Then, restart
the scheduling task and check the compression results again after one minute.
\c adb
CALL DBE_ILM_ADMIN.CUSTOMIZE_ILM(13, 1024);
select pg_sleep(3);
CALL DBE_ILM_ADMIN.DISABLE_ILM();
CALL DBE_ILM_ADMIN.ENABLE_ILM();
\c template1
call DBE_SCHEDULER.set_attribute('maintenance_window_job','start_date',NOW());

The following is an example of the command output.

----End

GaussDB
Best Practices 6 Best Practices for Row Compression

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

7 Best Practices for SQL Queries

7.1 Best Practices for SQL Queries (Distributed
Instances)

Based on the SQL execution mechanism and a large number of practices, SQL
statements can be optimized by following certain rules to enable the database to
execute SQL statements more quickly and obtain correct results.

● Replace UNION with UNION ALL.
UNION eliminates duplicate rows while merging two result sets but UNION
ALL merges the two result sets without deduplication. Deduplication takes a
long time. Therefore, use UNION ALL instead of UNION if you are sure that
the two result sets do not contain duplicate rows based on the service logic.

● Add NOT NULL to the JOIN columns.
If there are many NULL values in the JOIN columns, you can add the filter
criterion IS NOT NULL to filter data in advance to improve the JOIN efficiency.

● Convert NOT IN to NOT EXISTS.
The NOT IN statement needs to be implemented using NESTLOOP ANTI JOIN,
and the NOT EXISTS statement can be implemented using HASH ANTI JOIN.
If no NULL value exists in the join columns, NOT IN is equivalent to NOT
EXISTS. Therefore, if you are sure that no NULL value exists, you can convert
NOT IN to NOT EXISTS to generate hash join and to improve the query
performance.
The statements for creating a foreign table are as follows:
gaussdb=# DROP SCHEMA IF EXISTS no_in_to_no_exists_test CASCADE;
gaussdb=# CREATE SCHEMA no_in_to_no_exists_test;
gaussdb=# SET CURRENT_SCHEMA=no_in_to_no_exists_test;
gaussdb=# CREATE TABLE t1(c1 int, c2 int, c3 int);
gaussdb=# CREATE TABLE t2(d1 int, d2 int NOT NULL, d3 int);

The statement for implementing the query using NOT IN is as follows:
gaussdb=# SELECT * FROM t1 WHERE c1 NOT IN (SELECT d2 FROM t2);

The plan is as follows:
gaussdb=# EXPLAIN SELECT * FROM t1 WHERE c1 NOT IN (SELECT d2 FROM t2);
 id | operation | E-rows | E-width | E-costs
----+---+--------+---------+---------

GaussDB
Best Practices 7 Best Practices for SQL Queries

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

 1 | -> Streaming (type: GATHER) | 15 | 12 | 29.65
 2 | -> Seq Scan on t1 | 15 | 12 | 28.77
 3 | -> Materialize [2, SubPlan 1] | 270 | 4 | 14.37
 4 | -> Streaming(type: BROADCAST) | 90 | 4 | 14.22
 5 | -> Seq Scan on t2 | 30 | 4 | 14.14
(5 rows)

 Predicate Information (identified by plan id)

 2 --Seq Scan on t1
 Filter: (NOT (hashed SubPlan 1))
(2 rows)

Because there is no null value in the t2.d2 column (the t2.d2 column is NOT
NULL in the table definition), the query can be equivalently modified as
follows:
gaussdb=# SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t1.c1=t2.d2);

The generated plan is as follows:
gaussdb=# EXPLAIN SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t1.c1=t2.d2);
 id | operation | E-rows | E-width | E-costs
----+---+--------+---------+---------
 1 | -> Streaming (type: GATHER) | 3 | 12 | 29.99
 2 | -> Hash Right Anti Join (3, 5) | 3 | 12 | 29.86
 3 | -> Streaming(type: REDISTRIBUTE) | 30 | 4 | 15.49
 4 | -> Seq Scan on t2 | 30 | 4 | 14.14
 5 | -> Hash | 29 | 12 | 14.14
 6 | -> Seq Scan on t1 | 30 | 12 | 14.14
(6 rows)

 Predicate Information (identified by plan id)

 2 --Hash Right Anti Join (3, 5)
 Hash Cond: (t2.d2 = t1.c1)
(2 rows)

-- Drop.
gaussdb=# DROP TABLE t1,t2;
gaussdb=# DROP SCHEMA IF EXISTS no_in_to_no_exists_test CASCADE;

● Use hashagg.
If the GROUP BY condition exists in the query statement, the generated plan
may contain sorting operations, that is, the plan contains the GroupAgg+Sort
operator. As a result, the performance is poor. You can set the GUC parameter
work_mem to increase the available memory and generate a plan with
HashAgg to avoid sorting operations and improve performance. For details
about how to set work_mem, contact the administrator.

● Replace functions with CASE statements.
The GaussDB performance greatly deteriorates if a large number of functions
are called. In this case, you can modify the pushdown functions to CASE
statements.

● Do not use functions or expressions for indexes.
Using functions or expressions for indexes will stop indexing and enable
scanning on the full table.

● Do not use operator (!=, <, or >), NULL, OR, or implicit parameter conversion
in WHERE clauses.

● For tables with frequent data changes, add hints to related SQL statements to
fix an execution plan.
For a table with frequent data changes, the statistics may not be the latest
before the automatic ANALYZE is triggered. As a result, the execution plan

GaussDB
Best Practices 7 Best Practices for SQL Queries

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

may not be optimal. You are advised to add hints to related SQL statements
to fix the execution plan.

● Split complex SQL statements.
You can split an SQL statement into several ones and save the execution
result to a temporary table if the SQL statement is too complex to be tuned
using the solutions above, including but not limited to the following scenarios:
– The same subquery is involved in multiple SQL statements of a job and

the subquery contains a large amount of data.
– Incorrect plan cost causes a small hash bucket of subquery. For example,

the actual number of rows is 10 million, but only 1000 rows are in hash
bucket.

– Functions such as substr and to_number cause incorrect measures for
subqueries containing a large amount of data.

– BROADCAST subqueries are performed on large tables in multi-DN
environment.

For more optimization methods, refer to "SQL Optimization > Typical SQL
Optimization Methods" in Developer Guide.

7.2 Best Practices for SQL Queries (Centralized
Instances)

Based on the SQL execution mechanism and a large number of practices, SQL
statements can be optimized by following certain rules to enable the database to
execute SQL statements more quickly and obtain correct results.

● Replace UNION with UNION ALL.
UNION eliminates duplicate rows while merging two result sets but UNION
ALL merges the two result sets without deduplication. Deduplication takes a
long time. Therefore, use UNION ALL instead of UNION if you are sure that
the two result sets do not contain duplicate rows based on the service logic.

● Add not null to the join columns.
If there are many NULL values in the JOIN columns, you can add the filter
criterion IS NOT NULL to filter data in advance to improve the JOIN efficiency.

● Convert NOT IN to NOT EXISTS.
The NOT IN statement needs to be implemented using NESTLOOP ANTI JOIN,
and the NOT EXISTS statement can be implemented using HASH ANTI JOIN.
If no NULL value exists in the join columns, NOT IN is equivalent to NOT
EXISTS. Therefore, if you are sure that no NULL value exists, you can convert
NOT IN to NOT EXISTS to generate hash join and to improve the query
performance.
The statements for creating a foreign table are as follows:
gaussdb=# DROP SCHEMA IF EXISTS no_in_to_no_exists_test CASCADE;
gaussdb=# CREATE SCHEMA no_in_to_no_exists_test;
gaussdb=# SET CURRENT_SCHEMA=no_in_to_no_exists_test;
gaussdb=# CREATE TABLE t1(c1 int, c2 int, c3 int);
gaussdb=# CREATE TABLE t2(d1 int, d2 int NOT NULL, d3 int);

The statement for implementing the query using NOT IN is as follows:
gaussdb=# SELECT * FROM t1 WHERE c1 NOT IN (SELECT d2 FROM t2);

GaussDB
Best Practices 7 Best Practices for SQL Queries

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

The plan is as follows:
gaussdb=# EXPLAIN SELECT * FROM t1 WHERE c1 NOT IN (SELECT d2 FROM t2);
 id | operation | E-rows | E-width | E-costs
----+---------------------------------------+--------+---------+----------------
 1 | -> Seq Scan on t1 | 972 | 12 | 34.312..68.625
 2 | -> Seq Scan on t2 [1, SubPlan 1] | 1945 | 4 | 0.000..29.450
(2 rows)

 Predicate Information (identified by plan id)

 1 --Seq Scan on t1
 Filter: (NOT (hashed SubPlan 1))
(2 rows)

Because there is no null value in the t2.d2 column (the t2.d2 column is NOT
NULL in the table definition), the query can be equivalently modified as
follows:
gaussdb=# SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t1.c1=t2.d2);

The generated plan is as follows:
gaussdb=# EXPLAIN SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t1.c1=t2.d2);
 id | operation | E-rows | E-width | E-costs
----+---------------------------+--------+---------+----------------
 1 | -> Hash Anti Join (2, 3) | 972 | 12 | 53.763..99.142
 2 | -> Seq Scan on t1 | 1945 | 12 | 0.000..29.450
 3 | -> Hash | 1945 | 4 | 29.450..29.450
 4 | -> Seq Scan on t2 | 1945 | 4 | 0.000..29.450
(4 rows)

 Predicate Information (identified by plan id)

 1 --Hash Anti Join (2, 3)
 Hash Cond: (t1.c1 = t2.d2)
(2 rows)

● Use hashagg.

If the GROUP BY condition exists in the query statement, the generated plan
may contain sorting operations, that is, the plan contains the GroupAgg+Sort
operator. As a result, the performance is poor. You can set the GUC parameter
work_mem to increase the available memory and generate a plan with
HashAgg to avoid sorting operations and improve performance. For details
about how to set work_mem, contact the administrator.

● Replace functions with CASE statements.

The database performance greatly deteriorates if a large number of functions
are called. In this case, you can change the pushdown functions to CASE
statements.

● Do not use functions or expressions for indexes.

Using functions or expressions for indexes will stop indexing and enable
scanning on the full table.

● Do not use operator (!=, <, or >), NULL, OR, or implicit parameter conversion
in WHERE clauses.

● For tables with frequent data changes, add hints to related SQL statements to
fix an execution plan.

For a table with frequent data changes, the statistics may not be the latest
before the automatic ANALYZE is triggered. As a result, the execution plan
may not be optimal. You are advised to add hints to related SQL statements
to fix the execution plan.

GaussDB
Best Practices 7 Best Practices for SQL Queries

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

● Split complex SQL statements.
You can split an SQL statement into several ones and save the execution
result to a temporary table if the SQL statement is too complex to be tuned
using the solutions above, including but not limited to the following scenarios:
– The same subquery is involved in multiple SQL statements of a job and

the subquery contains a large amount of data.
– Incorrect plan cost causes a small hash bucket of subquery. For example,

the actual number of rows is 10 million, but only 1000 rows are in hash
bucket.

– Functions such as substr and to_number cause incorrect measures for
subqueries containing a large amount of data.

– BROADCAST subqueries are performed on large tables in multi-DN
environment.

For more optimization methods, refer to "SQL Optimization > Typical SQL
Optimization Methods" in Developer Guide.

GaussDB
Best Practices 7 Best Practices for SQL Queries

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

8 Best Practices for Permission
Configuration

8.1 Best Practices for Permission Configuration
(Distributed Instances)
Context

A database may be used by many users, and users are grouped into a database
role for easy management. A database role can be regarded as one or a group of
database users.

For databases, users and roles are basically the same. The difference is that when
CREATE ROLE is used to create a role, no schema with the same name is created
and the user does not have the LOGIN permission by default. When CREATE USER
is used to create a user, a schema with the same name is automatically created.
By default, the user has the LOGIN permission. That is, a role with the LOGIN
permission can be considered to be a user. In service design, you are advised to
use a role to manage permissions rather than accessing databases.

Overview
Improper permission configuration may cause permission exploitation. This section
describes the functions of each permission role.

Solution
● Database user

Database users are used to connect databases, access database objects, and
run SQL statements. Only an existing database user can be used to connect
databases. Therefore, a database administrator must plan a database user for
each user who wants to connect to a database.
Specify at least an account and the corresponding password for a database
user.
By default, database users can be classified into two types, as listed in Table
8-1.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Table 8-1 User types

Type Description

Initial User Has the highest-level database rights, that is, has all system
and object permissions. The initial user is not affected by the
settings of the object permissions. This is comparable to the
permissions of root in a Unix system. For security purposes,
you are advised not to operate as an initial user unless
necessary.
When installing or initializing a database, you can specify
the initial username and password. If you do not specify the
username, an initial user with the same name as the OS
user who installs the database is automatically generated. If
no password is specified, the initial user password is empty
after the installation. You need to set the initial user
password on the gsql client before performing other
operations.
Note:
For security purposes, remote login to GaussDB Kernel in
trust mode is prohibited for all users, and remote login in
any mode is prohibited for the initial user.

Common
User

By default, a user can access the default database system
catalogs (excluding pg_authid, pg_largeobject,
pg_user_status, and pg_auth_history) and views and connect
to the default database postgres, as well as the objects in
the public schema, including tables, views, and functions.
● You can run CREATE USER and ALTER USER to specify

system permissions, or run GRANT ALL PRIVILEGE to
grant the SYSADMIN permission.

● You can run the GRANT statement to assign object
permissions to a common user.

● The user can run the GRANT statement to assign other
user permissions to a common user.

● Database permission types

Permissions and roles work together to specify accessible data and executable
SQL statements. For details, see Table 8-2.
System permissions are specified by using the CREATE USER/ALTER USER and
CREATE ROLE/ALTER ROLE statements and cannot be inherited from roles.
The SYSADMIN permission can be granted or revoked by using the GRANT/
REVOKE ALL PRIVILEGES statement.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Table 8-2 Permission types

Type Description

Syste
m
permi
ssion

System permissions are also regarded as user attributes, which can
be specified when a user is being created or modified. System
permissions include SYSADMIN, MONADMIN, OPRADMIN,
POLADMIN, CREATEDB, CREATEROLE, AUDITADMIN, and LOGIN.
They can be specified only by the CREATE USER or ALTER USER
statement. System permissions except SYSADMIN cannot be
granted or revoked by the GRANT or REVOKE statement. In
addition, system permissions cannot be inherited from roles.

Object
permi
ssion

Object permissions are operation permissions for tables, views,
indexes, sequences, and functions. These permissions include
SELECT, INSERT, UPDATE, and DELETE.
Only an object owner or SYSADMIN can use the GRANT/REVOKE
statement to grant or revoke object permissions.

Role A role is a group of permissions. If a role consists of system
permissions, these permissions cannot be granted to other users or
roles.
If a role consists of object permissions, these permissions can be
granted to other users or roles.

● Database permission model

– System permission model

▪ Default permission mechanism

Figure 8-1 Permission architecture

Figure 8-1 shows the permission architecture. In the default
permission mechanism, the SYSADMIN has most permissions.
○ Initial installation user: an account automatically generated

during cluster installation. This account has the highest
permissions in the system and can perform all operations.

○ SYSADMIN: system administrator permissions, which are only
inferior to those of the initial installation user. By default, the
system administrator has the same permissions as the object
owner, excluding the MONADMIN and OPRADMIN permissions.
However, SYSADMIN can grant the MONADMIN permissions to
itself.

○ MONADMIN: monitor administrator permissions, including the
permissions to access and grant views and functions in the
monitor schema DBE_PERF.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

○ OPRADMIN: O&M administrator permissions, including the
permission to use Roach to perform backup and restoration.

○ CREATEROLE: security administrator permissions, including the
permissions to create, modify, and delete users and roles.

○ AUDITADMIN: audit administrator permissions, including the
permissions to view and maintain database audit logs.

○ CREATEDB: permission to create databases.

○ POLADMIN: security policy administrator permissions, including
the permissions to create resource labels, dynamic data masking
policies, and unified audit policies.

▪ Separation of duties

Figure 8-2 Separation of duties

○ SYSADMIN: system administrator permission. The user with this
attribute no longer has the permissions to create, modify, delete
users or roles, or view or maintain database audit logs.

○ CREATEROLE: security administrator permissions, including the
permissions to create, modify, and delete users and roles.

○ AUDITADMIN: audit administrator permissions, including the
permissions to view and maintain database audit logs.

○ A user or role can only have the system permissions of either
SYSADMIN, CREATEROLE, o AUDITADMIN.

– Object permission model

▪ Object permissions refer to the permissions to perform operations for
database objects (such as databases, schemas, and tables), including
SELECT, INSERT, UPDATE, DELETE, and CONNECT.

▪ The permissions vary by object. Object permissions can be granted to
users or roles.

▪ You can use GRANT or REVOKE to grant permissions to a user or
revoke them from the user. Object permissions can be inherited by a
role.

– Role permission model
GaussDB Kernel provides a group of default roles whose names start with
gs_role_. These roles are provided to access to specific, typically high-
privileged operations. You can grant these roles to other users or roles
within the database so that they can use specific functions. These roles
should be given with great care to ensure that they are used where they
are needed. Table 8-3 describes the permissions of built-in roles.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Table 8-3 Permissions of built-in roles

Role Permission

gs_role_sig
nal_backe
nd

Permission to call the pg_cancel_backend(),
pg_terminate_backend(), and pg_terminate_session()
functions to cancel or terminate other sessions. However,
this role cannot perform operations on sessions of the
initial user or users with the PERSISTENCE attribute.

gs_role_ta
blespace

Permission to create a tablespace.

gs_role_re
plication

Permission to call logical replication functions, such as
kill_snapshot(), pg_create_logical_replication_slot(),
pg_create_physical_replication_slot(),
pg_drop_replication_slot(), pg_replication_slot_advance(),
pg_create_physical_replication_slot_extern(),
pg_logical_slot_get_changes(),
pg_logical_slot_peek_changes(),
pg_logical_slot_get_binary_changes(), and
pg_logical_slot_peek_binary_changes().

gs_role_ac
count_lock

Permission to lock and unlock users. However, this role
cannot lock or unlock the initial user or users with the
PERSISTENCE attribute.

gs_role_pl
debugger

Permission to debug functions in dbe_pldebugger.

gs_role_pu
blic_dblink
_drop

Permission to delete public database links.

gs_role_pu
blic_dblink
_alter

Permission to modify public database links.

gs_role_se
clabel

Permission to create, delete, and apply security labels.

gs_role_pu
blic_synon
ym_create

Permission to create public synonyms.

gs_role_pu
blic_synon
ym_drop

Permission to drop public synonyms.

● System permission configuration

– Configuring the default permission mechanism

▪ Initial user
The account automatically generated during database installation is
called an initial user. The initial user is also the SYSADMIN,
MONADMIN, OPRADMIN, and POLADMIN. It has the highest

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

permissions in the system and can perform all operations. If the
initial username is not specified during installation, the username is
the same as the name of the OS user who installs the database. If
the password of the initial user is not specified during the
installation, the password is empty after the installation. In this case,
you need to change the password of the initial user on the gsql client
before performing other operations. If the initial user password is
empty, you cannot perform other SQL operations, such as upgrade,
capacity expansion, and node replacement, except changing the
password.
An initial user bypasses all permission checks. You are advised to use
the initial user as a database administrator only for database
management other than service running.

▪ SYSADMIN
gaussdb=#CREATE USER u_sysadmin WITH SYSADMIN password '********';

-- Alternatively, run the following SQL statement when the user already exists:
gaussdb=#ALTER USER u_sysadmin01 SYSADMIN;

▪ MONADMIN
gaussdb=#CREATE USER u_monadmin WITH MONADMIN password '********';

-- Alternatively, run the following SQL statement when the user already exists:
gaussdb=#ALTER USER u_monadmin01 MONADMIN;

▪ OPRADMIN
gaussdb=#CREATE USER u_opradmin WITH OPRADMIN password "xxxxxxxxx";

-- Alternatively, run the following SQL statement when the user already exists:
gaussdb=#ALTER USER u_opradmin01 OPRADMIN;

▪ POLADMIN
gaussdb=#CREATE USER u_poladmin WITH POLADMIN password "xxxxxxxxx";

-- Alternatively, run the following SQL statement when the user already exists:
gaussdb=#ALTER USER u_poladmin01 POLADMIN;

– Configuring the separation of duties
To configure this mode, you need to set the GUC parameter
enableSeparationOfDuty to on. This is a POSTMASTER parameter. After
this parameter is modified, you need to restart the database.
gs_guc set -Z coordinator -Z datanode -N all -I all -c "enableSeparationOfDuty=on"
gs_om -t stop
gs_om -t start

The syntax for creating and configuring user permissions is the same as
that for default permissions.

● Role permission configuration
-- Create the database test.
gaussdb=#CREATE DATABASE test;
-- Create role1 and user1.
gaussdb=#CREATE ROLE role1 PASSWORD '********';
gaussdb=#CREATE USER user1 PASSWORD '********';
-- Grant the CREATE ANY TABLE permission to role1.
gaussdb=#GRANT CREATE ON DATABASE test TO role1;

-- If role1 is assigned to user1, user1 belongs to group role1 and inherits the permissions of role1 to
create schemas in the database test.
gaussdb=#GRANT role1 TO user1;

-- Query user and role information.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

gaussdb=#\du role1|user1;
 List of roles
 Role name | Attributes | Member of
-----------+--------------+-----------
 role1 | Cannot login | {}
 user1 | | {role1}

Practice Effect
None.

8.2 Best Practices for Permission Configuration
(Centralized Instances)

Context
A database may be used by many users, and users are grouped into a database
role for easy management. A database role can be regarded as one or a group of
database users.

For databases, users and roles are basically the same. The difference is that when
CREATE ROLE is used to create a role, no schema with the same name is created
and the user does not have the LOGIN permission by default. When CREATE USER
is used to create a user, a schema with the same name is automatically created.
By default, the user has the LOGIN permission. That is, a role with the LOGIN
permission can be considered to be a user. In service design, you are advised to
use a role to manage permissions rather than accessing databases.

Overview
Improper permission configuration may cause permission exploitation. This section
describes the functions of each permission role.

Solution
● Database user

Database users are used to connect databases, access database objects, and
run SQL statements. Only an existing database user can be used to connect
databases. Therefore, a database administrator must plan a database user for
each user who wants to connect to a database.
Specify at least an account and the corresponding password for a database
user.
By default, database users can be classified into two types, as listed in Table
8-4.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Table 8-4 User types

Type Description

Initial User Has the highest-level database rights, that is, has all system
and object permissions. The initial user is not affected by the
settings of the object permissions. This is comparable to the
permissions of root in a Unix system. For security purposes,
you are advised not to operate as an initial user unless
necessary.
When installing or initializing a database, you can specify
the initial username and password. If you do not specify the
username, an initial user with the same name as the OS
user who installs the database is automatically generated. If
no password is specified, the initial user password is empty
after the installation. You need to set the initial user
password on the gsql client before performing other
operations.
Note:
For security purposes, remote login to GaussDB Kernel in
trust mode is prohibited for all users, and remote login in
any mode is prohibited for the initial user.

Common
User

By default, a user can access the default database system
catalogs (excluding pg_authid, pg_largeobject,
pg_user_status, and pg_auth_history) and views and connect
to the default database postgres, as well as the objects in
the public schema, including tables, views, and functions.
● You can run CREATE USER and ALTER USER to specify

system permissions, or run GRANT ALL PRIVILEGE to
grant the SYSADMIN permission.

● You can run the GRANT statement to assign object
permissions to a common user.

● The user can run the GRANT statement to assign other
user permissions to a common user.

● Database permission types

Permissions and roles work together to specify accessible data and executable
SQL statements. For details, see Table 8-5.
System permissions are specified by using the CREATE USER/ALTER USER and
CREATE ROLE/ALTER ROLE statements and cannot be inherited from roles.
The SYSADMIN permission can be granted or revoked by using the GRANT/
REVOKE ALL PRIVILEGES statement.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Table 8-5 Permission types

Type Description

Syste
m
permi
ssion

System permissions are also regarded as user attributes, which can
be specified when a user is being created or modified. System
permissions include SYSADMIN, MONADMIN, OPRADMIN,
POLADMIN, CREATEDB, CREATEROLE, AUDITADMIN, and LOGIN.
They can be specified only by the CREATE USER or ALTER USER
statement. System permissions except SYSADMIN cannot be
granted or revoked by the GRANT or REVOKE statement. In
addition, system permissions cannot be inherited from roles.

Object
permi
ssion

Object permissions are operation permissions for tables, views,
indexes, sequences, and functions. These permissions include
SELECT, INSERT, UPDATE, and DELETE.
Only an object owner or SYSADMIN can use the GRANT/REVOKE
statement to grant or revoke object permissions.

Role A role is a group of permissions. If a role consists of system
permissions, these permissions cannot be granted to other users or
roles.
If a role consists of object permissions, these permissions can be
granted to other users or roles.

● Database permission model

– System permission model

▪ Default permission mechanism

Figure 8-3 Permission architecture

Figure 8-3 shows the permission architecture. In the default
permission mechanism, the SYSADMIN has most permissions.
○ Initial installation user: an account automatically generated

during cluster installation. This account has the highest
permissions in the system and can perform all operations.

○ SYSADMIN: system administrator permissions, which are only
inferior to those of the initial installation user. By default, the
system administrator has the same permissions as the object
owner, excluding the MONADMIN and OPRADMIN permissions.
However, SYSADMIN can grant the MONADMIN permissions to
itself.

○ MONADMIN: monitor administrator permissions, including the
permissions to access and grant views and functions in the
monitor schema DBE_PERF.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

○ OPRADMIN: O&M administrator permissions, including the
permission to use Roach to perform backup and restoration.

○ CREATEROLE: security administrator permissions, including the
permissions to create, modify, and delete users and roles.

○ AUDITADMIN: audit administrator permissions, including the
permissions to view and maintain database audit logs.

○ CREATEDB: permission to create databases.

○ POLADMIN: security policy administrator permissions, including
the permissions to create resource labels, dynamic data masking
policies, and unified audit policies.

▪ Separation of duties

Figure 8-4 Separation of duties

○ SYSADMIN: system administrator permission. The user with this
attribute no longer has the permissions to create, modify, delete
users or roles, or view or maintain database audit logs.

○ CREATEROLE: security administrator permissions, including the
permissions to create, modify, and delete users and roles.

○ AUDITADMIN: audit administrator permissions, including the
permissions to view and maintain database audit logs.

○ A user or role can only have the system permissions of either
SYSADMIN, CREATEROLE, o AUDITADMIN.

– Object permission model

▪ Object permissions refer to the permissions to perform operations for
database objects (such as databases, schemas, and tables), including
SELECT, INSERT, UPDATE, DELETE, and CONNECT.

▪ The permissions vary by object. Object permissions can be granted to
users or roles.

▪ You can use GRANT or REVOKE to grant permissions to a user or
revoke them from the user. Object permissions can be inherited by a
role.

– Role permission model
GaussDB Kernel provides a group of default roles whose names start with
gs_role_. These roles are provided to access to specific, typically high-
privileged operations. You can grant these roles to other users or roles
within the database so that they can use specific functions. These roles
should be given with great care to ensure that they are used where they
are needed. Table 8-6 describes the permissions of built-in roles.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Table 8-6 Permissions of built-in roles

Role Permission

gs_role_sig
nal_backen
d

Permission to call the pg_cancel_backend(),
pg_terminate_backend(), and pg_terminate_session()
functions to cancel or terminate other sessions. However,
this role cannot perform operations on sessions of the
initial user or users with the PERSISTENCE attribute.

gs_role_tabl
espace

Permission to create a tablespace.

gs_role_repl
ication

Permission to call logical replication functions, such as
kill_snapshot(), pg_create_logical_replication_slot(),
pg_create_physical_replication_slot(),
pg_drop_replication_slot(), pg_replication_slot_advance(),
pg_create_physical_replication_slot_extern(),
pg_logical_slot_get_changes(),
pg_logical_slot_peek_changes(),
pg_logical_slot_get_binary_changes(), and
pg_logical_slot_peek_binary_changes().

gs_role_acc
ount_lock

Permission to lock and unlock users. However, this role
cannot lock or unlock the initial user or users with the
PERSISTENCE attribute.

gs_role_pld
ebugger

Permission to debug functions in dbe_pldebugger.

gs_role_pub
lic_dblink_d
rop

Permission to delete public database links.

gs_role_pub
lic_dblink_a
lter

Permission to modify public database links.

gs_role_secl
abel

Permission to create, delete, and apply security labels.

gs_role_pub
lic_synony
m_create

Permission to create public synonyms.

gs_role_pub
lic_synony
m_drop

Permission to drop public synonyms.

gs_role_pdb
_create

Permission to create a PDB.

● System permission configuration

– Configuring the default permission mechanism

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

▪ Initial user
The account automatically generated during database installation is
called an initial user. The initial user is also the SYSADMIN,
MONADMIN, OPRADMIN, and POLADMIN. It has the highest
permissions in the system and can perform all operations. If the
initial username is not specified during installation, the username is
the same as the name of the OS user who installs the database. If
the password of the initial user is not specified during the
installation, the password is empty after the installation. In this case,
you need to change the password of the initial user on the gsql client
before performing other operations. If the initial user password is
empty, you cannot perform other SQL operations, such as upgrade,
capacity expansion, and node replacement, except changing the
password.
An initial user bypasses all permission checks. You are advised to use
the initial user as a database administrator only for database
management other than service running.

▪ SYSADMIN
gaussdb=#CREATE USER u_sysadmin WITH SYSADMIN password '********';

-- Alternatively, run the following SQL statement when the user already exists:
gaussdb=#ALTER USER u_sysadmin01 SYSADMIN;

▪ MONADMIN
gaussdb=#CREATE USER u_monadmin WITH MONADMIN password '********';

-- Alternatively, run the following SQL statement when the user already exists:
gaussdb=#ALTER USER u_monadmin01 MONADMIN;

▪ OPRADMIN
gaussdb=#CREATE USER u_opradmin WITH OPRADMIN password "xxxxxxxxx";

-- Alternatively, run the following SQL statement when the user already exists:
gaussdb=#ALTER USER u_opradmin01 OPRADMIN;

▪ POLADMIN
gaussdb=#CREATE USER u_poladmin WITH POLADMIN password "xxxxxxxxx";

-- Alternatively, run the following SQL statement when the user already exists:
gaussdb=#ALTER USER u_poladmin01 POLADMIN;

– Configuring the separation of duties
To configure this mode, you need to set the GUC parameter
enableSeparationOfDuty to on. This is a POSTMASTER parameter. After
this parameter is modified, you need to restart the database.
gs_guc set -Z datanode -N all -I all -c "enableSeparationOfDuty=on"
gs_om -t stop
gs_om -t start

The syntax for creating and configuring user permissions is the same as
that for default permissions.

● Role permission configuration
-- Create the database test.
gaussdb=#CREATE DATABASE test;
-- Create role1 and user1.
gaussdb=#CREATE ROLE role1 PASSWORD '********';
gaussdb=#CREATE USER user1 PASSWORD '********';
-- Grant the CREATE ANY TABLE permission to role1.
gaussdb=#GRANT CREATE ON DATABASE test TO role1;

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

-- If role1 is assigned to user1, user1 belongs to group role1 and inherits the permissions of role1 to
create schemas in the database test.
gaussdb=#GRANT role1 TO user1;

-- Query user and role information.
gaussdb=#\du role1|user1;
 List of roles
 Role name | Attributes | Member of
-----------+--------------+-----------
 role1 | Cannot login | {}
 user1 | | {role1}

Practice Effect
None.

GaussDB
Best Practices 8 Best Practices for Permission Configuration

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

9 Best Practices for Data Skew Query
(Distributed Instances)

9.1 Quickly Locating Tables That Cause Data Skew
Currently, you can choose from the following ways based on your service needs to
query data skew: the table_distribution(schemaname text, tablename text)
function, the table_distribution() function, and the PGXC_GET_TABLE_SKEWNESS
view. For further details, refer to the corresponding function and view sections in
Developer Guide.

Scenario 1: Data Skew Caused by a Full Disk
First, use the pg_stat_get_last_data_changed_time(oid) function to identify tables
with recent data changes. Since the last modification time of tables is recorded
only on the CN where INSERT, UPDATE, and DELETE operations are executed, you
can use the following encapsulated function to pinpoint tables that were modified
within the past day (adjustable in the function):
gaussdb=# CREATE OR REPLACE FUNCTION get_last_changed_table(OUT schemaname text, OUT relname
text)
RETURNS setof record
AS $$
DECLARE
 row_data record;
 row_name record;
 query_str text;
 query_str_nodes text;
 BEGIN
 query_str_nodes := 'SELECT node_name FROM pgxc_node where node_type = ''C''';
 FOR row_name IN EXECUTE(query_str_nodes) LOOP
 query_str := 'EXECUTE DIRECT ON (' || row_name.node_name || ') ''SELECT b.nspname,a.relname FROM
pg_class a INNER JOIN pg_namespace b on a.relnamespace = b.oid where
pg_stat_get_last_data_changed_time(a.oid) BETWEEN current_timestamp - 1 AND current_timestamp;''';
 FOR row_data IN EXECUTE(query_str) LOOP
 schemaname = row_data.nspname;
 relname = row_data.relname;
 return next;
 END LOOP;
 END LOOP;
 return;
 END; $$
LANGUAGE 'plpgsql';

GaussDB
Best Practices

9 Best Practices for Data Skew Query (Distributed
Instances)

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Then execute table_distribution(schemaname text, tablename text) to query the
storage space occupied by the tables on each DN.

gaussdb=# SELECT table_distribution(schemaname,relname) FROM get_last_changed_table();

Scenario 2: Routine Data Skew Inspection
● If the number of tables in the database is less than 10,000, use the skew view

to query data skew of all tables in the database.
gaussdb=#SELECT * FROM pgxc_get_table_skewness ORDER BY totalsize DESC;

● When there are a substantial number of tables (at least over 10,000) in the
database, using the PGXC_GET_TABLE_SKEWNESS view involves thorough
skewness calculations across the entire database, potentially requiring a
significant amount of time (hours). To optimize the calculations and reduce
the output columns, you can use the table_distribution() function to
customize the output based on the definition of the
PGXC_GET_TABLE_SKEWNESS view.
gaussdb=#SELECT schemaname,tablename,max(dnsize) AS maxsize, min(dnsize) AS minsize
FROM pg_catalog.pg_class c
INNER JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace
INNER JOIN pg_catalog.table_distribution() s ON s.schemaname = n.nspname AND s.tablename =
c.relname
INNER JOIN pg_catalog.pgxc_class x ON c.oid = x.pcrelid AND x.pclocatortype = 'H'
GROUP BY schemaname,tablename;

GaussDB
Best Practices

9 Best Practices for Data Skew Query (Distributed
Instances)

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

10 Best Practices for Stored Procedures

10.1 Best Practices for Stored Procedures (Distributed
Instances)

In GaussDB, business rules and logics are saved as stored procedures.

A stored procedure is a combination of SQL, PL/SQL, and Java statements. Stored
procedures can move the code that executes business rules from applications to
databases. Therefore, the code storage can be used by multiple programs at a
time.

For the basic usage of stored procedures, refer to the "Stored Procedures" section
in Developer Guide.

10.1.1 Permission Management
By default, stored procedures are granted the SECURITYINVOKER permission. To
change this default to the SECURITYDEFINER permission, set the GUC parameter
behavior_compat_options to 'plsql_security_definer'. For details about
permissions, see "SQL Reference > SQL Syntax > C > CREATE FUNCTION" in
Developer Guide.

Improper permission mode may cause unauthorized access to sensitive data or
unauthorized resource operations. Therefore, select and configure the permission
mode with caution to ensure system security.

gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA
-- Create two different users.
gaussdb=# CREATE USER test_user1 PASSWORD '********';
CREATE ROLE
gaussdb=# CREATE USER test_user2 PASSWORD '********';
CREATE ROLE
-- Set the permissions of the two users on schema best_practices_for_procedure.
gaussdb=# GRANT usage, create ON SCHEMA best_practices_for_procedure TO test_user1;
GRANT
gaussdb=# GRANT usage, create ON SCHEMA best_practices_for_procedure TO test_user2;
GRANT
-- Switch to the test_user1 user and create a table and a stored procedure.
gaussdb=# SET SESSION AUTHORIZATION test_user1 PASSWORD '********';
SET

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

gaussdb=> CREATE TABLE best_practices_for_procedure.user1_tb (a int, b int);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'a' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
gaussdb=> CREATE OR REPLACE PROCEDURE best_practices_for_procedure.user1_proc() AS
 BEGIN
 INSERT INTO best_practices_for_procedure.user1_tb VALUES(1,1);
 END;
/
CREATE PROCEDURE
-- Switch to the test_user2 user to execute the stored procedure created by the test_user1 user. An error is
reported, indicating that the user does not have the permission on the user1_tb table because stored
procedures are executed with the caller's permissions by default.
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# SET SESSION AUTHORIZATION test_user2 PASSWORD '********';
SET
gaussdb=> CALL best_practices_for_procedure.user1_proc();
ERROR: Permission denied for relation user1_tb.
DETAIL: N/A.
CONTEXT: SQL statement "insert into best_practices_for_procedure.user1_tb values(1,1)"
PL/pgSQL function best_practices_for_procedure.user1_proc() line 3 at SQL statement
-- Set the GUC parameter to use the creator's permissions by default when creating stored procedures.
gaussdb=> SET behavior_compat_options='plsql_security_definer';
SET
-- Switch to the test_user1 user and re-create the stored procedure.
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# SET SESSION AUTHORIZATION test_user1 password '********';
SET
gaussdb=> CREATE OR REPLACE PROCEDURE best_practices_for_procedure.user1_proc() AS
 BEGIN
 INSERT INTO best_practices_for_procedure.user1_tb VALUES(1,1);
 END;
/
CREATE PROCEDURE
-- Switch to the test_user2 user and execute the stored procedure. The execution is successful.
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# SET SESSION AUTHORIZATION test_user2 PASSWORD '********';
SET
gaussdb=> CALL best_practices_for_procedure.user1_proc();
 user1_proc

(1 row)

-- Switch to the test_user1 user and view the table content.
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# SET SESSION AUTHORIZATION test_user1 PASSWORD '********';
SET
gaussdb=> SELECT * FROM best_practices_for_procedure.user1_tb;
 a | b
---+---
 1 | 1
(1 row)

-- Clean the environment.
gaussdb=> RESET behavior_compat_options;
RESET
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# DROP SCHEMA best_practices_for_procedure CASCADE;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.user1_tb
drop cascades to function best_practices_for_procedure.user1_proc()
DROP SCHEMA
gaussdb=# DROP USER test_user1;

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

DROP ROLE
gaussdb=# DROP USER test_user2;
DROP ROLE

10.1.2 Naming Convention
Improper stored procedure and variable naming may adversely affect system
usage.

● The name of a stored procedure, variable, or type can contain a maximum of
63 characters. If this limit is exceeded, the name is automatically truncated to
63 characters.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

-- When a stored procedure name containing 66 characters is created, a message is displayed,
indicating that the name is truncated to 63 characters.
gaussdb=# CREATE OR REPLACE PROCEDURE
best_practices_for_procedure.abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789101
1() AS
BEGIN
 NULL;
END;
/
NOTICE: identifier "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891011" will
be truncated to "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891"
CREATE PROCEDURE

-- When a variable name containing 66 characters is created, a message is displayed, indicating that
the name is truncated to 63 characters.
gaussdb=# CREATE OR REPLACE PROCEDURE
best_practices_for_procedure.proc1(abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456
7891011 int) AS
BEGIN
 NULL;
END;
/
NOTICE: identifier "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891011" will
be truncated to "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891"
CREATE PROCEDURE

gaussdb=# DROP SCHEMA best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to function
best_practices_for_procedure.abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891()
drop cascades to function best_practices_for_procedure.proc1(integer)
DROP SCHEMA

● When creating a stored procedure, avoid using variables or types with the
same name in different variable scopes. For details, see "Stored Procedures >
Basic Statements > Variable Definition Statements > Scope of a Variable" in
Developer Guide. Using variables and types with the same name in different
variable scopes may reduce the readability of stored procedures and increase
the maintenance difficulty.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

-- Create a stored procedure, create the same variable name in different variable scopes, and assign
values.
gaussdb=# CREATE OR REPLACE PROCEDURE best_practices_for_procedure.proc1() AS
 name varchar2(10) := 'outer';
 age int := 2025;
BEGIN
 DECLARE
 name varchar2(10) := 'inner'; -- This is only an example and is not recommended.
 age int := 2024; -- This is only an example and is not recommended.

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

 BEGIN
 dbe_output.print_line('inner name =' || name);
 dbe_output.print_line('inner age =' || age);
 END;
 dbe_output.print_line('outer name =' || name);
 dbe_output.print_line('outer age =' || age);
END;
/
CREATE PROCEDURE

-- Execute the stored procedure. The same variable name in different scopes actually refers to
different variables.
gaussdb=# CALL best_practices_for_procedure.proc1();
inner name =inner
inner age =2024
outer name =outer
outer age =2025
 proc1

(1 row)

gaussdb=# DROP SCHEMA best_practices_for_procedure cascade;
NOTICE: drop cascades to function best_practices_for_procedure.proc1()
DROP SCHEMA

● Do not use SQL keywords in stored procedure, internal variable, and data type
names to ensure that the stored procedure can run properly in all scenarios.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

gaussdb=# cREATE OR REPLACE PROCEDURE best_practices_for_procedure."as"() AS -- This is only an
example and is not recommended.
BEGIN
 NULL;
END;
/
CREATE PROCEDURE

-- A direct call will result in an error.
gaussdb=# CALL as();
ERROR: syntax error at or near "as"
LINE 1: call as();
 ^
gaussdb=# CALL best_practices_for_procedure."as"();
 as

(1 row)

gaussdb=# DROP SCHEMA best_practices_for_procedure cascade;
NOTICE: drop cascades to function best_practices_for_procedure."as"()
DROP SCHEMA

● When creating a stored procedure, avoid using the same name as system
functions to prevent confusion. If the same name must be used, specify the
schema during a call.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

-- Create an abs function with the same name as the abs system function in the schema. This is only
an example and is not recommended.
gaussdb=# CREATE OR REPLACE FUNCTION best_practices_for_procedure.abs(a int) RETURN int AS
BEGIN
 dbe_output.print_line('my abs funciton.');
 RETURN abs(a);
END;
/
CREATE FUNCTION

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

-- Call a stored procedure. If no schema is added, the abs system function is called.
gaussdb=# CALL abs(-1);
 abs

 1
(1 row)

-- You are advised to add a schema.
gaussdb=# CALL best_practices_for_procedure.abs(-1);
my abs funciton.
 abs

 1
(1 row)

gaussdb=# DROP SCHEMA best_practices_for_procedure cascade;
NOTICE: drop cascades to function best_practices_for_procedure.abs(integer)
DROP SCHEMA

10.1.3 Access Object
If no schema is specified for a stored procedure, the stored procedure searches for
objects based on the sequence specified by SEARCH_PATH. As a result,
unexpected objects may be accessed. If tables, stored procedures, and other
database objects with the same name exist in different schemas, unexpected
results may occur if the schema is not specified. Therefore, it is recommended that
you always explicitly specify a schema when a stored procedure accesses a data
object.

Example:

-- Create two different schemas.
gaussdb=# CREATE SCHEMA best_practices_for_procedure1;
CREATE SCHEMA
gaussdb=# CREATE SCHEMA best_practices_for_procedure2;
CREATE SCHEMA

-- Create the same stored procedure in two different schemas.
gaussdb=# CREATE OR REPLACE PROCEDURE best_practices_for_procedure1.proc1() as
BEGIN
 dbe_output.print_line('in schema best_practices_for_procedure1');
END;
/
CREATE PROCEDURE

gaussdb=# CREATE OR REPLACE procedure best_practices_for_procedure2.proc1() as
BEGIN
 dbe_output.print_line('in schema best_practices_for_procedure2');
END;
/
CREATE PROCEDURE

-- Calling the same stored procedure with different search_path settings may lead to differences.
gaussdb=# SET search_path TO best_practices_for_procedure1, best_practices_for_procedure2;
SET
gaussdb=# CALL proc1();
in schema best_practices_for_procedure1
 proc1

(1 row)

gaussdb=# RESET search_path;
RESET
gaussdb=# SET search_path TO best_practices_for_procedure2, best_practices_for_procedure1;

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

SET
gaussdb=# CALL proc1();
in schema best_practices_for_procedure2
 proc1

(1 row)

gaussdb=# RESET search_path;
RESET

gaussdb=# DROP SCHEMA best_practices_for_procedure1 cascade;
NOTICE: drop cascades to function best_practices_for_procedure1.proc1()
DROP SCHEMA

gaussdb=# DROP SCHEMA best_practices_for_procedure2 cascade;
NOTICE: drop cascades to function best_practices_for_procedure2.proc1()
DROP SCHEMA

10.1.4 Statement Functions

10.1.4.1 Package Variables
A package variable is a global variable defined in a package. Its lifecycle covers
the entire database session. Improper use may cause the following problems:

● If a variable is completely transparent to users who have the package access
permission, the variable may be shared among multiple stored procedures
and modified unexpectedly.

● The lifecycle of a package variable is at the session level. Improper operations
may cause residual data and affect other stored procedures.

● Caching a large number of package variables in a session may consume a
substantial amount of memory.

Therefore, you are advised to use package variables with caution and ensure that
their access and lifecycle are properly managed.

-- Create an ORA-compatible database.
gaussdb=# CREATE DATABASE db_test DBCOMPATIBILITY 'ORA';

-- Switch to the ORA-compatible database.
gaussdb=# \c db_test
db_test=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

db_test=# CREATE OR REPLACE PACKAGE best_practices_for_procedure.pkg1 AS
 id int;
 name varchar2(20);
 arg int;
 procedure p1();
END pkg1;
/
CREATE PACKAGE

db_test=# CREATE OR REPLACE PACKAGE BODY best_practices_for_procedure.pkg1 AS
 procedure p1() as
 BEGIN
 id := 1;
 name := 'huawei';
 arg := 20;
 END;
END pkg1;
/

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

CREATE PACKAGE BODY

-- Create a stored procedure and modify package variables.
db_test=# CREATE OR REPLACE PROCEDURE best_practices_for_procedure.pro1 () AS
BEGIN
 best_practices_for_procedure.pkg1.id := 2;
 best_practices_for_procedure.pkg1.name := 'gaussdb';
 best_practices_for_procedure.pkg1.arg := 18;
END;
/
CREATE PROCEDURE

-- Change the value of a package variable.
db_test=# CALL best_practices_for_procedure.pro1();
 pro1

(1 row)

-- In practice, it is found that the parameters have been modified.
db_test=# DECLARE
BEGIN
 dbe_output.print_line('id = ' || best_practices_for_procedure.pkg1.id || ' name = ' ||
best_practices_for_procedure.pkg1.name || ' arg = ' || best_practices_for_procedure.pkg1.arg);
 best_practices_for_procedure.pkg1.p1();
 dbe_output.print_line('id = ' || best_practices_for_procedure.pkg1.id || ' name = ' ||
best_practices_for_procedure.pkg1.name || ' arg = ' || best_practices_for_procedure.pkg1.arg);
END;
/
id = 2 name = gaussdb arg = 18
id = 1 name = huawei arg = 20
ANONYMOUS BLOCK EXECUTE

db_test=# DROP SCHEMA best_practices_for_procedure CASCADE;
NOTICE: drop cascades to 3 other objects
DETAIL: drop cascades to package 16443
drop cascades to function best_practices_for_procedure.p1()
drop cascades to function best_practices_for_procedure.pro1()
DROP SCHEMA

db_test=# \c postgres
gaussdb=# DROP DATABASE db_test;

10.1.4.2 Cursors

In stored procedures, cursors are important resources. Improper use of cursors may
cause the following problems:

● Unclosed cursors will consume system resources, and a large number of
cursors that are not closed promptly will severely impact database memory
and performance, especially in high-concurrency or iterative operations.

Therefore, you are advised to close the cursor immediately after it is used in a
stored procedure.

gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

gaussdb=# CREATE TABLE best_practices_for_procedure.tb1 (a int);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'a' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE

gaussdb=# INSERT INTO best_practices_for_procedure.tb1 VALUES (1),(2),(3);
INSERT 0 3

-- Create a stored procedure that uses a cursor.

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

gaussdb=# CREATE OR REPLACE PROCEDURE best_practices_for_procedure.pro_cursor () AS
 my_cursor CURSOR FOR SELECT *FROM best_practices_for_procedure.tb1;
 a int;
BEGIN
 OPEN my_cursor;
 FETCH my_cursor INTO a;
 CLOSE my_cursor; -- Close the cursor promptly.
END;
/
CREATE PROCEDURE

gaussdb=# CALL best_practices_for_procedure.pro_cursor();
 pro_cursor

(1 row)

gaussdb=# DROP SCHEMA best_practices_for_procedure CASCADE;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.pro_cursor()
DROP SCHEMA

10.1.4.3 Compatibility
Due to differences in database compatibility, the behavior of stored procedures
may be inconsistent under different compatibility settings or GUC parameters.
Exercise caution when using these compatibility functions. Example:

● Due to differences in compatibility, functions with output parameters may
ignore output values in certain cases. After the GUC parameter
behavior_compat_options is set to 'proc_outparam_override', some
scenarios can ensure the correct return of output values and return values.
However, since this function behaves differently under different compatibility
settings, you are advised not to use functions with output parameters.
Instead, you can use procedures with output parameters.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

-- Create a function with output parameters.
gaussdb=# CREATE OR REPLACE FUNCTION best_practices_for_procedure.func (a out int, b out int)
RETURN int AS -- This is only an example and is not recommended.
 c int;
BEGIN
 a := 1;
 b := 2;
 c := 3;
 RETURN c;
END;
/
CREATE FUNCTION

-- When a function with output parameters is called, it is found that no value is assigned to
parameters a and b.
gaussdb=# DECLARE
 a int;
 b int;
 c int;
BEGIN
 c := best_practices_for_procedure.func(a, b);
 dbe_output.print_line('a := ' || a || ' b := ' || b || ' c := ' || c);
END;
/
a := b := c := 3
ANONYMOUS BLOCK EXECUTE

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

-- Set the GUC parameter.
gaussdb=# SET behavior_compat_options='proc_outparam_override';
SET

-- When the function with output parameters is called again, values are assigned to parameters a, b,
and c.
gaussdb=# DECLARE
 a int;
 b int;
 c int;
BEGIN
 c := best_practices_for_procedure.func(a, b);
 dbe_output.print_line('a := ' || a || ' b := ' || b || ' c := ' || c);
END;
/
a := 1 b := 2 c := 3
ANONYMOUS BLOCK EXECUTE

-- You are advised to use a stored procedure with output parameters to replace the function with
output parameters. You can change the preceding function to the following stored procedure.
gaussdb=# RESET behavior_compat_options;
gaussdb=# CREATE OR REPLACE PROCEDURE best_practices_for_procedure.proc (a OUT int, b OUT
int, c OUT int) AS
BEGIN
 a := 1;
 b := 2;
 c := 3;
END;
/
CREATE PROCEDURE

gaussdb=# DECLARE
 a int;
 b int;
 c int;
BEGIN
 best_practices_for_procedure.proc(a, b, c);
 dbe_output.print_line('a := ' || a || ' b := ' || b || ' c := ' || c);
END;
/
a := 1 b := 2 c := 3
ANONYMOUS BLOCK EXECUTE

gaussdb=# DROP SCHEMA best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to function best_practices_for_procedure.func()
drop cascades to function best_practices_for_procedure.proc()
DROP SCHEMA

● In dynamic statements, if placeholder names are the same, compatibility
settings across different databases may cause placeholders to be bound to
different variables, thereby affecting expected behavior. After the GUC
parameter behavior_compat_options is set to 'dynamic_sql_compat', you
can use placeholders with the same name to bind different variables.
However, since this function behaves differently under different compatibility
settings, you are advised not to use placeholders with the same name.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

gaussdb=# CREATE TABLE best_practices_for_procedure.tb1 (a int, b int);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'a' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE

-- Create a stored procedure that uses dynamic statements and bind the same placeholders to the
same variables.
gaussdb=# CREATE OR REPLACE PROCEDURE best_practices_for_procedure.pro_dynexecute() AS
 a int := 1;

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

 b int := 2;
BEGIN
 EXECUTE IMMEDIATE 'INSERT INTO best_practices_for_procedure.tb1 VALUES(:1, :1),(:2, :2);' USING
IN a, IN b;
END;
/
CREATE PROCEDURE

gaussdb=# CALL best_practices_for_procedure.pro_dynexecute();
 pro_dynexecute

(1 row)

-- Check the table and find that the same placeholders are bound to the same variables.
gaussdb=# SELECT * FROM best_practices_for_procedure.tb1;
 a | b
---+---
 1 | 1
 2 | 2
(2 rows)

-- Set the GUC parameter.
gaussdb=# SET behavior_compat_options='dynamic_sql_compat';
SET
gaussdb=# TRUNCATE TABLE best_practices_for_procedure.tb1;
TRUNCATE TABLE

-- Create a stored procedure that uses dynamic statements and bind the same placeholders to
different variables.
gaussdb=# CREATE OR REPLACE PROCEDURE best_practices_for_procedure.pro_dynexecute() AS
 a int := 1;
 b int := 2;
 c int := 3;
 d int := 4;
BEGIN
 EXECUTE IMMEDIATE 'INSERT INTO best_practices_for_procedure.tb1 VALUES(:1, :1),(:2, :2);' USING
IN a, IN b, IN c, IN d;
END;
/
CREATE PROCEDURE

gaussdb=# CALL best_practices_for_procedure.pro_dynexecute();
 pro_dynexecute

(1 row)

-- After the GUC parameter is set and the function is called, the same placeholders can be bound to
different variables.
gaussdb=# SELECT * FROM best_practices_for_procedure.tb1;
 a | b
---+---
 1 | 2
 3 | 4
(2 rows)

gaussdb=# RESET behavior_compat_options;
RESET

gaussdb=# DROP SCHEMA best_practices_for_procedure CASCADE;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.pro_dynexecute()
DROP SCHEMA

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

10.1.4.4 Exception Handling

Using the exception handling mechanism in stored procedures can improve code
fault tolerance, but frequently catching and handling exceptions may lead to
performance degradation. Each exception handling involves context creation and
destruction, which consumes extra memory and resources. In addition, since
exceptions are caught, error information will not be logged, making it more
difficult to diagnose issues.

You are advised to use the EXCEPTION processing mechanism only when
necessary and ensure that sufficient context information is passed to facilitate
fault locating and rectification.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1(id int, name varchar2(20));
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
gaussdb=# create unique index id1 on best_practices_for_procedure.tb1(id);
CREATE INDEX
-- Create a stored procedure with an exception.
gaussdb=# create or replace procedure best_practices_for_procedure.proc1(oi_flag OUT int, os_msg OUT
varchar) as
begin
oi_flag := 0;
os_msg := 'insert into tb1 some data.';
for i in 1..10 loop
if i = 5 then
insert into best_practices_for_procedure.tb1 values(i - 1, 'name'|| i - 1);-- Intentionally create an error.
end if;
insert into best_practices_for_procedure.tb1 values(i, 'name'|| i);
end loop;
exception when others then
oi_flag := 1;
os_msg := SQLERRM; -- Pass the error message out.
end;
/
CREATE PROCEDURE
gaussdb=# declare
oi_flag int;
os_msg varchar(1000);
begin
best_practices_for_procedure.proc1(oi_flag, os_msg);
if oi_flag = 1 then
dbe_output.print_line('Exception for ' || os_msg);
end if;
end;
/
Exception for Duplicate key value violates unique constraint "id1".
ANONYMOUS BLOCK EXECUTE
gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.proc1()
DROP SCHEMA

10.1.4.5 User-defined Types

Variables of user-defined types in stored procedures cannot be pushed down. If
user-defined types need to be pushed down, use variables to receive elements of
user-defined types.

Below is an example:

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# SET CURRENT_SCHEMA=best_practices_for_procedure;
SET
gaussdb=#
gaussdb=# CREATE TABLE tb1(c1 INT, c2 VARCHAR(20));
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'c1' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
gaussdb=# INSERT INTO tb1 VALUES(1, 'a'),(2,'b'), (3, 'c');
INSERT 0 3
gaussdb=# -- SELECT statement pushdown
gaussdb=# EXPLAIN SELECT c1 FROM tb1 WHERE c2 = 'a';
 QUERY PLAN
--
 Data Node Scan (cost=0.00..0.00 rows=0 width=0)
 Node/s: All datanodes
(2 rows)
gaussdb=# -- Variables receiving elements of user-defined types
gaussdb=# CREATE OR REPLACE PROCEDURE proc1() AS
gaussdb$# TYPE ta IS VARRAY(10) OF VARCHAR(30);
gaussdb$# v ta := ta();
gaussdb$# b VARCHAR;
gaussdb$# a INT;
gaussdb$# BEGIN
gaussdb$# v(1) := 'a';
gaussdb$# v(2) := 'b';
gaussdb$# FOR i IN 1..v.count LOOP
gaussdb$# b := v(i); -- Use a variable to receive an element of the user-defined type.
gaussdb$# SELECT c1 INTO a FROM tb1 WHERE c2 = b; -- The execution is successful.
gaussdb$# END LOOP;
gaussdb$# END;
gaussdb$# /
CREATE PROCEDURE
gaussdb=# CALL proc1();
 proc1

(1 row)
gaussdb=#
gaussdb=# -- User-defined type pushdown
gaussdb=# CREATE OR REPLACE PROCEDURE proc2() AS
gaussdb$# TYPE ta IS VARRAY(10) OF VARCHAR(30);
gaussdb$# v ta := ta();
gaussdb$# b VARCHAR;
gaussdb$# a INT;
gaussdb$# BEGIN
gaussdb$# v(1) := 'a';
gaussdb$# v(2) := 'b';
gaussdb$# FOR i IN 1..v.count LOOP
gaussdb$# SELECT c1 INTO a FROM tb1 WHERE c2 = v(1); -- User-defined types do not support
pushdown. An error is reported.
gaussdb$# END LOOP;
gaussdb$# END;
gaussdb$# /
CREATE PROCEDURE
gaussdb=# CALL proc2();
ERROR: Function v(integer) does not exist.
LINE 1: SELECT c1 FROM tb1 WHERE c2 = v(1)
 ^
HINT: No function matches the given name and argument types. You might need to add explicit type casts.
QUERY: SELECT c1 FROM tb1 WHERE c2 = v(1)
CONTEXT: PL/pgSQL function proc2() line 10 at SQL statement
gaussdb=#
gaussdb=# DROP SCHEMA best_practices_for_procedure cascade;
NOTICE: drop cascades to 3 other objects
DETAIL: drop cascades to table tb1
drop cascades to function proc1()

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

drop cascades to function proc2()
DROP SCHEMA

10.1.5 Transaction Management

10.1.5.1 Transactions
Stored procedures can use SAVEPOINT and COMMIT/ROLLBACK to manage
transactions. Improper use of SAVEPOINT and COMMIT/ROLLBACK may cause the
following problems:

● Resources are allocated each time a savepoint is created in a transaction. If
the resources are not released promptly, resource consumption will gradually
accumulate.

● The COMMIT and ROLLBACK operations of a transaction require
synchronization of the database's metadata and logs, and frequent execution
may increase I/O overhead, thereby affecting performance.

Suggestions:

● After using a savepoint, use RELEASE SAVEPOINT to release resources
promptly.

● Do not create savepoints in a loop because savepoints with the same name
will not overwrite each other but will be created again, potentially leading to
rapid resource accumulation.
gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1(id int, name varchar2(20));
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
-- Create a stored procedure that uses a savepoint.
gaussdb=# create or replace procedure best_practices_for_procedure.proc1() as
begin
savepoint sp1; -- Do not use the savepoint in a loop.
for i in 1..10 loop
insert into best_practices_for_procedure.tb1 values(i, 'name'|| i);
end loop;
release savepoint sp1; -- Release the savepoint.
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.proc1();
 proc1

(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.proc1()
DROP SCHEMA

● Do not perform COMMIT or ROLLBACK frequently.
gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1(id int, name varchar2(20));
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
gaussdb=# create or replace procedure best_practices_for_procedure.proc1() as

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

begin
for i in 1..10 loop
insert into best_practices_for_procedure.tb1 values(i, 'name'|| i);
end loop;
commit; -- Commit after the loop is executed, instead of repeatedly committing in the loop.
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.proc1();
 proc1

(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.proc1()
DROP SCHEMA

10.1.5.2 Autonomous Transactions
An autonomous transaction is an independent transaction started in a stored
procedure. The transaction is independent of the primary transaction and can
continue its operations even after the primary transaction is committed or rolled
back. Executing a stored procedure by starting a new database session may
increase the usage of system resources, including memory, CPU, and database
connections.

It is recommended that autonomous transactions be used to record service logs
instead of being used as the entry or core of a service process. Frequent use of
autonomous transactions should be avoided to minimize consumption of system
resources.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.log_table(log_time timestamptz, message text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'log_time' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
gaussdb=# create table best_practices_for_procedure.work_table(company text, balance float);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'company' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
gaussdb=# insert into best_practices_for_procedure.work_table values('huawei', 100000);
INSERT 0 1
-- Create a stored procedure for an autonomous transaction.
gaussdb=# create or replace procedure best_practices_for_procedure.proc_auto(log_time timestamptz,
message text) as
PRAGMA AUTONOMOUS_TRANSACTION;
begin
insert into best_practices_for_procedure.log_table values (log_time, message); -- Record only logs.
end;
/
CREATE PROCEDURE
-- Call an autonomous transaction in a stored procedure.
gaussdb=# create or replace procedure best_practices_for_procedure.proc1(companys text, turnover float) as
message text;
begin
 update best_practices_for_procedure.work_table set balance = balance + turnover where company =
companys;
 message := 'Company turnover ' || turnover;
 best_practices_for_procedure.proc_auto(current_timestamp, message);
end;
/
CREATE PROCEDURE

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

gaussdb=# call best_practices_for_procedure.proc1('huawei', 1000);
 proc1

(1 row)

gaussdb=# select * from best_practices_for_procedure.log_table;
 log_time | message
-------------------------------+-----------------------
 2024-11-25 15:23:27.202458+08 | Company turnover 1000
(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 4 other objects
DETAIL: drop cascades to table best_practices_for_procedure.log_table
drop cascades to table best_practices_for_procedure.work_table
drop cascades to function best_practices_for_procedure.proc_auto(timestamp with time zone,text)
drop cascades to function best_practices_for_procedure.proc1(text,double precision)
DROP SCHEMA

10.1.6 Others

10.1.6.1 DDL
Data definition language (DDL) operations (such as CREATE, ALTER, and DROP)
are usually locked to ensure atomicity and consistency of changes. In a high-
concurrency environment, DDL operations may cause lock conflicts or long-time
blocking, affecting the normal execution of other service operations.

You are advised to suspend related service operations when performing DDL
changes to prevent adverse impacts on system performance and stability.

10.1.6.2 Complex Dependencies
If there are complex dependencies between stored procedures or packages, the
dependent objects may not be created or initialized during creation. As a result,
the stored procedure fails to be compiled. In addition, when an object is modified
or rebuilt, other stored procedures and packages that directly or indirectly depend
on the object become invalid and need to be recompiled, which affects system
performance.

To improve system stability and performance, do not create complex dependencies
between stored procedures and packages.

-- Create an ORA-compatible database.
CREATE DATABASE db_test DBCOMPATIBILITY 'ORA';

-- Switch to the ORA-compatible database.
gaussdb=# \c db_test
db_test=# create schema best_practices_for_procedure;
CREATE SCHEMA

-- An error is reported when pkg1 that depends on pkg2 is created.
db_test=# create or replace package best_practices_for_procedure.pkg1 as
procedure p1();
end pkg1;
/
CREATE PACKAGE

db_test=# create or replace package body best_practices_for_procedure.pkg1 as
procedure p1() as
begin

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

best_practices_for_procedure.pkg2.a := 100;
end;
end pkg1;
/
ERROR: "best_practices_for_procedure.pkg2.a" is not a known variable.
LINE 3: best_practices_for_procedure.pkg2.a := 100;
 ^
QUERY: DECLARE
begin
best_practices_for_procedure.pkg2.a := 100;
end

-- You can create pkg1 only after pkg2 is created.
db_test=# create or replace package best_practices_for_procedure.pkg2 as
a int;
procedure p1();
end pkg2;
/
CREATE PACKAGE

db_test=# create or replace package body best_practices_for_procedure.pkg2 as
procedure p1() as
begin
null;
end;
end pkg2;
/
CREATE PACKAGE BODY

db_test=# create or replace package best_practices_for_procedure.pkg1 as
procedure p1();
end pkg1;
/
CREATE PACKAGE

db_test=# create or replace package body best_practices_for_procedure.pkg1 as
procedure p1() as
begin
best_practices_for_procedure.pkg2.a := 100;
end;
end pkg1;
/
CREATE PACKAGE BODY

db_test=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 4 other objects
DETAIL: drop cascades to package 16526
drop cascades to function best_practices_for_procedure.p1()
drop cascades to package 16524
drop cascades to function best_practices_for_procedure.p1()
DROP SCHEMA

templatea=# \c postgres
gaussdb=# DROP DATABASE db_test;

10.1.6.3 IMMUTABLE and SHIPPABLE
IMMUTABLE is an attribute used to declare that the result of a stored procedure is
determined solely by input parameters and remains independent of the database
status. In certain scenarios, stored procedures with the IMMUTABLE attribute may
be optimized to execute only once, and improper use may lead to unexpected
results.

Another attribute for stored procedures is SHIPPABLE, which specifies whether the
stored procedures can be pushed down to DNs for execution. If the pushed-down
stored procedure accesses the table or database status, data inconsistency may
occur.

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

When using stored procedures and functions with the IMMUTABLE and
SHIPPABLE attributes, you are advised to avoid accessing information in tables or
databases to ensure that the behavior meets expectations and maintain data
consistency. For details about attributes, see "SQL Reference > SQL Syntax > C >
CREATE FUNCTION" in Developer Guide.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1(a int, b int);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'a' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
gaussdb=# create or replace procedure best_practices_for_procedure.proc1(a int, b int) immutable as
begin
insert into best_practices_for_procedure.tb1 values(a, b); -- This is only an example and is not recommended.
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.proc1(2, 5);
ERROR: INSERT is not allowed in a non-volatile function
CONTEXT: SQL statement "insert into best_practices_for_procedure.tb1 values(a, b)"
PL/pgSQL function best_practices_for_procedure.proc1(integer,integer) line 3 at SQL statement
gaussdb=# create or replace function best_practices_for_procedure.func1(a int, b int) return int immutable
as
begin
return a * b;
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.func1(2, 5);
 func1

 10
(1 row)

gaussdb=# create or replace procedure best_practices_for_procedure.proc2(a int, b int) shippable as
begin
insert into best_practices_for_procedure.tb1 values(a, b); -- This is only an example and is not recommended.
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.proc2(2, 5);
 proc2

(1 row)

gaussdb=# create or replace function best_practices_for_procedure.func2(a int, b int) return int shippable as
begin
return a * b;
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.func2(2, 5);
 func2

 10
(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 5 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.proc1(integer,integer)
drop cascades to function best_practices_for_procedure.func1(integer,integer)
drop cascades to function best_practices_for_procedure.proc2(integer,integer)
drop cascades to function best_practices_for_procedure.func2(integer,integer)
DROP SCHEMA

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

10.2 Best Practices for Stored Procedures (Centralized
Instances)

In GaussDB, business rules and logics are saved as stored procedures.

A stored procedure is a combination of SQL and PL/SQL. Stored procedures can
move the code that executes business rules from applications to databases.
Therefore, the code storage can be used by multiple programs at a time.

For the basic usage of stored procedures, refer to the "Stored Procedures" section
in Developer Guide.

10.2.1 Permission Management
By default, stored procedures are granted the SECURITYINVOKER permission. To
change this default to the SECURITYDEFINER permission, set the GUC parameter
behavior_compat_options to 'plsql_security_definer'. For details about
permissions, see "SQL Reference > SQL Syntax > C > CREATE FUNCTION" in
Developer Guide.

Improper permission mode may cause unauthorized access to sensitive data or
unauthorized resource operations. Therefore, select and configure the permission
mode with caution to ensure system security.

gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA
-- Create two different users.
gaussdb=# CREATE USER test_user1 PASSWORD '********';
CREATE ROLE
gaussdb=# CREATE USER test_user2 PASSWORD '********';
CREATE ROLE
-- Set the permissions of the two users on schema best_practices_for_procedure.
gaussdb=# GRANT usage, create ON SCHEMA best_practices_for_procedure TO test_user1;
GRANT
gaussdb=# GRANT usage, create ON SCHEMA best_practices_for_procedure TO test_user2;
GRANT
-- Switch to the test_user1 user and create a table and a stored procedure.
gaussdb=# SET SESSION AUTHORIZATION test_user1 PASSWORD '********';
SET
gaussdb=> CREATE TABLE best_practices_for_procedure.user1_tb (a int, b int);
CREATE TABLE
gaussdb=> CREATE OR REPLACE PROCEDURE best_practices_for_procedure.user1_proc() AS
 BEGIN
 INSERT INTO best_practices_for_procedure.user1_tb VALUES(1,1);
 END;
/
CREATE PROCEDURE
-- Switch to the test_user2 user to execute the stored procedure created by the test_user1 user. An error is
reported, indicating that the user does not have the permission on the user1_tb table because stored
procedures are executed with the caller's permissions by default.
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# SET SESSION AUTHORIZATION test_user2 PASSWORD '********';
SET
gaussdb=> CALL best_practices_for_procedure.user1_proc();
ERROR: Permission denied for relation user1_tb.
DETAIL: N/A.
CONTEXT: SQL statement "insert into best_practices_for_procedure.user1_tb values(1,1)"
PL/pgSQL function best_practices_for_procedure.user1_proc() line 3 at SQL statement
-- Set the GUC parameter to use the creator's permissions by default when creating stored procedures.
gaussdb=> SET behavior_compat_options='plsql_security_definer';

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

SET
-- Switch to the test_user1 user and re-create the stored procedure.
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# SET SESSION AUTHORIZATION test_user1 PASSWORD '********';
SET
gaussdb=> CREATE OR REPLACE PROCEDURE best_practices_for_procedure.user1_proc() AS
 BEGIN
 INSERT INTO best_practices_for_procedure.user1_tb VALUES(1,1);
 END;
/
CREATE PROCEDURE
-- Switch to the test_user2 user and execute the stored procedure. The execution is successful.
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# SET SESSION AUTHORIZATION test_user2 PASSWORD '********';
SET
gaussdb=> CALL best_practices_for_procedure.user1_proc();
 proc_user1

(1 row)

-- Switch to the test_user1 user and view the table content.
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# SET SESSION AUTHORIZATION test_user1 PASSWORD '********';
SET
gaussdb=> SELECT * FROM best_practices_for_procedure.user1_tb;
 a | b
---+---
 1 | 1
(1 row)

-- Clean the environment.
gaussdb=> RESET behavior_compat_options;
RESET
gaussdb=> RESET SESSION AUTHORIZATION;
RESET
gaussdb=# DROP SCHEMA best_practices_for_procedure CASCADE;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.user1_tb
drop cascades to function best_practices_for_procedure.user1_proc()
DROP SCHEMA
gaussdb=# DROP USER test_user1;
DROP ROLE
gaussdb=# DROP USER test_user2;
DROP ROLE

10.2.2 Naming Convention
Improper stored procedure and variable naming may adversely affect system
usage.

● The name of a stored procedure, variable, or type can contain a maximum of
63 characters. If this limit is exceeded, the name is automatically truncated to
63 characters.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

-- When a stored procedure name containing 66 characters is created, a message is displayed,
indicating that the name is truncated to 63 characters.
gaussdb=# CREATE OR REPLACE PROCEDURE
best_practices_for_procedure.abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789101
1() AS
BEGIN
 NULL;
END;

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

/
NOTICE: identifier "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891011" will
be truncated to "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891"
CREATE PROCEDURE

-- When a variable name containing 66 characters is created, a message is displayed, indicating that
the name is truncated to 63 characters.
gaussdb=# CREATE OR REPLACE PROCEDURE
best_practices_for_procedure.proc1(abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456
7891011 int) as
BEGIN
 NULL;
END;
/
NOTICE: identifier "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891011" will
be truncated to "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891"
CREATE PROCEDURE

gaussdb=# DROP SCHEMA best_practices_for_procedure CASCADE;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to function
best_practices_for_procedure.abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz01234567891()
drop cascades to function best_practices_for_procedure.proc1(integer)
DROP SCHEMA

● When creating a stored procedure, avoid using variables or types with the
same name in different variable scopes. For details, see "Stored Procedures >
Basic Statements > Variable Definition Statements > Scope of a Variable" in
Developer Guide. Using variables and types with the same name in different
variable scopes may reduce the readability of stored procedures and increase
the maintenance difficulty.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

-- Create a stored procedure, create the same variable name in different variable scopes, and assign
values.
gaussdb=# CREATE OR REPLACE PROCEDURE best_practices_for_procedure.proc1() AS
 name varchar2(10) := 'outer';
 age int := 2025;
BEGIN
 DECLARE
 name varchar2(10) := 'inner'; -- This is only an example and is not recommended.
 age int := 2024; -- This is only an example and is not recommended.
 BEGIN
 dbe_output.print_line('inner name =' || name);
 dbe_output.print_line('inner age =' || age);
 END;
 dbe_output.print_line('outer name =' || name);
 dbe_output.print_line('outer age =' || age);
END;
/
CREATE PROCEDURE

-- Execute the stored procedure. The same variable name in different scopes actually refers to
different variables.
gaussdb=# CALL best_practices_for_procedure.proc1();
inner name =inner
inner age =2024
outer name =outer
outer age =2025
 proc1

(1 row)

gaussdb=# DROP SCHEMA best_practices_for_procedure cascade;
NOTICE: drop cascades to function best_practices_for_procedure.proc1()
DROP SCHEMA

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

● Do not use SQL keywords in stored procedure, internal variable, and data type
names to ensure that the stored procedure can run properly in all scenarios.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

gaussdb=#
CREATE OR REPLACE PROCEDURE best_practices_for_procedure."as"() AS -- This is only an example
and is not recommended.
BEGIN
 NULL;
END;
/
CREATE PROCEDURE

-- A direct call will result in an error.
gaussdb=# CALL as();
ERROR: syntax error at or near "as"
LINE 1: call as();
 ^
gaussdb=# CALL best_practices_for_procedure."as"();
 as

(1 row)

gaussdb=# DROP SCHEMA best_practices_for_procedure CASCADE;
NOTICE: drop cascades to function best_practices_for_procedure."as"()
DROP SCHEMA

● When creating a stored procedure, avoid using the same name as system
functions to prevent confusion. If the same name must be used, specify the
schema during a call.
gaussdb=# CREATE SCHEMA best_practices_for_procedure;
CREATE SCHEMA

-- Create an abs function with the same name as the abs system function in the schema. This is only
an example and is not recommended.
gaussdb=#
CREATE OR REPLACE FUNCTION best_practices_for_procedure.abs(a int) RETURN int AS
BEGIN
 dbe_output.print_line('my abs funciton.');
 RETURN abs(a);
END;
/
CREATE FUNCTION

-- Call a stored procedure. If no schema is added, the abs system function is called.
gaussdb=# CALL abs(-1);
 abs

 1
(1 row)

-- You are advised to add a schema.
gaussdb=# CALL best_practices_for_procedure.abs(-1);
my abs funciton.
 abs

 1
(1 row)

gaussdb=# DROP SCHEMA best_practices_for_procedure CASCADE;
NOTICE: drop cascades to function best_practices_for_procedure.abs(integer)
DROP SCHEMA

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

10.2.3 Access Object
If no schema is specified for a stored procedure, the stored procedure searches for
objects based on the sequence specified by SEARCH_PATH. As a result,
unexpected objects may be accessed. If tables, stored procedures, and other
database objects with the same name exist in different schemas, unexpected
results may occur if the schema is not specified. Therefore, it is recommended that
you always explicitly specify a schema when a stored procedure accesses a data
object.

Example:

-- Create two different schemas.
gaussdb=# create schema best_practices_for_procedure1;
CREATE SCHEMA
gaussdb=# create schema best_practices_for_procedure2;
CREATE SCHEMA
-- Create the same stored procedure in two different schemas.
gaussdb=# create or replace procedure best_practices_for_procedure1.proc1() as
begin
dbe_output.print_line('in schema best_practices_for_procedure1');
end;
/
CREATE PROCEDURE
gaussdb=# create or replace procedure best_practices_for_procedure2.proc1() as
begin
dbe_output.print_line('in schema best_practices_for_procedure2');
end;
/
CREATE PROCEDURE
-- Calling the same stored procedure with different search_path settings may lead to differences.
gaussdb=# set search_path to best_practices_for_procedure1, best_practices_for_procedure2;
SET
gaussdb=# call proc1();
in schema best_practices_for_procedure1
 proc1

(1 row)

gaussdb=# reset search_path;
RESET
gaussdb=# set search_path to best_practices_for_procedure2, best_practices_for_procedure1;
SET
gaussdb=# call proc1();
in schema best_practices_for_procedure2
 proc1

(1 row)

gaussdb=# reset search_path;
RESET
gaussdb=# drop schema best_practices_for_procedure1 cascade;
NOTICE: drop cascades to function best_practices_for_procedure1.proc1()
DROP SCHEMA
gaussdb=# drop schema best_practices_for_procedure2 cascade;
NOTICE: drop cascades to function best_practices_for_procedure2.proc1()
DROP SCHEMA

10.2.4 Statement Functions

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

10.2.4.1 Package Variables
A package variable is a global variable defined in a package. Its lifecycle covers
the entire database session. Improper use may cause the following problems:

● If a variable is completely transparent to users who have the package access
permission, the variable may be shared among multiple stored procedures
and modified unexpectedly.

● The lifecycle of a package variable is at the session level. Improper operations
may cause residual data and affect other stored procedures.

● Caching a large number of package variables in a session may consume a
substantial amount of memory.

Therefore, you are advised to use package variables with caution and ensure that
their access and lifecycle are properly managed.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create or replace package best_practices_for_procedure.pkg1 as
id int;
name varchar2(20);
arg int;
procedure p1();
end pkg1;
/
CREATE PACKAGE
gaussdb=# create or replace package body best_practices_for_procedure.pkg1 as
procedure p1() as
begin
 id := 1;
 name := 'huawei';
 arg := 20;
end;
end pkg1;
/
CREATE PACKAGE BODY
-- Create a stored procedure and modify package variables.
gaussdb=# create or replace procedure best_practices_for_procedure.pro1 () as
begin
best_practices_for_procedure.pkg1.id := 2;
best_practices_for_procedure.pkg1.name := 'gaussdb';
best_practices_for_procedure.pkg1.arg := 18;
end;
/
CREATE PROCEDURE
-- Change the value of a package variable.
gaussdb=# call best_practices_for_procedure.pro1();
 pro1

(1 row)

-- In practice, it is found that the parameters have been modified.
gaussdb=# declare
begin
dbe_output.print_line('id = ' || best_practices_for_procedure.pkg1.id || ' name = ' ||
best_practices_for_procedure.pkg1.name || ' arg = ' || best_practices_for_procedure.pkg1.arg);
best_practices_for_procedure.pkg1.p1();
dbe_output.print_line('id = ' || best_practices_for_procedure.pkg1.id || ' name = ' ||
best_practices_for_procedure.pkg1.name || ' arg = ' || best_practices_for_procedure.pkg1.arg);
end;
/
id = 2 name = gaussdb arg = 18
id = 1 name = huawei arg = 20
ANONYMOUS BLOCK EXECUTE
gaussdb=# drop schema best_practices_for_procedure cascade;

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

NOTICE: drop cascades to 3 other objects
DETAIL: drop cascades to package 16782
drop cascades to function best_practices_for_procedure.p1()
drop cascades to function best_practices_for_procedure.pro1()
DROP SCHEMA

10.2.4.2 Cursors
In stored procedures, cursors are important resources. Improper use of cursors may
cause the following problems:

● Unclosed cursors will consume system resources, and a large number of
cursors that are not closed promptly will severely impact database memory
and performance, especially in high-concurrency or iterative operations.

Therefore, you are advised to close the cursor immediately after it is used in a
stored procedure.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1 (a int);
CREATE TABLE
gaussdb=# insert into best_practices_for_procedure.tb1 values (1),(2),(3);
INSERT 0 3
-- Create a stored procedure that uses a cursor.
gaussdb=# create or replace procedure best_practices_for_procedure.pro_cursor () as
my_cursor cursor for select *from best_practices_for_procedure.tb1;
a int;
begin
open my_cursor;
fetch my_cursor into a;
close my_cursor; -- Close the cursor promptly.
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.pro_cursor();
 pro_cursor

(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.pro_cursor()
DROP SCHEMA

10.2.4.3 Compatibility
Due to differences in database compatibility, the behavior of stored procedures
may be inconsistent under different compatibility settings or GUC parameters.
Exercise caution when using these compatibility functions. Example:

● Due to differences in compatibility, functions with output parameters may
ignore output values in certain cases. After the GUC parameter
behavior_compat_options is set to 'proc_outparam_override', some
scenarios can ensure the correct return of output values and return values.
However, since this function behaves differently under different compatibility
settings, you are advised not to use functions with output parameters.
Instead, you can use procedures with output parameters.
gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
-- Create a function with output parameters.

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

gaussdb=# create or replace function best_practices_for_procedure.func (a out int, b out int) return
int as -- This is only an example and is not recommended.
c int;
begin
a := 1;
b := 2;
c := 3;
return c;
end;
/
CREATE FUNCTION
-- When a function with output parameters is called, it is found that no value is assigned to
parameters a and b.
gaussdb=# declare
a int;
b int;
c int;
begin
c := best_practices_for_procedure.func(a, b);
dbe_output.print_line('a := ' || a || ' b := ' || b || ' c := ' || c);
end;
/
a := b := c := 3
ANONYMOUS BLOCK EXECUTE
-- Set the GUC parameter.
gaussdb=# set behavior_compat_options='proc_outparam_override';
SET
-- When the function with output parameters is called again, values are assigned to parameters a, b,
and c.
gaussdb=# declare
a int;
b int;
c int;
begin
c := best_practices_for_procedure.func(a, b);
dbe_output.print_line('a := ' || a || ' b := ' || b || ' c := ' || c);
end;
/
a := 1 b := 2 c := 3
ANONYMOUS BLOCK EXECUTE
-- You are advised to use a stored procedure with output parameters to replace the function with
output parameters. You can change the preceding function to the following stored procedure.
gaussdb=# reset behavior_compat_options;
gaussdb=# create or replace procedure best_practices_for_procedure.proc (a out int, b out int, c out
int) as
begin
a := 1;
b := 2;
c := 3;
end;
/
CREATE PROCEDURE
gaussdb=# declare
a int;
b int;
c int;
begin
best_practices_for_procedure.proc(a, b, c);
dbe_output.print_line('a := ' || a || ' b := ' || b || ' c := ' || c);
end;
/
a := 1 b := 2 c := 3
ANONYMOUS BLOCK EXECUTE
gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to function best_practices_for_procedure.func()
drop cascades to function best_practices_for_procedure.proc()
DROP SCHEMA

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

● In dynamic statements, if placeholder names are the same, compatibility
settings across different databases may cause placeholders to be bound to
different variables, thereby affecting expected behavior. After the GUC
parameter behavior_compat_options is set to 'dynamic_sql_compat', you
can use placeholders with the same name to bind different variables.
However, since this function behaves differently under different compatibility
settings, you are advised not to use placeholders with the same name.
gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1 (a int, b int);
CREATE TABLE
-- Create a stored procedure that uses dynamic statements and bind the same placeholders to the
same variables.
gaussdb=# create or replace procedure best_practices_for_procedure.pro_dynexecute() as
a int := 1;
b int := 2;
begin
execute immediate 'insert into best_practices_for_procedure.tb1 values(:1, :1),(:2, :2);' using in a, in b;
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.pro_dynexecute();
 pro_dynexecute

(1 row)

-- Check the table and find that the same placeholders are bound to the same variables.
gaussdb=# select *from best_practices_for_procedure.tb1;
 a | b
---+---
 1 | 1
 2 | 2
(2 rows)

-- Set the GUC parameter.
gaussdb=# set behavior_compat_options='dynamic_sql_compat';
SET
gaussdb=# truncate table best_practices_for_procedure.tb1;
TRUNCATE TABLE
-- Create a stored procedure that uses dynamic statements and bind the same placeholders to
different variables.
gaussdb=# create or replace procedure best_practices_for_procedure.pro_dynexecute() as
a int := 1;
b int := 2;
c int := 3;
d int := 4;
begin
execute immediate 'insert into best_practices_for_procedure.tb1 values(:1, :1),(:2, :2);' using in a, in b,
in c, in d;
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.pro_dynexecute();
 pro_dynexecute

(1 row)

-- After the GUC parameter is set and the function is called, the same placeholders can be bound to
different variables.
gaussdb=# select * from best_practices_for_procedure.tb1;
 a | b
---+---
 1 | 2
 3 | 4
(2 rows)

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

gaussdb=# reset behavior_compat_options;
RESET
gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.pro_dynexecute()
DROP SCHEMA

10.2.4.4 Exception Handling
Using the exception handling mechanism in stored procedures can improve code
fault tolerance, but frequently catching and handling exceptions may lead to
performance degradation. Each exception handling involves context creation and
destruction, which consumes extra memory and resources. In addition, since
exceptions are caught, error information will not be logged, making it more
difficult to diagnose issues.

You are advised to use the EXCEPTION processing mechanism only when
necessary and ensure that sufficient context information is passed to facilitate
fault locating and rectification.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1(id int, name varchar2(20));
CREATE TABLE
gaussdb=# create unique index id1 on best_practices_for_procedure.tb1(id);
CREATE INDEX
-- Create a stored procedure with an exception.
gaussdb=# create or replace procedure best_practices_for_procedure.proc1(oi_flag OUT int, os_msg OUT
varchar) as
begin
oi_flag := 0;
os_msg := 'insert into tb1 some data.';
for i in 1..10 loop
if i = 5 then
insert into best_practices_for_procedure.tb1 values(i - 1, 'name'|| i - 1);-- Intentionally create an error.
end if;
insert into best_practices_for_procedure.tb1 values(i, 'name'|| i);
end loop;
exception when others then
oi_flag := 1;
os_msg := SQLERRM; -- Pass the error message out.
end;
/
CREATE PROCEDURE
gaussdb=# declare
oi_flag int;
os_msg varchar(1000);
begin
best_practices_for_procedure.proc1(oi_flag, os_msg);
if oi_flag = 1 then
dbe_output.print_line('Exception for ' || os_msg);
end if;
end;
/
Exception for Duplicate key value violates unique constraint "id1".
ANONYMOUS BLOCK EXECUTE
gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.proc1()
DROP SCHEMA

10.2.5 Transaction Management

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

10.2.5.1 Transactions
Stored procedures can use SAVEPOINT and COMMIT/ROLLBACK to manage
transactions. Improper use of SAVEPOINT and COMMIT/ROLLBACK may cause the
following problems:

● Resources are allocated each time a savepoint is created in a transaction. If
the resources are not released promptly, resource consumption will gradually
accumulate.

● The COMMIT and ROLLBACK operations of a transaction require
synchronization of the database's metadata and logs, and frequent execution
may increase I/O overhead, thereby affecting performance.

Suggestions:

● After using a savepoint, use RELEASE SAVEPOINT to release resources
promptly.

● Do not create savepoints in a loop because savepoints with the same name
will not overwrite each other but will be created again, potentially leading to
rapid resource accumulation.
gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1(id int, name varchar2(20));
CREATE TABLE
-- Create a stored procedure that uses a savepoint.
gaussdb=# create or replace procedure best_practices_for_procedure.proc1() as
begin
savepoint sp1; -- Do not use the savepoint in a loop.
for i in 1..10 loop
insert into best_practices_for_procedure.tb1 values(i, 'name'|| i);
end loop;
release savepoint sp1; -- Release the savepoint.
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.proc1();
 proc1

(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.proc1()
DROP SCHEMA

● Do not perform COMMIT or ROLLBACK frequently.
gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1(id int, name varchar2(20));
CREATE TABLE
gaussdb=# create or replace procedure best_practices_for_procedure.proc1() as
begin
for i in 1..10 loop
insert into best_practices_for_procedure.tb1 values(i, 'name'|| i);
end loop;
commit; -- Commit after the loop is executed, instead of repeatedly committing in the loop.
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.proc1();
 proc1

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 2 other objects
DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.proc1()
DROP SCHEMA

10.2.5.2 Autonomous Transactions
An autonomous transaction is an independent transaction started in a stored
procedure. The transaction is independent of the primary transaction and can
continue its operations even after the primary transaction is committed or rolled
back. Executing a stored procedure by starting a new database session may
increase the usage of system resources, including memory, CPU, and database
connections.

It is recommended that autonomous transactions be used to record service logs
instead of being used as the entry or core of a service process. Frequent use of
autonomous transactions should be avoided to minimize consumption of system
resources.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.log_table(log_time timestamptz, message text);
CREATE TABLE
gaussdb=# create table best_practices_for_procedure.work_table(company text, balance float);
CREATE TABLE
gaussdb=# insert into best_practices_for_procedure.work_table values('huawei', 100000);
INSERT 0 1
-- Create a stored procedure that contains an autonomous transaction.
gaussdb=# create or replace procedure best_practices_for_procedure.proc_auto(log_time timestamptz,
message text) as
PRAGMA AUTONOMOUS_TRANSACTION;
begin
insert into best_practices_for_procedure.log_table values (log_time, message); -- Record only logs.
end;
/
CREATE PROCEDURE
-- Call an autonomous transaction in a stored procedure.
gaussdb=# create or replace procedure best_practices_for_procedure.proc1(companys text, turnover float) as
message text;
begin
 update best_practices_for_procedure.work_table set balance = balance + turnover where company =
companys;
 message := 'Company turnover ' || turnover;
 best_practices_for_procedure.proc_auto(current_timestamp, message);
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.proc1('huawei', 1000);
 proc1

(1 row)

gaussdb=# select * from best_practices_for_procedure.log_table;
 log_time | message
------------------------------+-----------------------
 2024-11-22 16:21:35.27499+08 | Company turnover 1000
(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 4 other objects
DETAIL: drop cascades to table best_practices_for_procedure.log_table
drop cascades to table best_practices_for_procedure.work_table

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

drop cascades to function best_practices_for_procedure.proc_auto(timestamp with time zone,text)
drop cascades to function best_practices_for_procedure.proc1(text,double precision)
DROP SCHEMA

10.2.6 Others

10.2.6.1 DDL
Data definition language (DDL) operations (such as CREATE, ALTER, and DROP)
are usually locked to ensure atomicity and consistency of changes. In a high-
concurrency environment, DDL operations may cause lock conflicts or long-time
blocking, affecting the normal execution of other service operations.

You are advised to suspend related service operations when performing DDL
changes to prevent adverse impacts on system performance and stability.

10.2.6.2 Complex Dependencies
If there are complex dependencies between stored procedures or packages, the
dependent objects may not be created or initialized during creation. As a result,
the stored procedure fails to be compiled. In addition, when an object is modified
or rebuilt, other stored procedures and packages that directly or indirectly depend
on the object become invalid and need to be recompiled, which affects system
performance.

To improve system stability and performance, do not create complex dependencies
between stored procedures and packages.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
-- An error is reported when pkg1 that depends on pkg2 is created.
gaussdb=# create or replace package best_practices_for_procedure.pkg1 as
procedure p1();
end pkg1;
/
CREATE PACKAGE
gaussdb=# create or replace package body best_practices_for_procedure.pkg1 as
procedure p1() as
begin
best_practices_for_procedure.pkg2.a := 100;
end;
end pkg1;
/
ERROR: "best_practices_for_procedure.pkg2.a" is not a known variable.
LINE 3: best_practices_for_procedure.pkg2.a := 100;
 ^
QUERY: DECLARE
begin
best_practices_for_procedure.pkg2.a := 100;
end
-- You can create pkg1 only after pkg2 is created.
gaussdb=# create or replace package best_practices_for_procedure.pkg2 as
a int;
procedure p1();
end pkg2;
/
CREATE PACKAGE
gaussdb=# create or replace package body best_practices_for_procedure.pkg2 as
procedure p1() as
begin
null;
end;

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

end pkg2;
/
CREATE PACKAGE BODY
gaussdb=# create or replace package best_practices_for_procedure.pkg1 as
procedure p1();
end pkg1;
/
CREATE PACKAGE
gaussdb=# create or replace package body best_practices_for_procedure.pkg1 as
procedure p1() as
begin
best_practices_for_procedure.pkg2.a := 100;
end;
end pkg1;
/
CREATE PACKAGE BODY
gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 4 other objects
DETAIL: drop cascades to package 16836
drop cascades to function best_practices_for_procedure.p1()
drop cascades to package 16834
drop cascades to function best_practices_for_procedure.p1()
DROP SCHEMA

10.2.6.3 IMMUTABLE

IMMUTABLE is an attribute used to declare that the result of a stored procedure is
determined solely by input parameters and remains independent of the database
status. In certain scenarios, stored procedures with the IMMUTABLE attribute may
be optimized to execute only once, and improper use may lead to unexpected
results.

When using stored procedures and functions with the IMMUTABLE attribute, you
are advised to avoid accessing information in tables or databases to ensure that
the behavior meets expectations. For details about attributes, see "SQL Reference
> SQL Syntax > C > CREATE FUNCTION" in Developer Guide.

gaussdb=# create schema best_practices_for_procedure;
CREATE SCHEMA
gaussdb=# create table best_practices_for_procedure.tb1(a int, b int);
CREATE TABLE
gaussdb=# create or replace procedure best_practices_for_procedure.proc1(a int, b int) immutable as
begin
insert into best_practices_for_procedure.tb1 values(a, b); -- This is only an example and is not recommended.
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.proc1(2, 5);
ERROR: INSERT is not allowed in a non-volatile function
CONTEXT: SQL statement "insert into best_practices_for_procedure.tb1 values(a, b)"
PL/pgSQL function best_practices_for_procedure.proc1(integer,integer) line 3 at SQL statement
gaussdb=# create or replace function best_practices_for_procedure.func1(a int, b int) return int immutable
as
begin
return a * b;
end;
/
CREATE PROCEDURE
gaussdb=# call best_practices_for_procedure.func1(2, 5);
 func1

 10
(1 row)

gaussdb=# drop schema best_practices_for_procedure cascade;
NOTICE: drop cascades to 3 other objects

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

DETAIL: drop cascades to table best_practices_for_procedure.tb1
drop cascades to function best_practices_for_procedure.proc1(integer,integer)
drop cascades to function best_practices_for_procedure.func1(integer,integer)
DROP SCHEMA

GaussDB
Best Practices 10 Best Practices for Stored Procedures

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

11 Best Practices for Import and Export
Using COPY

11.1 Best Practices for Import and Export Using COPY
(Distributed Instances)

The COPY syntax is a useful tool for exporting data from GaussDB to data files in
CSV, BINARY, FIXED, or TEXT format. It can also import data from the four types of
files to a specified table. For details about the COPY syntax, see "SQL Reference >
SQL Syntax > C > COPY" in Developer Guide.

11.1.1 Typical Scenarios

Preparations
During import or export using COPY, the database requires file read/write
permissions on the server. To grant these permissions, enable the GUC parameter
enable_copy_server_files.
gs_guc reload -I all -N all -Z datanode -Z coordinator -c "enable_copy_server_files=on"

NO TICE

● Parameters in the COPY command must match the actual data in files,
including the format, delimiter, newline character, and character set.

● If the specified client encoding matches the server encoding, the COPY
command preserves the binary form of data during import and export,
preventing any structural damage that may result from transcoding. This
mechanism guarantees the integrity and originality of data migration, making
it suitable for scenarios that demand absolute fidelity.

11.1.1.1 Using the Recommended CSV Format
In CSV format, each file is divided into multiple records using end-of-line (EOL)
characters. Each record is further split into multiple fields using delimiters, which

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

are commas by default. Each field can be enclosed within a pair of quote
characters, which are double quotation marks by default. This eliminates the need
to escape special characters such as EOL characters and delimiters within the field
content. Furthermore, CSV is a widely recognized standard with exceptional cross-
platform compatibility and cross-industry universality, solidifying its position as the
top recommended format.

Recommended export command:

COPY {data_source} TO '/path/export.csv' delimiter ',' quote '"' escape '"' encoding {server_encoding} csv;
-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.

Corresponding import command:

COPY {data_destination} FROM '/path/export.csv' delimiter ',' quote '"' escape '"' encoding {file_encoding}
csv;
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during file export.

NO TICE

To import a manually created CSV data file into the database, ensure that the file
complies with CSV standards. Additionally, specify the correct parameters,
including delimiters, quote characters, and EOL characters, in the COPY command.

Examples

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'ORA';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# CREATE TABLE test_copy(id int, name text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(2, e'bb\nb');
INSERT 0 1
db1=# insert into test_copy values(3, e'cc\tc');
INSERT 0 1
db1=# insert into test_copy(name) values('ddd');
INSERT 0 1
db1=# insert into test_copy values(5, e'ee\\e');
INSERT 0 1
db1=# insert into test_copy values(6, ',');
INSERT 0 1
db1=# insert into test_copy values(7, '"');
INSERT 0 1
db1=# SELECT * FROM test_copy;
 id | name
----+-----------
 1 | aaa
 2 | bb +
 | b
 3 | cc c
 | ddd
 5 | ee\e

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

 6 | ,
 7 | "
(7 rows)

Step 2 Export data from the entire table.
db1=# copy test_copy to '/home/xy/test.csv' delimiter ',' quote '"' escape '"' encoding 'UTF-8' csv;
COPY 7

The content of the exported CSV file is as follows:

1,aaa
2,"bb
b"
3,cc c
,ddd
5,ee\e
6,","
7,""""

Step 3 Import data.
db1=# truncate test_copy;
TRUNCATE TABLE
db1=# copy test_copy from '/home/xy/test.csv' delimiter ',' quote '"' escape '"' encoding 'UTF-8' csv;
COPY 7

Step 4 (Custom data set export) Export the name column for all rows in test_copy,
excluding those with an empty ID.
db1=# copy (select name from test_copy where id is not null) to '/home/xy/test.csv' delimiter ',' quote '"'
escape '"' encoding 'UTF-8' csv;
COPY 6

The content of the exported CSV file is as follows:

aaa
"bb
b"
cc c
ee\e
","
""""

----End

11.1.1.2 Importing and Exporting Data with Extreme Performance
When there are strict demands for data import and export performance, and the
import and export occur between clusters of the same version, you can use the
BINARY format to store and read data as binary numbers other than regular text.
Despite offering performance advantages over other formats, this format also
comes with drawbacks, such as:

1. The BINARY format is specific to GaussDB, making it non-portable. It is
advisable to use this format only for importing and exporting data between
databases of the same version.

2. The BINARY format is tightly coupled with specific data types. For example,
while the TEXT format allows exporting data from a smallint field and
importing it into an integer column, this is not possible with the BINARY
format.

3. Certain data types cannot be imported or exported using the BINARY format.
For details, see BINARY limitations.

Recommended export command:

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

set client_encoding = '{server_encoding}';
copy {data_source} to '/path/export.bin' binary;
-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.

Corresponding import command:

set client_encoding = '{file_encoding}';
copy {data_destination} from '/path/export.bin' binary;
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during binary file export.

NO TICE

Before choosing the BINARY format, carefully review its limitations. Use it to
enhance import and export performance only when you are completely certain
that these limitations will not impact the data to be exported.

Examples

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'ORA';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# CREATE TABLE test_copy(id int, name text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(3, e'cc\tc');
INSERT 0 1
db1=# insert into test_copy(name) values('ddd');
INSERT 0 1
db1=# insert into test_copy values(5, e'ee\\e');
INSERT 0 1
db1=# insert into test_copy values(6, ',');
INSERT 0 1
db1=# insert into test_copy values(7, '"');
INSERT 0 1
db1=# SELECT * FROM test_copy;
 id | name
----+-----------
 1 | aaa
 3 | cc c
 | ddd
 5 | ee\e
 6 | ,
 7 | "
(6 rows)

Step 2 Export data.
db1=# set client_encoding = 'UTF-8';
SET
db1=# COPY test_copy TO '/home/xy/test.bin' BINARY;
COPY 6

Step 3 Import data.
db1=# truncate test_copy;
TRUNCATE TABLE

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

db1=# set client_encoding = 'UTF-8';
SET
db1=# copy test_copy from '/home/xy/test.bin' BINARY;
COPY 6

----End

11.1.1.3 Exporting Data Files for Manual Parsing
The FIXED format maintains a fixed data structure to simplify file parsing: Each
row represents a record, and within each row, the starting offset and length of
each field value are fixed. Therefore, it is advisable to utilize the FIXED format
when you need to manually parse a data file exported from the database. Despite
this, the FIXED format has its limitations, as detailed in FIXED description.

Recommended export command:

COPY {data_source} FROM '/path/export.fixed' encoding {server_encoding} FIXED
FORMATTER(col1_name(col1_offset, col1_length), col2_name(col2_offset, col2_length));
-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.
-- col1_name(col1_offset, col1_length) indicates that the data named col1_name in each row of the data
file starts at the position with an offset of col1_offset and extends for a length of col1_length.

Corresponding import command:

COPY {data_destination} from '/path/export.fixed' encoding {file_encoding} FIXED
FORMATTER(col1_name(col1_offset, col1_length), col2_name(col2_offset, col2_length));
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during file export.
-- col1_name(col1_offset, col1_length) indicates that the data named col1_name in each row of the data
file starts at the position with an offset of col1_offset and extends for a length of col1_length.

NO TICE

The fixed column width format has limitations: It requires maintaining a relatively
uniform width for each column in the table, allowing for the selection of an
appropriate fixed col_length to prevent data truncation and eliminate
unnecessary spaces in all columns. In cases where column widths vary significantly
or change dynamically, it is advisable to prioritize flexible formats such as TEXT or
CSV to ensure data integrity and efficient use of storage space.

Examples

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'ORA';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# CREATE TABLE test_copy(id int, name text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(2, 'bb"b');
INSERT 0 1
db1=# insert into test_copy values(3, 'cc c');

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

INSERT 0 1
db1=# insert into test_copy values('', e'dd\td');
INSERT 0 1
db1=# insert into test_copy values('5', e'ee\e');
INSERT 0 1
db1=# select * from test_copy;
 id | name
----+-----------
 1 | aaa
 2 | bb"b
 3 | cc c
 | dd d
 5 | eee
(5 rows)

Step 2 Export data.
db1=# COPY test_copy TO '/home/xy/test.fixed' encoding 'UTF-8' FIXED FORMATTER(id(0,1), name(1,5));
COPY 5

The content of the exported data file is as follows:

1 aaa
2 bb"b
3cc c
 dd d
5 eee

Step 3 Import data.
db1=# truncate test_copy;
TRUNCATE TABLE
db1=# copy test_copy from '/home/xy/test.fixed' encoding 'UTF-8' FIXED FORMATTER(id(0,1), name(1,5));
COPY 5

----End

11.1.1.4 Importing and Exporting Data When Only the TEXT Format Is
Available

In TEXT format, each file is divided into multiple records using EOL characters.
Each record is further split into multiple fields using delimiters, which are tab
characters ('\t') by default.

Using the TEXT format in GaussDB necessitates special logic, for example:

● The backspace (0x08), form-feed (0x0C), newline (0x0A), carriage return
(0x0D), horizontal tab (0x09), and vertical tab (0x0B) characters are escaped
as '\b', '\f', '\n', '\r', '\t', and '\v', respectively.

● By default, the EOL character is configured as the first identified '\n', '\r', or
'\r\n' during import, and as '\n' during export.

● A single backslash is escaped as double backslashes.
● NULL values are escaped as '\N'.

Exporting Data from and Importing Data into GaussDB
Recommended export command:

copy {data_source} to '/path/export.txt' eol e'\n' delimiter e'\t' encoding '{server_encoding}';
-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.

Corresponding import command:

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

copy {data_destination} from '/path/export.txt' eol e'\n' delimiter e'\t' encoding '{file_encoding}';
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during binary file export.

Example:

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'ORA';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is\C recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# create table test_copy(id int, name text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(3, e'cc\tc');
INSERT 0 1
db1=# insert into test_copy(name) values('ddd');
INSERT 0 1
db1=# insert into test_copy values(5, e'ee\\e');
INSERT 0 1
db1=# insert into test_copy values(6, e',');
INSERT 0 1
db1=# insert into test_copy values(7, e'"');
INSERT 0 1
db1=# select * from test_copy;
 id | name
----+-----------
 1 | aaa
 3 | cc c
 | ddd
 5 | ee\e
 6 | ,
 7 | "
(6 rows)

Step 2 Export data.
db1=# copy test_copy to '/home/xy/test.txt' eol e'\n' delimiter e'\t' encoding 'UTF-8';
COPY 6

Step 3 Import data.
db1=# truncate test_copy;
TRUNCATE TABLE
db1=# copy test_copy from '/home/xy/test.txt' eol e'\n' delimiter e'\t' encoding 'UTF-8';
COPY 6

----End

Exporting Data Files from GaussDB for Manual Parsing

In this scenario, you will not want the exported TEXT files to exhibit any escape
behavior specific to GaussDB. Follow these steps:

● Check for EOL characters or delimiters in the field data.
● If they exist, modify the eol or delimiter parameter to use other characters

that do not appear in the field data. It is advisable to select from invisible
characters (0x01 to 0x1F) for this purpose.

● You can use the null option to specify how NULL values should be
represented during export.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

● Finally, include the without escaping parameter to prevent escaping in the
output.

Recommended export command:

copy {data_source} to '/path/export.txt' without escaping eol e'\x1E' delimiter e'\x1F' null '\N' encoding
'{server_encoding}';
-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.

NO TICE

The primary function of the escaping mechanism is to prevent special characters
(such as delimiters and newline characters) in fields from damaging the file
structure. When choosing to disable the escaping mechanism, be sure to isolate
special characters by carefully choosing delimiters and newline characters for non-
escaping scenarios and ensuring that these characters are absent in the data
content. This is essential for non-escaped file parsing, as any character conflicts
can lead to data parsing failure or structural disorder.

Example:

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'ORA';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# create table test_copy(id int, name text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(3, e'cc\tc');
INSERT 0 1
db1=# insert into test_copy(name) values('ddd');
INSERT 0 1
db1=# insert into test_copy values(5, e'ee\\e');
INSERT 0 1
db1=# insert into test_copy values(6, e',');
INSERT 0 1
db1=# insert into test_copy values(7, e'"');
INSERT 0 1
db1=# select * from test_copy;
 id | name
----+-----------
 1 | aaa
 3 | cc c
 | ddd
 5 | ee\e
 6 | ,
 7 | "
(6 rows)

Step 2 Export data.
db1=# copy test_copy to '/home/xy/test.txt' without escaping eol e'\x1E' delimiter e'\x1F' null '\N' encoding
'UTF-8';
COPY 6

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Step 3 Read data. In this step, data is first split into rows based on the selected EOL
character (0x1E). Then each row of data stream is further divided based on the
delimiter (0x1F) to extract the field values within each row.

----End

Importing User-Created Data Files into GaussDB
If you only have raw field data without a complete data file, you can create a data
file manually. To minimize the need for extensive modifications—such as escaping
or other special character processing—it is advisable to use the TEXT format.
When creating a data file in TEXT format, you can select custom delimiters and
EOL characters to ensure accurate data import.

Step 1 Select an EOL character. If the field data contains 0x0A, do not use 0x0A as the
EOL character. Otherwise, newlines within the field data will be misinterpreted as
EOL characters, resulting in a single line of data being split into two. To prevent
this issue, ensure that the selected EOL character is not present in the field data.
For instance, consider using 0x1E as the EOL character when it is not found in the
field data. It is advisable to select from invisible characters (0x01 to 0x1F) for this
purpose.

Step 2 Select a delimiter. If the field data contains tab characters, do not use them as
delimiters. Otherwise, tabs within the field data will be misinterpreted as
delimiters, resulting in a single field being split into two. To prevent this issue,
ensure that the selected delimiter is not present in the field data. For instance,
consider using 0x1F as the delimiter when it is not found in the field data. It is
advisable to select from invisible characters (0x01 to 0x1F) for this purpose.

Step 3 Build data. Create a data file using the EOL character and delimiter selected in
steps 1 and 2. Check the character set of the server. You need to generate a data
file that matches the server's character set.

Step 4 Import data. In this example, the character set of the data file is UTF-8.
db1=# copy test_copy to '/home/xy/test.txt' without escaping eol e'\x1E' delimiter e'\x1F' null '\N' encoding
'UTF-8';
COPY 6

----End

11.1.1.5 Importing and Exporting Data Files on a GSQL Client
When you execute the COPY command to export data on a GSQL client, the
generated data files are saved on the database server by default. This can make it
difficult for users to access the files. To offer easier file access, the \COPY
command directly generates data files on the local client.

Differences Between COPY and \COPY
1. File location: The files generated and read during COPY import are located on

the server. Conversely, in \COPY import, both the generated and read files are
located on the client.

2. Performance: To complete \COPY import, the client must read file streams
and transmit them to the server. This results in decreased performance in
comparison to COPY.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

3. Functionality: Compared to COPY, \COPY offers an additional capability—
client-based parallel import. For detailed specifications and limitations,
consult "Database Connection Tools > gsql for Connecting to a Database >
Meta-Command Reference" in Tool Reference.

Example \COPY Commands
To export with \COPY, simply replace COPY with \COPY in your commands. Below
is a straightforward example of converting CSV export commands from COPY to
their \COPY equivalents:

-- COPY commands:
COPY {data_source} to '/path/export.csv' encoding {server_encoding} csv;
COPY {data_source} from '/path/export.csv' encoding {server_encoding} csv;
-- Corresponding \COPY commands:
\COPY {data_source} to '/path/export.csv' encoding {server_encoding} csv;
\COPY {data_source} from '/path/export.csv' encoding {server_encoding} csv;

Example Commands for Parallel Import
-- Import command for the CSV format:
\COPY {data_destination} from '/path/export.txt' encoding {file_encoding} parallel {parallel_num} csv;
-- Import command for the FIXED format:
\COPY {data_destination} from '/path/export.txt' encoding {file_encoding} parallel {parallel_num} fixed;
-- Import command for the TEXT format:
\COPY {data_destination} from '/path/export.txt' encoding {file_encoding} parallel {parallel_num};
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during binary file export.
-- parallel_num indicates the number of clients for data import. When there are sufficient cluster
resources, it is advisable to set it to 8.

11.1.1.6 Importing and Exporting Data Through the JDBC Driver
In the presence of the JDBC driver, you can call its CopyManager APIs to
implement data import and export. CopyManager can import data into tables and
export data from databases in batches.

11.1.1.7 Importing Erroneous Data Through Error Tolerance
Both the COPY and \COPY commands will halt the data import process upon
detecting any data exceptions. To overcome this limitation, GaussDB provides two
error tolerance modes: intelligent correction mode and strict verification mode.
The strict verification mode (Level 1 error tolerance) is preferred because it can
skip abnormal records, maintaining data integrity and minimizing the impact on
import performance. For details, see Guide to Importing Erroneous Data.

Below are import commands executed in strict verification mode (Level 1 error
tolerance):

-- CSV format
\COPY {data_destination} from '/path/export.txt' log errors reject limit '{limit_num}' encoding
{file_encoding} CSV;
-- BINARY format
\COPY {data_destination} from '/path/export.txt' log errors reject limit '{limit_num}' encoding
{file_encoding} BINARY;
-- FIXED format
\COPY {data_destination} from '/path/export.txt' log errors reject limit '{limit_num}' encoding
{file_encoding} FIXED;
-- TEXT format
\COPY {data_destination} from '/path/export.txt' log errors reject limit '{limit_num}' encoding

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

{file_encoding};
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during binary file export.
-- limit_num specifies the maximum number of erroneous rows that the COPY FROM statement can
tolerate during data import. If this limit is exceeded, errors will be reported as usual according to the
original mechanism.

NO TICE

To use the error tolerance feature, regular users require permissions on the two
system catalogs of the feature. Execute the following SQL statements to grant
them these permissions:
grant insert,select,delete on pg_catalog.gs_copy_error_log to {user_name};

11.1.2 Guide to Exporting Erroneous Data
Data errors during export typically occur when character strings or binary data
that does not match the server-side encoding is inserted into the database. To
address this, you are advised to keep the client-side encoding consistent with the
server-side encoding, eliminating the need for validity checks against the server-
side encoding and data transcoding.

Encoding Consistency Principle During Export
1. When the client-side encoding is consistent with the server-side encoding:

– Native data is exported.
– Data integrity and originality are guaranteed.
– Character set conversion is not required.

2. When the client-side encoding is inconsistent with the server-side encoding:
– The client-side encoding is employed as the target encoding standard for

the exported files.
– The kernel first checks existing data against the server-side encoding.

Upon detecting any data encoded in an illegal format, it will report an
error.

– The kernel then proceeds to transcode the data. If it encounters any
characters that cannot be transcoded (due to code bits present in the
source character set but not in the target character set), it will report an
error.

Solutions to Illegal Encoding
If your database contains any data encoded in an illegal format and you wish to
export the data without triggering an error, consider the following methods:

Preferred method: Keep the client-side encoding consistent with the server-side
encoding. Then export data using the server-side encoding without performing any
transcoding.

Step 1 Query the database server-side encoding.
gaussdb=# show server_encoding;

Step 2 Query the database client-side encoding.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

gaussdb=# show client_encoding;

Step 3 Keep the client-side encoding consistent with the server-side encoding.
gaussdb=# set client_encoding = '{server_encoding}';

Step 4 Execute COPY to export data to a file in standard CSV format.
gaussdb=# COPY test_copy TO '/data/test_copy.csv' CSV;

----End

Alternative solution: Use placeholders ('?') to replace any bytes encoded in an
illegal format. This solution depends on the transcoding capability of the database
kernel and will alter the content of the exported data.

Step 1 Query the database server-side encoding.
gaussdb=# show server_encoding;

Step 2 Set the database client-side encoding as the target encoding.
gaussdb=# set client_encoding = {target_encoding};

Step 3 Leverage the kernel's transcoding capability to replace any bytes encoded in an
illegal format while exporting data.
gaussdb=# COPY test_copy TO '/data/test_copy.csv' CSV COMPATIBLE_ILLEGAL_CHARS;

----End

NO TICE

● Consider enabling the COMPATIBLE_ILLEGAL_CHARS parameter to correct any
exported data encoded in an illegal format during export, while keeping the
data in the database unchanged. Kindly use this parameter as necessary.

● When enabled, the COMPATIBLE_ILLEGAL_CHARS parameter:
● Replaces illegal characters with the ones specified in the

convert_illegal_char_mode parameter. The default replacement character
is '?' (U+003F).

● Replaces zero characters (U+0000) with spaces (U+0020). If you do not
need this replacement, configure the zero-character functionality in
different compatible modes.

● For detailed limitations on the COMPATIBLE_ILLEGAL_CHARS parameter, refer
to the COMPATIBLE_ILLEGAL_CHARS description in the COPY section.

Typical Scenario Examples
The basic processing logic for independent zero characters is simple. This
document focuses on streamlining the error tolerance process for complex
exception scenarios where both zero characters (\0) and characters encoded in an
illegal format are present in data streams.

1. Build UTF-8 zero characters and illegal characters.
gaussdb=# create database db_utf8 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE
='en_US.UTF-8' dbcompatibility = 'ORA';
CREATE DATABASE
gaussdb=# \c db_utf8
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db_utf8" as user "omm".

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

db_utf8=# create table test_encodings(id int, content text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
db_utf8=# insert into test_encodings values(1,
dbe_raw.cast_to_varchar2(dbe_raw.concat(hextoraw('2297'),
 dbe_raw.cast_from_varchar2_to_raw('Import/Export'))));
INSERT 0 1
db_utf8=# show client_encoding;
 client_encoding

 UTF8
(1 row)
-- The content in row 1 includes zero characters, while that in row 2 includes characters that are not
encoded by UTF-8.
db_utf8=# select *, dbe_raw.cast_from_varchar2_to_raw(content) from test_encodings;
 id | content | cast_from_varchar2_to_raw
----+-----------+------------------------------
 1 | "Import/Export | 2297E5AFBCE585A5E5AFBCE587BA
(1 row)

2. Selecting the server's character set for file export allows for direct export
without transcoding. However, if a different character set is selected,
transcoding will be required. During transcoding, the system will report an
error upon detecting the illegal UTF-8 character 0x97. In this situation, simply
enable the compatible_illegal_chars parameter to ensure successful file
export.
db_utf8=# copy test_encodings to '/home/xy/encodings.txt.utf8' encoding 'utf-8';
COPY 1
db_utf8=# copy test_encodings to '/home/xy/encodings.txt.gb18030' encoding 'gb18030';
ERROR: invalid byte sequence for encoding "UTF8": 0x97
db_utf8=# copy test_encodings to '/home/xy/encodings.txt.gb18030' encoding 'gb18030'
compatible_illegal_chars;
COPY 1

3. Open the /home/xy/encodings.txt.utf8 file with UTF-8 encoding. In this
example, the support_zero_character option and compatible_illegal_chars
parameter are disabled. You will notice that there are garbled characters in
the second column of the first row. Although no explicit exception is shown,
the hexdump command reveals the presence of garbled characters. You can
refer to this example to reproduce the problem, but specific data details are
not provided here.
1 "Import/Export

4. Open the /home/xy/encodings.txt.gb18030 file with GB18030 encoding. You
will notice that the illegal character in the second column of the first row has
been replaced by a question mark (?).
1 "?Import/Export

11.1.3 Guide to Importing Erroneous Data
The error tolerance mechanism during data import provides two modes.

Intelligent Correction Mode (Adaptive Import)
● Principle: Prioritize data integrity and leverage intelligent correction to ensure

that the highest possible volume of accurate data is imported.
● Scenario: Apply this mode when the imported data contains column count

exceptions (extra columns) or character exceptions.
● Procedure:

a. Rectify the column count exceptions by truncating extra columns.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

b. Transcode the character sets and clean illegal characters.
c. Write all data into the target database.

● Output: corrected data set, along with logs recorded by GaussDB for character
exceptions

● Example:

a. Extra columns: The number of data columns is greater than that of table
columns. In this situation, you can specify the ignore_extra_data option
in the COPY statement, and GaussDB will import data from the correct
number of columns into the table while discarding the extra columns.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE
='en_US.UTF-8' dbcompatibility = 'ORA';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# create table test_copy(id int, content text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by
default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
db1=# copy test_copy from stdin delimiter ',';
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.
>> 1,Import,Export
>>\.
ERROR: extra data after last expected column
CONTEXT: COPY test_copy, line 1: "1,Import,Export"
-- When ignore_extra_data is not specified, the import fails. However, specifying it ensures a
successful import.
db1=# copy test_copy from stdin delimiter ',' ignore_extra_data;
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.
>> 1,Import,Export
>> \.
COPY 1
db1=# select * from test_copy;
 id | content
----+---------
 1 | Import
(1 row)

b. Character exceptions: When dealing with character exceptions, take
appropriate actions based on the consistency of server-side encoding with
client-side encoding.

▪ Consistent encoding: If the data being imported contains any
characters encoded in an illegal format, consider setting the GUC
parameter copy_special_character_version to 'no_error' for error
tolerance. In this setting, GaussDB will accept data that does not
comply with the encoding format. Instead of reporting an error, it
will directly insert the data into the table according to the original
encoding format.
For details, see the example data file, /home/xy/encodings.txt.utf8,
generated in Guide to Exporting Erroneous Data. To simulate the
scenario where files with encoding exceptions are not transcoded
during import, you can create a database with UTF-8 encoding.
gaussdb=# create database db_utf8 encoding='UTF-8' LC_COLLATE='en_US.UTF-8'
LC_CTYPE ='en_US.UTF-8' dbcompatibility = 'ORA';
CREATE DATABASE
gaussdb=# \c db_utf8
Non-SSL connection (SSL connection is recommended when requiring high-security)

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

You are now connected to database "db_utf8" as user "omm".
db_utf8=# create table test_encodings(id int, content text);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column
by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
db_utf8=# show copy_special_character_version;
 copy_special_character_version

(1 row)
db_utf8=# copy test_encodings from '/home/omm/temp/encodings.txt.utf8';
ERROR: invalid byte sequence for encoding "UTF8": 0x97
CONTEXT: COPY test_encodings, line 2
db_utf8=# set copy_special_character_version = 'no_error';
SET
db_utf8=# copy test_encodings from '/home/xy/encodings.txt.utf8';
COPY 2
db_utf8=# select * from test_encodings;
 id | content
----+-----------
 1 | Import
 2 | "Import/Export
(2 rows)

▪ Inconsistent encoding: Transcoding is required if the server-side
encoding does not match the client-side encoding. COPY implements
transcoding through the compatible_illegal_chars parameter. If
illegal characters are imported into GaussDB, the error tolerance
mechanism will convert them and store the resulting characters in
GaussDB. The entire import process will proceed without any errors
or interruptions. This ensures efficient and stable data import, even
in complex environments with inconsistent encoding.

Strict Verification Mode (Precise Import)
● Principle: Prioritize data accuracy and ensure the standardization of imported

data.
● Scenario: Apply this mode in fields that demand strict data accuracy,

particularly for sensitive data like medical records and financial transactions.
This mode helps alleviate concerns about intelligent correction potentially
compromising data accuracy.

● Procedure:
a. Conduct a series of verifications at multiple levels (column count

exceptions, character exceptions, data type conversion exceptions, and
constraint conflicts).

b. Generate an error diagnosis report (which includes row numbers, error
types, and error data).

c. Create an erroneous data isolation area.
d. Only import the original data that successfully passes these verifications

into the database.
● Output: pure data set and error details report (further details available in

pg_catalog.pgxc_copy_error_log)
● Error tolerance level: applies to all the exceptions processed by the intelligent

correction mode, including extra columns, data type conversion errors,
overlong columns, and transcoding exceptions. The process is as follows:
-- When the number of data type errors during data import does not exceed 100, no error will be
reported, and GaussDB will proceed to the next row. However, if the number exceeds 100, an error

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

will be reported. The details and row number of the erroneous data will be recorded in the
gs_copy_error_log table.
gaussdb=# copy test_copy from '/home/omm/temp/test.csv' log errors reject limit '100' csv;
-- In comparison to the previous statement, the next one includes an additional action: recording all
data from the erroneous row in gs_copy_error_log. This action is recommended when there is no risk
to data security. Note that SYSADMIN permissions are required.
gaussdb=# copy test_copy from '/home/omm/temp/test.csv' log errors data reject limit '100' csv;

Conclusion
To optimize data import processes, you can combine the intelligent correction
mode with the strict verification mode, with the intelligent correction mode taking
priority. When intelligent correction is enabled during a COPY import and it
corrects a data item, strict verification will not be triggered for that specific row.
Consequently, the error table will not record relevant data, nor will it update
reject limit. Before importing data, carefully evaluate whether to automatically
correct column and character exceptions or discard them, depending on specific
requirements.

11.2 Best Practices for Import and Export Using COPY
(Centralized Instances)

The COPY syntax is a useful tool for exporting data from GaussDB to data files in
CSV, BINARY, FIXED, or TEXT format. It can also import data from the four types of
files to a specified table. For details about the COPY syntax, see "SQL Reference >
SQL Syntax > C > COPY" in Developer Guide.

11.2.1 Typical Scenarios

Preparations
During import or export using COPY, the database requires file read/write
permissions on the server. To grant these permissions, enable the
enable_copy_server_files parameter.

gs_guc reload -I all -N all -Z datanode -c "enable_copy_server_files=on"

NO TICE

● Parameters in the COPY import command must match the actual data in files,
including the format, delimiter, newline character, and character set.

● If the specified client-side encoding matches the server-side encoding, the
COPY command preserves the binary form of data during import and export,
preventing any structural damage that may result from transcoding. This
mechanism guarantees the integrity and originality of data migration, making
it suitable for scenarios that demand high fidelity.

11.2.1.1 Using the Recommended CSV Format
In CSV format, each file is divided into multiple records using end-of-line (EOL)
characters. Each record is further split into multiple fields using delimiters, which

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

are commas by default. Each field can be enclosed within a pair of quote
characters, which are double quotation marks by default. This eliminates the need
to escape special characters such as EOL characters and delimiters within the field
content. Furthermore, it is a widely recognized standard with exceptional cross-
platform compatibility and cross-industry universality, solidifying its position as the
top recommended format.

Recommended export command:
COPY {data_source} TO '/path/export.csv' delimiter ',' quote '"' escape '"' encoding {server_encoding} csv;
-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.

Corresponding import command:
COPY {data_destination} FROM '/path/export.csv' delimiter ',' quote '"' escape '"' encoding {file_encoding}
csv;
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during file export.

NO TICE

To import a manually created CSV data file into the database, ensure that the file
complies with CSV standards. Additionally, specify the correct parameters,
including delimiters, quote characters, and EOL characters, in the COPY command.

Examples
Step 1 Prepare data.

gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'A';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# CREATE TABLE test_copy(id int, name text);
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(2, e'bb\nb');
INSERT 0 1
db1=# insert into test_copy values(3, e'cc\tc');
INSERT 0 1
db1=# insert into test_copy(name) values('ddd');
INSERT 0 1
db1=# insert into test_copy values(5, e'ee\\e');
INSERT 0 1
db1=# insert into test_copy values(6, ',');
INSERT 0 1
db1=# insert into test_copy values(7, '"');
INSERT 0 1
db1=# SELECT * FROM test_copy;
 id | name
----+-----------
 1 | aaa
 2 | bb +
 | b
 3 | cc c
 | ddd
 5 | ee\e
 6 | ,
 7 | "
(7 rows)

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Step 2 Export data from the entire table.
db1=# copy test_copy to '/home/xy/test.csv' delimiter ',' quote '"' escape '"' encoding 'UTF-8' csv;
COPY 7

The content of the exported CSV file is as follows:

1,aaa
2,"bb
b"
3,cc c
,ddd
5,ee\e
6,","
7,""""

Step 3 Import data.
db1=# truncate test_copy;
TRUNCATE TABLE
db1=# copy test_copy from '/home/xy/test.csv' delimiter ',' quote '"' escape '"' encoding 'UTF-8' csv;
COPY 7

Step 4 (Custom data set export) Export the name column for all rows in test_copy,
excluding those with an empty ID.
db1=# copy (select name from test_copy where id is not null) to '/home/xy/test.csv' delimiter ',' quote '"'
escape '"' encoding 'UTF-8' csv;
COPY 6

The content of the exported CSV file is as follows:

aaa
"bb
b"
cc c
ee\e
","
""""

----End

11.2.1.2 Importing and Exporting Data with Extreme Performance

When there are strict demands for data import and export performance, and the
import and export occur between database instances of the same version, you can
use the BINARY format to store and read data as binary numbers other than
regular text. Despite offering performance advantages over other formats, this
format also comes with drawbacks, such as:

1. The format is specific to GaussDB, making it non-portable. It is advisable to
use this format only for importing and exporting data between databases of
the same version.

2. The BINARY format is tightly coupled with specific data types. For example,
while the TEXT format allows exporting data from a smallint field and
importing it into an integer column, this is not possible with the BINARY
format.

3. Certain data types cannot be imported or exported using the BINARY format.
For details, see BINARY limitations.

Recommended export command:

set client_encoding = '{server_encoding}';
copy {data_source} to '/path/export.bin' binary;

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.

Corresponding import command:

set client_encoding = '{file_encoding}';
copy {data_destination} from '/path/export.bin' binary;
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during binary file export.

NO TICE

Before choosing this format, carefully review its limitations. Use it to enhance
import and export performance only when you are completely certain that these
limitations will not impact the data to be exported.

Examples

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'A';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# CREATE TABLE test_copy(id int, name text);
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(3, e'cc\tc');
INSERT 0 1
db1=# insert into test_copy(name) values('ddd');
INSERT 0 1
db1=# insert into test_copy values(5, e'ee\\e');
INSERT 0 1
db1=# insert into test_copy values(6, ',');
INSERT 0 1
db1=# insert into test_copy values(7, '"');
INSERT 0 1
db1=# SELECT * FROM test_copy;
 id | name
----+-----------
 1 | aaa
 3 | cc c
 | ddd
 5 | ee\e
 6 | ,
 7 | "
(6 rows)

Step 2 Export data.
db1=# set client_encoding = 'UTF-8';
SET
db1=# COPY test_copy TO '/home/xy/test.bin' BINARY;
COPY 6

Step 3 Import data.
db1=# truncate test_copy;
TRUNCATE TABLE
db1=# set client_encoding = 'UTF-8';
SET

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

db1=# copy test_copy from '/home/xy/test.bin' BINARY;
COPY 6

----End

11.2.1.3 Exporting Data Files for Manual Parsing
The FIXED format maintains a fixed data structure to simplify file parsing: Each
row represents a record, and within each row, the starting offset and length of
each field value are fixed. Therefore, it is advisable to utilize the FIXED format
when you need to manually parse a data file exported from the database. Despite
this, the FIXED format has its limitations, as detailed in FIXED description.

Recommended export command:

COPY {data_source} FROM '/path/export.fixed' encoding {server_encoding} FIXED
FORMATTER(col1_name(col1_offset, col1_length), col2_name(col2_offset, col2_length));
-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.
-- col1_name(col1_offset, col1_length) indicates that the data named col1_name in each row of the data
file starts at the position with an offset of col1_offset and extends for a length of col1_length.

Corresponding import command:

COPY {data_destination} from '/path/export.fixed' encoding {file_encoding} FIXED
FORMATTER(col1_name(col1_offset, col1_length), col2_name(col2_offset, col2_length));
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during file export.
-- col1_name(col1_offset, col1_length) indicates that the data named col1_name in each row of the data
file starts at the position with an offset of col1_offset and extends for a length of col1_length.

NO TICE

The fixed column width format has limitations: It requires maintaining a relatively
uniform width for each column in the table, allowing for the selection of an
appropriate fixed col_length to prevent data truncation and eliminate
unnecessary spaces in all columns. In cases where column widths vary significantly
or change dynamically, it is advisable to prioritize flexible formats such as TEXT or
CSV to ensure data integrity and efficient use of storage space.

Examples

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'A';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# CREATE TABLE test_copy(id int, name text);
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(2, 'bb"b');
INSERT 0 1
db1=# insert into test_copy values(3, 'cc c');
INSERT 0 1
db1=# insert into test_copy values('', e'dd\td');
INSERT 0 1
db1=# insert into test_copy values('5', e'ee\e');

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

INSERT 0 1
db1=# select * from test_copy;
 id | name
----+-----------
 1 | aaa
 2 | bb"b
 3 | cc c
 | dd d
 5 | eee
(5 rows)

Step 2 Export data.
db1=# COPY test_copy TO '/home/xy/test.fixed' encoding 'UTF-8' FIXED FORMATTER(id(0,1), name(1,5));
COPY 5

The content of the exported data file is as follows:

1 aaa
2 bb"b
3cc c
 dd d
5 eee

Step 3 Import data.
db1=# truncate test_copy;
TRUNCATE TABLE
db1=# copy test_copy from '/home/xy/test.fixed' encoding 'UTF-8' FIXED FORMATTER(id(0,1), name(1,5));
COPY 5

----End

11.2.1.4 Importing and Exporting Data When Only the TEXT Format Is
Available

In TEXT format, each file is divided into multiple records using EOL characters.
Each record is further split into multiple fields using delimiters, which are tab
characters ('\t') by default.

Using the TEXT format in GaussDB necessitates special logic, for example:

● The backspace (0x08), form-feed (0x0C), newline (0x0A), carriage return
(0x0D), horizontal tab (0x09), and vertical tab (0x0B) characters are escaped
as '\b', '\f', '\n', '\r', '\t', and '\v', respectively.

● By default, the EOL character is configured as the first identified '\n', '\r', or
'\r\n' during import, and as '\n' during export.

● A single backslash is escaped as double backslashes.
● NULL values are escaped as '\N'.

Exporting Data from and Importing Data into GaussDB
Recommended export command:

copy {data_source} to '/path/export.txt' eol e'\n' delimiter e'\t' encoding '{server_encoding}';
-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.

Corresponding import command:

copy {data_destination} from '/path/export.txt' eol e'\n' delimiter e'\t' encoding '{file_encoding}';
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during binary file export.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Example:

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'A';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# create table test_copy(id int, name text);
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(3, e'cc\tc');
INSERT 0 1
db1=# insert into test_copy(name) values('ddd');
INSERT 0 1
db1=# insert into test_copy values(5, e'ee\\e');
INSERT 0 1
db1=# insert into test_copy values(6, e',');
INSERT 0 1
db1=# insert into test_copy values(7, e'"');
INSERT 0 1
db1=# select * from test_copy;
 id | name
----+-----------
 1 | aaa
 3 | cc c
 | ddd
 5 | ee\e
 6 | ,
 7 | "
(6 rows)

Step 2 Export data.
db1=# copy test_copy to '/home/xy/test.txt' eol e'\n' delimiter e'\t' encoding 'UTF-8';
COPY 6

Step 3 Import data.
db1=# truncate test_copy;
TRUNCATE TABLE
db1=# copy test_copy from '/home/xy/test.txt' eol e'\n' delimiter e'\t' encoding 'UTF-8';
COPY 6

----End

Exporting Data Files from GaussDB for Manual Parsing
In this scenario, you will not want the exported TEXT files to exhibit any escape
behavior specific to GaussDB. Follow these steps:

● Check for EOL characters or delimiters in the field data.
● If they exist, modify the eol or delimiter parameter to use other characters

that do not appear in the field data. It is advisable to select from invisible
characters (0x01 to 0x1F) for this purpose.

● You can use the null option to specify how NULL values should be
represented during export.

● Finally, include the without escaping parameter to prevent escaping in the
output.

Recommended export command:
copy {data_source} to '/path/export.txt' without escaping eol e'\x1E' delimiter e'\x1F' null '\N' encoding
'{server_encoding}';

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

-- data_source can be a table name or a SELECT statement.
-- server_encoding can be obtained using SHOW server_encoding.

NO TICE

The primary function of the escaping mechanism is to prevent special characters
(such as delimiters and newline characters) in fields from damaging the file
structure. When choosing to disable the escaping mechanism, be sure to isolate
special characters by carefully choosing delimiters and newline characters for non-
escaping scenarios and ensuring that these characters are absent in the data
content. This is essential for non-escaped file parsing, as any character conflicts
can lead to data parsing failure or structural disorder.

Example:

Step 1 Prepare data.
gaussdb=# create database db1 encoding='UTF-8' LC_COLLATE='en_US.UTF-8' LC_CTYPE ='en_US.UTF-8'
dbcompatibility = 'A';
CREATE DATABASE
gaussdb=# \c db1
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db1" as user "omm".
db1=# create table test_copy(id int, name text);
CREATE TABLE
db1=# insert into test_copy values(1, 'aaa');
INSERT 0 1
db1=# insert into test_copy values(3, e'cc\tc');
INSERT 0 1
db1=# insert into test_copy(name) values('ddd');
INSERT 0 1
db1=# insert into test_copy values(5, e'ee\\e');
INSERT 0 1
db1=# insert into test_copy values(6, e',');
INSERT 0 1
db1=# insert into test_copy values(7, e'"');
INSERT 0 1
db1=# select * from test_copy;
 id | name
----+-----------
 1 | aaa
 3 | cc c
 | ddd
 5 | ee\e
 6 | ,
 7 | "
(6 rows)

Step 2 Export data.
db1=# copy test_copy to '/home/xy/test.txt' without escaping eol e'\x1E' delimiter e'\x1F' null '\N' encoding
'UTF-8';
COPY 6

Step 3 Read data. In this step, data is first split into rows based on the selected EOL
character (0x1E). Then each row of data stream is further divided based on the
delimiter (0x1F) to extract the field values within each row.

----End

Importing User-Created Data Files into GaussDB
If you only have raw field data without a complete data file, you can create a data
file manually. To minimize the need for extensive modifications—such as escaping

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

or other special character processing—it is advisable to use the TEXT format.
When creating a data file in TEXT format, you can select custom delimiters and
EOL characters to ensure accurate data import.

Step 1 Select an EOL character. If the field data contains 0x0A, do not use 0x0A as the
EOL character. Otherwise, newlines within the field data will be misinterpreted as
EOL characters, resulting in a single line of data being split into two. To prevent
this issue, ensure that the selected EOL character is not present in the field data.
For instance, consider using 0x1E as the EOL character when it is not found in the
field data. It is advisable to select from invisible characters (0x01 to 0x1F) for this
purpose.

Step 2 Select a delimiter. If the field data contains tab characters, do not use them as
delimiters. Otherwise, tabs within the field data will be misinterpreted as
delimiters, resulting in a single field being split into two. To prevent this issue,
ensure that the selected delimiter is not present in the field data. For instance,
consider using 0x1F as the delimiter when it is not found in the field data. It is
advisable to select from invisible characters (0x01 to 0x1F) for this purpose.

Step 3 Build data. Create a data file using the EOL character and delimiter selected in
steps 1 and 2. Check the character set of the server. You need to generate a data
file that matches the server's character set.

Step 4 Import data. In this example, the character set of the data file is UTF-8.
db1=# copy test_copy to '/home/xy/test.txt' without escaping eol e'\x1E' delimiter e'\x1F' null '\N' encoding
'UTF-8';
COPY 6

----End

11.2.1.5 Importing and Exporting Data Files on a GSQL Client
When you execute the COPY command to export data on a GSQL client, the
generated data files are saved on the database server by default. This can make it
difficult for users to access the files. To offer easier file access, the \COPY
command directly generates data files on the local client.

Differences Between COPY and \COPY
1. File location: The files generated and read during COPY import are located on

the server. Conversely, in \COPY import, both the generated and read files are
located on the client.

2. Performance: To complete \COPY import, the client must read file streams
and transmit them to the server. This results in decreased performance in
comparison to COPY.

3. Functionality: Compared to COPY, \COPY offers an additional capability—
client-based parallel import. For detailed specifications and limitations,
consult "Database Connection Tools > gsql for Connecting to a Database >
Meta-Command Reference" in Tool Reference.

Example \COPY Commands
To export with \COPY, simply replace COPY with \COPY in your commands. Below
is a straightforward example of converting CSV export commands from COPY to
their \COPY equivalents:

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

-- COPY commands:
COPY {data_source} to '/path/export.csv' encoding {server_encoding} csv;
COPY {data_source} from '/path/export.csv' encoding {server_encoding} csv;
-- Corresponding \COPY commands:
\COPY {data_source} to '/path/export.csv' encoding {server_encoding} csv;
\COPY {data_source} from '/path/export.csv' encoding {server_encoding} csv;

Example Commands for Parallel Import
-- Import command for the CSV format:
\COPY {data_destination} from '/path/export.txt' encoding {file_encoding} parallel {parallel_num} csv;
-- Import command for the FIXED format:
\COPY {data_destination} from '/path/export.txt' encoding {file_encoding} parallel {parallel_num} fixed;
-- Import command for the TEXT format:
\COPY {data_destination} from '/path/export.txt' encoding {file_encoding} parallel {parallel_num};
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during binary file export.
-- parallel_num indicates the number of clients for data import. When there are sufficient cluster
resources, it is advisable to set it to 8.

11.2.1.6 Importing and Exporting Data Through the JDBC Driver
In the presence of the JDBC driver, you can call its CopyManager APIs to
implement data import and export. CopyManager can import data into tables and
export data from databases in batches.

11.2.1.7 Importing Erroneous Data Through Error Tolerance
Both the COPY and \COPY commands will halt the data import process upon
detecting any data exceptions. To overcome this limitation, GaussDB provides two
error tolerance modes: intelligent correction mode and strict verification mode.
The strict verification mode (Level 1 error tolerance) is preferred because it can
skip abnormal records, maintaining data integrity and minimizing the impact on
import performance. For details, see Guide to Importing Erroneous Data.

Below are import commands executed in strict verification mode (Level 1 error
tolerance):

-- CSV format
\COPY {data_destination} from '/path/export.txt' log errors reject limit '{limit_num}' encoding
{file_encoding} CSV;
-- BINARY format
\COPY {data_destination} from '/path/export.txt' log errors reject limit '{limit_num}' encoding
{file_encoding} BINARY;
-- FIXED format
\COPY {data_destination} from '/path/export.txt' log errors reject limit '{limit_num}' encoding
{file_encoding} FIXED;
-- TEXT format
\COPY {data_destination} from '/path/export.txt' log errors reject limit '{limit_num}' encoding
{file_encoding};
-- data_destination can only be a table name.
-- file_encoding indicates the encoding format used during binary file export.
-- limit_num specifies the maximum number of erroneous rows that the COPY FROM statement can
tolerate during data import. If this limit is exceeded, errors will be reported as usual according to the
original mechanism.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

NO TICE

To use the error tolerance feature, regular users require permissions on the two
system catalogs of the feature. Execute the following SQL statements to grant
them these permissions:
grant insert,select,delete on pgxc_copy_error_log to {user_name};
grant insert,select,delete on gs_copy_summary to {user_name};

11.2.2 Guide to Exporting Erroneous Data
Data errors during export typically occur when character strings or binary data
that does not match the server-side encoding is inserted into the database. To
address this, you are advised to keep the client-side encoding consistent with the
server-side encoding, eliminating the need for validity checks against the server-
side encoding and data transcoding.

Encoding Consistency Principle During Export
1. When the client-side encoding is consistent with the server-side encoding:

– Native data is exported.
– Data integrity and originality are guaranteed.
– Character set conversion is not required.

2. When the client-side encoding is inconsistent with the server-side encoding:
– The client-side encoding is employed as the target encoding standard for

the exported files.
– The kernel first checks existing data against the server-side encoding.

Upon detecting any data encoded in an illegal format, it will report an
error.

– The kernel then proceeds to transcode the data. If it encounters any
characters that cannot be transcoded (due to code bits present in the
source character set but not in the target character set), it will report an
error.

Solutions to Illegal Encoding
If your database contains any data encoded in an illegal format and you wish to
export the data without triggering an error, consider the following methods:

Preferred method: Keep the client-side encoding consistent with the server-side
encoding. Then export data using the server-side encoding without performing any
transcoding.

Step 1 Query the database server-side encoding.
gaussdb=# show server_encoding;

Step 2 Query the database client-side encoding.
gaussdb=# show client_encoding;

Step 3 Keep the client-side encoding consistent with the server-side encoding.
gaussdb=# set client_encoding = '{server_encoding}';

Step 4 Execute COPY to export data to a file in standard CSV format.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

gaussdb=# COPY test_copy TO '/data/test_copy.csv' CSV;

----End

Alternative solution: Use placeholders ('?') to replace any bytes encoded in an
illegal format. This solution depends on the transcoding capability of the database
kernel and will alter the content of the exported data.

Step 1 Query the database server-side encoding.
gaussdb=# show server_encoding;

Step 2 Set the database client-side encoding as the target encoding.
gaussdb=# set client_encoding = {target_encoding};

Step 3 Leverage the kernel's transcoding capability to replace any bytes encoded in an
illegal format while exporting data.
gaussdb=# COPY test_copy TO '/data/test_copy.csv' CSV COMPATIBLE_ILLEGAL_CHARS;

----End

NO TICE

● Consider enabling the COMPATIBLE_ILLEGAL_CHARS parameter to correct any
exported data encoded in an illegal format during export, while keeping the
data in the database unchanged. Kindly use this parameter as necessary.

● When enabled, the COMPATIBLE_ILLEGAL_CHARS parameter:
● Replaces illegal characters with the ones specified in the

convert_illegal_char_mode parameter. The default replacement character
is '?' (U+003F).

● Replaces zero characters (U+0000) with spaces (U+0020). If you do not
need this replacement, configure the zero-character functionality in
different compatible modes.

● For detailed limitations on the COMPATIBLE_ILLEGAL_CHARS parameter, refer
to the COMPATIBLE_ILLEGAL_CHARS description in the COPY section.

11.2.3 Guide to Importing Erroneous Data
The error tolerance mechanism during data import provides two modes.

Intelligent Correction Mode (Adaptive Import)
● Principle: Prioritize data integrity and leverage intelligent correction to ensure

that the highest possible volume of accurate data is imported.
● Scenario: Apply this mode when the imported data contains column count

exceptions, including extra, missing, or deprecated columns, as well as
abnormal characters.

● Procedure:

a. Rectify the column count exceptions by truncating extra columns,
padding missing columns, and discarding deprecated columns.

b. Transcode the character sets and clean illegal characters.
c. Write all data into the target database.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

● Output: corrected data set, along with logs recorded by GaussDB for character
exceptions

Strict Verification Mode (Precise Import)
● Principle: Prioritize data accuracy and enforce strict compliance when

importing data into the database.
● Scenario: Apply this mode in fields that demand strict data accuracy,

particularly for sensitive data like medical records and financial transactions.
This mode helps alleviate concerns about intelligent correction potentially
compromising data accuracy.

● Procedure:

a. Conduct a series of verifications at multiple levels (column count
exceptions, character exceptions, data type conversion exceptions, and
constraint conflicts).

b. Generate an error diagnosis report (which includes row numbers, error
types, and error data).

c. Create an erroneous data isolation area.
d. Only import the original data that successfully passes these verifications

into the database.
● Output: pure data set and error details report (further details available in

gs_copy_error_log and gs_copy_summary)
● Error tolerance levels:

a. Level 1 error tolerance: applies to all the exceptions processed by the
intelligent correction mode, including extra data source columns, data
type conversion errors, overlong columns, and transcoding exceptions.
The process is as follows:
-- When the number of data type errors during data import does not exceed 100, no error will
be reported, and GaussDB will proceed to the next row. However, if the number exceeds 100, an
error will be reported. The details and row number of the erroneous data will be recorded in the
gs_copy_error_log table.
gaussdb=# copy test_copy from '/home/omm/temp/test.csv' log errors reject limit '100' csv;
-- In comparison to the previous statement, the next one includes an additional action:
recording all data from the erroneous row in gs_copy_error_log. This action is recommended
when there is no risk to data security. Note that SYSADMIN permissions are required.
gaussdb=# copy test_copy from '/home/omm/temp/test.csv' log errors data reject limit '100' csv;

b. Level 2 error tolerance: Building on Level 1, Level 2 extends support to
address constraint conflicts in data, including NOT NULL constraints,
conditional constraints, PRIMARY KEY constraints, UNIQUE constraints,
and unique index constraints. The process is as follows:
-- To support a new error type, constraint conflict, while keeping the same COPY statement and
error tolerance logic as Level 1, set the GUC parameter as follows:
gaussdb=# SET a_format_load_with_constraints_violation = 's2';
gaussdb=# copy test_copy from '/home/omm/temp/test.csv' log errors data reject limit '100' csv;

Conclusion
To optimize data import processes, you can combine the intelligent correction
mode with the strict verification mode, with the intelligent correction mode taking
priority. When intelligent correction is enabled during a COPY import and it
corrects a data item, strict verification will not be triggered for that specific row.
Consequently, the error table will not record relevant data, nor will it update
reject limit. Before importing data, carefully evaluate whether to automatically

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

correct column and character exceptions or discard them, depending on specific
requirements.

For strict verification mode, Level 1 is recommended by default, as it effectively
identifies the most common errors without compromising import performance.
However, if you are operating in centralized A-compatible mode, you can consider
Level 2. Be mindful that Level 2 can degrade import performance and consume
additional memory resources. Therefore, you are advised not to use Level 2 by
default. Enable Level 2 only when constraint type conflicts occur.

NO TE

● This default option is that error tolerance does not support constraint conflicts. To make
constraint conflicts tolerated, set the session-level GUC parameter
a_format_load_with_constraints_violation to "s2" and import the file again.
● The conflicts of the NOT NULL constraints, conditional constraints, PRIMARY KEY

constraints, UNIQUE constraints, and unique index constraints can be tolerated.
● This function is valid only in centralized A-compatible mode.
● A statement-level trigger cannot handle any constraint conflict above, so the

attempt to import data into a table with such trigger will fail with an error
reported.

● Under this feature, data will be inserted row by row instead of in batches, which
deteriorates the import performance.

● Under this feature, the UB-tree indexes will be built row by row instead of in
batches, degrading the index building performance.

● This feature is still valid even if a constraint conflict is triggered by an operation on
a table with a row-level trigger. Constraint conflicts of row-level triggers are
implemented in sub-transactions, which use more memory resources and increase
execution time. Therefore, you are advised to use this feature when constraint
conflicts are very likely to occur. In this scenario, the amount of data to be
imported at a time by using COPY should be less than or equal to 1 GB.

GaussDB
Best Practices 11 Best Practices for Import and Export Using COPY

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

12 Best Practices for Import and Export
Using Tools

12.1 Best Practices for Import and Export Using Tools
(Distributed Instances)

12.1.1 Database-Level Import and Export
The gs_dump tool can back up a single database and supports four archive
formats. The application scenarios of these archive formats are described in Table
12-1. You can choose a proper archive format as required.

For details about how to use the gs_dump tool, see "Data Import and Export Tools
> gs_dump for Exporting Database Information" in Tool Reference.

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

Table 12-1 Formats of exported files

Format Valu
e of -
F

Description Suggestion Import Tool

Plain-
text

p A plain-text script file
that contains SQL
statements and
commands. The
commands can be
executed on gsql, a
command line
terminal, to rebuild
database objects and
load table data.

For a small-
sized database
or the
exported SQL
file needs to
be modified,
the plain-text
format is
recommended.

Before using gsql
to restore
database objects,
you can use a text
editor to edit the
exported plain-text
file as needed. For
details about how
to use the gsql
tool, see
"Database
Connection Tools >
gsql for
Connecting to a
Database > gsql
Usage Guide" in
Tool Reference.

Custom c A binary file that
allows the restoration
of all or selected
database objects from
an exported file.

For medium-
or large-sized
databases, the
backup result
needs to be
exported to a
single file. In
this case, the
custom format
is
recommended.

You can use
gs_restore to
import database
objects from a
custom-,
directory-, or tar-
format archive.
For details about
how to use the
gs_restore tool, see
"Data Import and
Export Tools >
gs_restore for
Importing Data" in
Tool Reference.

Director
y

d A directory containing
directory files of
database objects and
the data files of tables
and BLOBs.

For medium-
or large-sized
databases,
database
objects and
data files need
to be stored
and exported
in different
directories. In
this case, the
directory
format is
recommended.

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

Format Valu
e of -
F

Description Suggestion Import Tool

.tar
archive

t A tar-format archive
that allows the
restoration of all or
selected database
objects from an
exported file. The .tar
file cannot be further
compressed and has
an 8-GB limitation on
the size of each single
file.

For a small-
sized
database, you
need to export
the archive
result and
pack it. In this
case, the .tar
format is
recommended.

NO TICE

● gs_dump does not back up global objects (roles, tablespaces, and
corresponding permissions) shared with all databases. Therefore, ensure that
global objects have been created on the target database or new instance
before the restoration. The -g command of gs_dumpall can be used to export
global objects and use gsql to import global objects at the target end. For
details about how to use the gs_dumpall tool, see "Data Import and Export
Tools > gs_dumpall for Exporting All Database Information" in Tool Reference.

● gs_dump and gs_restore do not support import and export across database
compatibility modes. Ensure that the database compatibility mode and
compatibility configuration parameters of the source and target databases are
the same. For details about how to query and create a database of a specified
compatibility mode, see "SQL Reference > SQL Syntax > C > CREATE
DATABASE" in Developer Guide.

● Do not modify the files and contents exported using the -F c, -F d, or -F t
format. Otherwise, the restoration may fail. If you need to modify or replace
the file exported using the -F p format, edit them with caution.

● After restoration, you are advised to run ANALYZE on the database to provide
useful statistics for the optimizer.

You are advised to run the following command as a user with the SYSADMIN
permission to back up data. The source database is my_database, and the
exported data contains data and object definitions.
-- Plain-text
nohup gs_dump my_database -U root -W ******** -p 8000 -F p -f /data/backup/my_database_backup.sql > /
data/backup/my_database_backup.log &
-- Custom
nohup gs_dump my_database -U root -W ******** -p 8000 -F c -f /data/backup/my_database_backup.dmp > /
data/backup/my_database_backup.log &
-- Directory
nohup gs_dump my_database -U root -W ******** -p 8000 -F d -f /data/backup/my_database_backup > /data/
backup/my_database_backup.log &
-- .tar archive
nohup gs_dump my_database -U root -W ******** -p 8000 -F t -f /data/backup/my_database_backup.tar > /
data/backup/my_database_backup.log &

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

Before restoration, you need to create a target database that has the same
attributes as the source database and does not contain any data.
-- Run the following gsql meta-command to view the database attribute information:
\l+
-- Create a target database based on the queried attribute information.
create database my_database2 encoding='xxxxx' LC_COLLATE='xxxxx' LC_CTYPE ='xxxxx' TEMPLATE=xxx
DBCOMPATIBILITY 'xxx';

Run the following command as a user with the SYSADMIN permission to restore
the database:
-- Plain-text
nohup gsql -d my_database2 -p 8000 -U root -W ******** -f /data/backup/my_database_backup.sql -a > /
data/backup/my_database_restore.log &
-- Custom
nohup gs_restore /data/backup/my_database_backup.dmp -d my_database2 -p 8000 -U root -W ******** -F c
-v > /data/backup/my_database_restore.log &
-- Directory
nohup gs_restore /data/backup/my_database_backup -d my_database2 -p 8000 -U root -W ******** -F d -v
> /data/backup/my_database_restore.log &
-- .tar archive
nohup gs_restore /data/backup/my_database_backup.tar -d my_database2 -p 8000 -U root -W ******** -F t -
v > /data/backup/my_database_restore.log &

12.1.2 Schema-Level Import and Export
The gs_dump tool can be used to back up a single schema and you are advised to
use the gs_dump tool and the -n parameter to do so. Multiple -n parameters can
be used to back up multiple schemas.

For details about how to use the gs_dump tool, see "Data Import and Export Tools
> gs_dump for Exporting Database Information" in Tool Reference.

NO TICE

If the exported schema depends on objects that are not exported, an error
message may be displayed indicating that the dependent objects are missing
when the schema is imported. Therefore, ensure that the dependent objects have
been created before importing the schema.

You are advised to run the following command as a user with the SYSADMIN
permission to back up data. The source database is my_database, and the
exported data contains data and object definitions.
-- Plain-text
nohup gs_dump my_database -U root -W ******** -p 8000 -F p -f /data/backup/my_schema_backup.sql -n
my_schema > /data/backup/my_schema_backup.log &
-- Custom
nohup gs_dump my_database -U root -W ******** -p 8000 -F c -f /data/backup/my_schema_backup.dmp -n
my_schema > /data/backup/my_schema_backup.log &
-- Directory
nohup gs_dump my_database -U root -W ******** -p 8000 -F d -f /data/backup/my_schema_backup -n
my_schema > /data/backup/my_schema_backup.log &
-- .tar archive
nohup gs_dump my_database -U root -W ******** -p 8000 -F t -f /data/backup/my_schema_backup.tar -n
my_schema > /data/backup/my_schema_backup.log &

Before restoration, you need to create a target database that has the same
attributes as the source database and does not contain the target schema.
-- Run the following gsql meta-command to view the database attribute information:
\l+
-- Create a target database based on the queried attribute information.

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

create database my_database2 encoding='xxxxx' LC_COLLATE='xxxxx' LC_CTYPE ='xxxxx' TEMPLATE=xxx
DBCOMPATIBILITY 'xxx';

Run the following command as a user with the SYSADMIN permission to restore
the database:
-- Plain-text
nohup gsql -d my_database2 -p 8000 -U root -W ******** -f /data/backup/my_schema_backup.sql -a > /data/
backup/my_schema_restore.log &
-- Custom
nohup gs_restore /data/backup/my_database_backup.dmp -d my_database2 -p 8000 -U root -W ******** -F c
-v -n my_schema > /data/backup/my_schema_restore.log &
-- Directory
nohup gs_restore /data/backup/my_database_backup -d my_database2 -p 8000 -U root -W ******** -F d -v -
n my_schema > /data/backup/my_schema_restore.log &
-- .tar archive
nohup gs_restore /data/backup/my_database_backup.tar -d my_database2 -p 8000 -U root -W ******** -F t -
v -n my_schema > /data/backup/my_schema_restore.log &

12.1.3 Table-Level Import and Export
Many tools are available for table-level import and export. You can select a proper
tool based on the following scenarios:
1. If you need to export the definition and data of a single table to the same

file, you are advised to use the plain-text archive of the gs_dump tool and the
-t parameter. You can use multiple -t parameters to back up multiple tables.
For details about how to use the gs_dump tool, see "Data Import and Export
Tools > gs_dump for Exporting Database Information" in Tool Reference.

NO TICE

If the exported table depends on objects that are not exported, an error
message may be displayed indicating that the dependent objects are missing
when the table is imported. Therefore, ensure that the dependent objects
have been created before importing the table.

You are advised to run the following command as a user with the SYSADMIN
permission to back up data. The source database is my_database, and the
target table is my_table in my_schema.
nohup gs_dump my_database -U root -W ******** -p 8000 -F p -f /data/backup/my_table_backup.sql -t
my_schema.my_table > /data/backup/my_table_backup.log &

Before restoration, create a target database with the same attributes as the
source database, and ensure that the target schema exists in the database
and no target table exists. Then, run the following command as a user with
SYSADMIN permissions to restore the database:
nohup gsql -d my_database2 -p 8000 -U root -W ******** -f /data/backup/my_table_backup.sql -a > /
data/backup/my_table_restore.log &

2. Only the definition of a single table needs to be exported and no data in the
table is required.

NO TICE

If the exported table depends on objects that are not exported, an error
message may be displayed indicating that the dependent objects are missing
when the table is imported. Therefore, ensure that the dependent objects
have been created before importing the table.

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

You are advised to use the plain-text archive of the gs_dump tool together
with the -s parameter. The command is as follows:
nohup gs_dump my_database -U root -W ******** -p 8000 -F p -f /data/backup/my_table_backup.sql -t
my_schema.my_table -s > /data/backup/my_table_backup.log &

Before restoration, create a target database with the same attributes as the
source database, and ensure that the target schema exists in the database
and no target table exists. Then, run the following command as a user with
SYSADMIN permissions to restore the database:
nohup gsql -d my_database2 -p 8000 -U root -W ******** -f /data/backup/my_table_backup.sql -a > /
data/backup/my_table_restore.log &

12.2 Best Practices for Import and Export Using Tools
(Centralized Instances)

12.2.1 Database-Level Import and Export
The gs_dump tool can back up a single database and supports four archive
formats. The application scenarios of these archive formats are described in Table
12-2. You can choose a proper archive format as required.

For details about how to use the gs_dump tool, see "Data Import and Export Tools
> gs_dump for Exporting Database Information" in Tool Reference.

Table 12-2 Formats of exported files

Format Valu
e of -
F

Description Suggestion Import Tool

Plain-
text

p A plain-text script file
that contains SQL
statements and
commands. The
commands can be
executed on gsql, a
command line
terminal, to rebuild
database objects and
load table data.

For a small-
sized database
or the
exported SQL
file needs to
be modified,
the plain-text
format is
recommended.

Before using gsql
to restore
database objects,
you can use a text
editor to edit the
exported plain-text
file as needed. For
details about how
to use the gsql
tool, see
"Database
Connection Tools >
gsql for
Connecting to a
Database > gsql
Usage Guide" in
Tool Reference.

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

Format Valu
e of -
F

Description Suggestion Import Tool

Custom c A binary file that
allows the restoration
of all or selected
database objects from
an exported file.

For medium-
or large-sized
databases, the
backup result
needs to be
exported to a
single file. In
this case, the
custom format
is
recommended.

You can use
gs_restore to
import database
objects from a
custom-,
directory-, or tar-
format archive. For
details about how
to use the
gs_restore tool, see
"Data Import and
Export Tools >
gs_restore for
Importing Data" in
Tool Reference.

Director
y

d A directory containing
directory files of
database objects and
the data files of tables
and BLOBs.

For medium-
or large-sized
databases,
database
objects and
data files need
to be stored
and exported
in different
directories. In
this case, the
directory
format is
recommended.

.tar
archive

t A tar-format archive
that allows the
restoration of all or
selected database
objects from an
exported file. The .tar
file cannot be further
compressed and has
an 8-GB limitation on
the size of each single
file.

For a small-
sized
database, you
need to export
the archive
result and
pack it. In this
case, the .tar
format is
recommended.

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

NO TICE

● gs_dump does not back up global objects (roles, tablespaces, and
corresponding permissions) shared with all databases. Therefore, ensure that
global objects have been created on the target database or new instance
before the restoration. The -g command of gs_dumpall can be used to export
global objects and use gsql to import global objects at the target end. For
details about how to use the gs_dumpall tool, see "Data Import and Export
Tools > gs_dumpall for Exporting All Database Information" in Tool Reference.

● gs_dump and gs_restore do not support import and export across database
compatibility modes. Ensure that the database compatibility mode and
compatibility configuration parameters of the source and target databases are
the same. For details about how to query and create a database of a specified
compatibility mode, see "SQL Reference > SQL Syntax > C > CREATE
DATABASE" in Developer Guide.

● Do not modify the files and contents exported using the -F c, -F d, or -F t
format. Otherwise, the restoration may fail. If you need to modify or replace
the file exported using the -F p format, edit them with caution.

● After restoration, you are advised to run ANALYZE on the database to provide
useful statistics for the optimizer.

You are advised to run the following command as a user with the SYSADMIN
permission to back up data. The source database is my_database, and the
exported data contains data and object definitions.
-- Plain-text
nohup gs_dump my_database -U root -W ******** -p 8000 -F p -f /data/backup/my_database_backup.sql > /
data/backup/my_database_backup.log &
-- Custom
nohup gs_dump my_database -U root -W ******** -p 8000 -F c -f /data/backup/my_database_backup.dmp > /
data/backup/my_database_backup.log &
-- Directory
nohup gs_dump my_database -U root -W ******** -p 8000 -F d -f /data/backup/my_database_backup > /data/
backup/my_database_backup.log &
-- .tar archive
nohup gs_dump my_database -U root -W ******** -p 8000 -F t -f /data/backup/my_database_backup.tar > /
data/backup/my_database_backup.log &

Before restoration, you need to create a target database that has the same
attributes as the source database and does not contain any data.
-- Run the following gsql meta-command to view the database attribute information:
\l+
-- Create a target database based on the queried attribute information.
create database my_database2 encoding='xxxxx' LC_COLLATE='xxxxx' LC_CTYPE ='xxxxx' TEMPLATE=xxx
DBCOMPATIBILITY 'xxx';

Run the following command as a user with the SYSADMIN permission to restore
the database:
-- Plain-text
nohup gsql -d my_database2 -p 8000 -U root -W ******** -f /data/backup/my_database_backup.sql -a > /
data/backup/my_database_restore.log &
-- Custom
nohup gs_restore /data/backup/my_database_backup.dmp -d my_database2 -p 8000 -U root -W ******** -F c
-v > /data/backup/my_database_restore.log &
-- Directory
nohup gs_restore /data/backup/my_database_backup -d my_database2 -p 8000 -U root -W ******** -F d -v
> /data/backup/my_database_restore.log &
-- .tar archive
nohup gs_restore /data/backup/my_database_backup.tar -d my_database2 -p 8000 -U root -W ******** -F t -
v > /data/backup/my_database_restore.log &

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

12.2.2 Schema-Level Import and Export
The gs_dump tool can be used to back up a single schema and you are advised to
use the gs_dump tool and the -n parameter to do so. Multiple -n parameters can
be used to back up multiple schemas.

For details about how to use the gs_dump tool, see "Data Import and Export Tools
> gs_dump for Exporting Database Information" in Tool Reference.

NO TICE

If the exported schema depends on objects that are not exported, an error
message may be displayed indicating that the dependent objects are missing
when the schema is imported. Therefore, ensure that the dependent objects have
been created before importing the schema.

You are advised to run the following command as a user with the SYSADMIN
permission to back up data. The source database is my_database, and the
exported data contains data and object definitions.
-- Plain-text
nohup gs_dump my_database -U root -W ******** -p 8000 -F p -f /data/backup/my_schema_backup.sql -n
my_schema > /data/backup/my_schema_backup.log &
-- Custom
nohup gs_dump my_database -U root -W ******** -p 8000 -F c -f /data/backup/my_schema_backup.dmp -n
my_schema > /data/backup/my_schema_backup.log &
-- Directory
nohup gs_dump my_database -U root -W ******** -p 8000 -F d -f /data/backup/my_schema_backup -n
my_schema > /data/backup/my_schema_backup.log &
-- .tar archive
nohup gs_dump my_database -U root -W ******** -p 8000 -F t -f /data/backup/my_schema_backup.tar -n
my_schema > /data/backup/my_schema_backup.log &

Before restoration, you need to create a target database that has the same
attributes as the source database and does not contain the target schema.
-- Run the following gsql meta-command to view the database attribute information:
\l+
-- Create a target database based on the queried attribute information.
create database my_database2 encoding='xxxxx' LC_COLLATE='xxxxx' LC_CTYPE ='xxxxx' TEMPLATE=xxx
DBCOMPATIBILITY 'xxx';

Run the following command as a user with the SYSADMIN permission to restore
the database:
-- Plain-text
nohup gsql -d my_database2 -p 8000 -U root -W ******** -f /data/backup/my_schema_backup.sql -a > /data/
backup/my_schema_restore.log &
-- Custom. For details about how to use the gs_restore tool, see "Data Import and Export Tools > gs_restore
for Importing Data" in Tool Reference.
nohup gs_restore /data/backup/my_database_backup.dmp -d my_database2 -p 8000 -U root -W ******** -F c
-v -n my_schema > /data/backup/my_schema_restore.log &
-- Directory
nohup gs_restore /data/backup/my_database_backup -d my_database2 -p 8000 -U root -W ******** -F d -v -
n my_schema > /data/backup/my_schema_restore.log &
-- .tar archive
nohup gs_restore /data/backup/my_database_backup.tar -d my_database2 -p 8000 -U root -W ******** -F t -
v -n my_schema > /data/backup/my_schema_restore.log &

12.2.3 Table-Level Import and Export
Many tools are available for table-level import and export. You can select a proper
tool based on the following scenarios:

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

1. If you need to export the definition and data of a single table to the same
file, you are advised to use the plain-text archive of the gs_dump tool and the
-t parameter. You can use multiple -t parameters to back up multiple tables.
For details about how to use the gs_dump tool, see "Data Import and Export
Tools > gs_dump for Exporting Database Information" in Tool Reference.

NO TICE

If the exported table depends on objects that are not exported, an error
message may be displayed indicating that the dependent objects are missing
when the table is imported. Therefore, ensure that the dependent objects
have been created before importing the table.

You are advised to run the following command as a user with the SYSADMIN
permission to back up data. The source database is my_database, and the
target table is my_table in my_schema.
nohup gs_dump my_database -U root -W ******** -p 8000 -F p -f /data/backup/my_table_backup.sql -t
my_schema.my_table > /data/backup/my_table_backup.log &

Before restoration, create a target database with the same attributes as the
source database, and ensure that the target schema exists in the database
and no target table exists. Then, run the following command as a user with
SYSADMIN permissions to restore the database:
nohup gsql -d my_database2 -p 8000 -U root -W ******** -f /data/backup/my_table_backup.sql -a > /
data/backup/my_table_restore.log &

2. Only the definition of a single table needs to be exported and no data in the
table is required.

NO TICE

If the exported table depends on objects that are not exported, an error
message may be displayed indicating that the dependent objects are missing
when the table is imported. Therefore, ensure that the dependent objects
have been created before importing the table.

You are advised to use the plain-text archive of the gs_dump tool together
with the -s parameter. The command is as follows:
nohup gs_dump my_database -U root -W ******** -p 8000 -F p -f /data/backup/my_table_backup.sql -t
my_schema.my_table -s > /data/backup/my_table_backup.log &

Before restoration, create a target database with the same attributes as the
source database, and ensure that the target schema exists in the database
and no target table exists. Then, run the following command as a user with
SYSADMIN permissions to restore the database:
nohup gsql -d my_database2 -p 8000 -U root -W ******** -f /data/backup/my_table_backup.sql -a > /
data/backup/my_table_restore.log &

3. If you are used to using Oracle SQLLDR or need to save the data import logs
(such as import result, discarded data, and error data) to the client, you can
use gs_loader, which supports importing data files in csv, text, and fixed
formats. CSV is recommended for data import. For details about how to use
the gs_loader tool, see "Data Import and Export Tools > gs_loader for
Importing Data" in Tool Reference.

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

NO TICE

● The data files in the three formats must use "\n" or "\r\n" as the line
terminator, and the line terminators of the entire file must be the same
(either "\n" or "\r\n").

● In text format, gs_loader cannot identify escaped special characters (for
example, '\n', which is still '\n' after import and will not be escaped to
0x0A), compared with COPY. By default, the TEXT file exported using COPY
is escaped. If gs_loader is used to import the file, the escaped characters
cannot be converted back, causing inconsistency. Therefore, gs_loader can
import only the TEXT files that are exported by COPY and are not escaped
(using WITHOUT ESCAPING).

The typical application scenarios are as follows:
– The format of the upstream data file can be customized or determined as

CSV.
The CSV format is compatible with multiple platforms and is universal in
the industry. Many data sources support the export of data files in CSV
format. Unless the upstream data file format is not CSV, you need to
select the import method based on the actual file format (TEXT or
FIXED). In addition, CSV files are recommended. If the column data
contains special characters (such as commas and newline characters), the
data file can only be saved as CSV because the CSV format uses quote
characters to enclose the data containing special characters to prevent
the special characters in the field data from conflicting with separators
and line terminators.
When importing a standard CSV file, add the FIELDS CSV statement to
the control file. The following is an example:
-- Create a table.
gaussdb=# create table test_loader(id int, name name);

-- View the control file test.ctl.
LOAD DATA
TRUNCATE INTO TABLE test_loader
FIELDS CSV
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"'
(
 id integer external,
 name char
)

-- View the data file test.csv.
1,"aa
a"
2,"bb b"
3,"cc,c"
4,ddd

-- Import data.
gs_loader -p xxx host=xxx control=test.ctl data=test.csv -d testdb -W xxx

-- The import is successful. View the import result.
gaussdb=# select * from t1;
 id | name
----+-----------
 1 | aa +
 | a

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

 2 | bb b
 3 | cc,c
 4 | ddd
(4 rows)

NO TE

● If the column quote characters are not standard double quotation marks, you
can set it using the OPTIONALLY ENCLOSED BY clause.

● If the column separator is not a standard comma (,), you can set it using the
FIELDS TERMINATED BY clause.

– The upstream data file is in TEXT format.
In text format, gs_loader cannot identify escaped special characters (for
example, '\n', which is still '\n' after import and will not be escaped to
0x0A), compared with COPY. Therefore, data containing special characters
such as delimiters and line terminators is not supported in text format.
Otherwise, the structure will be disordered.
The following is an example of importing a valid data file in TEXT format:
-- Create a table.
gaussdb=# create table test_loader(id int, name name);

-- View the control file test.ctl.
LOAD DATA
TRUNCATE INTO TABLE test_loader
(
 id integer external,
 name char
)

-- View the data file test.dat.
1 aaa
2 bbb
3 ccc

-- Import data.
gs_loader -p xxx host=xxx control=test.ctl data=test.dat -d testdb -W xxx

-- The import is successful. View the import result.
gaussdb=# select * from t1;
 id | name
----+------
 1 | aaa
 2 | bbb
 3 | ccc
(3 rows)

NO TE

If the column separator is not a standard horizontal tab character, you can set it
using the FIELDS TERMINATED BY clause.

– The upstream data file is in FIXED format.
In FIXED format, each column has fixed length and is not separated by
delimiters. Therefore, column data does not conflict with delimiters.
However, if the column data contains newline characters, the data cannot
be processed.
An import example is as follows:
-- Create a table.
gaussdb=# create table test_loader(id int, name name);

-- View the control file test.ctl.
LOAD DATA
TRUNCATE INTO TABLE test_loader

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

(
 id POSITION(1:1) integer external,
 name POSITION(2:5) char
)

-- View the data file test.fixed.
1aaaa
2bb b
3cc,c

-- Import data.
gs_loader -p xxx host=xxx control=test.ctl data=test.fixed -d testdb -W xxx

-- The import is successful. View the import result.
gaussdb=# select * from t1;
 id | name
----+-----------
 1 | aaaa
 2 | bb b
 3 | cc,c
(3 rows)

GaussDB
Best Practices 12 Best Practices for Import and Export Using Tools

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

13 Best Practices for JDBC

13.1 Best Practices for JDBC (Distributed Instances)

13.1.1 Batch Insertion

13.1.1.1 Scenario Overview
This section explains how to use the JDBC driver for batch data insertion.

13.1.1.1.1 Usage Scenarios

Scenario Description
When you have a large data size to insert into a database, using batch insertion is
much more efficient than executing SQL statements multiple times, one at a time.

This section illustrates various operations using the JDBC driver, including
establishing database connections, utilizing transactions, executing batch insertion,
and obtaining column information in the result set.

Trigger Conditions
JDBC adds SQL statements to the batch execution list through its addBatch API.
The batch operation is then executed through the executeBatch API.

Impact on Services
● Lower network interaction costs

Combining multiple INSERT statements into one batch operation significantly
reduces the number of round trips between the client and the database. This
enhances the overall throughput and minimizes the impact of network
congestion on performance.

● Higher data processing efficiency
In single-record insertion, the database must parse the syntax and generate
an execution plan for each SQL statement. In contrast, batch insertion

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

requires parsing the syntax and generating the plan only once, eliminating
repetitive tasks and saving CPU cycles and memory allocation time.

● Reduced system resource usage and overhead
In single-record insertion, transaction commits or Xlog writes occur at least
once. In contrast, batch insertion allows multiple records to be inserted within
a single transaction, significantly reducing the frequency of transaction
commits, Xlog pressure, and transaction management overhead. In addition, it
decreases the total number of network packet processing, transaction
management, log write, and row format conversion tasks, which in turn
lowers the CPU loads and temporary memory usage of the database server.
This results in more resources being available for core query and computing
operations.

● Higher memory usage
When large data sizes are involved, constructing SQL statements for batch
insertion can significantly increase memory usage. This is particularly
noticeable when you construct SQL statements through string concatenation,
as it can lead to a sharp rise in memory consumption. Large-size batch
processing may exceed the maximum SQL length limit of the database or
driver, or trigger other parameter restrictions, potentially leading to errors or
performance issues.

Here is a detailed comparison between batch insertion and single-record insertion.

Mode Advantages Disadvantages

Single-
record
insertio
n

● Its code is simple,
straightforward, and easy to
implement.

● If any single record fails, it
can be accurately identified
and handled without
impacting other records.

● This mode is less demanding
in terms of database and
driver compatibility.

● Extensive network interactions
are needed. Each INSERT
operation requires connecting,
parsing, and committing,
leading to suboptimal
performance.

● Inserting a large number of
records is likely to cause a
bottleneck.

● Not using transactions may
result in failure to guarantee
the consistency of INSERT
operations.

Batch
insertio
n

● This mode greatly reduces the
number of network round
trips and SQL parsing
instances, leading to a
notable improvement in
insertion throughput.

● Multiple rows can be
committed within a single
transaction to guarantee
atomicity.

● Its code is complex, requiring
manual concatenation of
placeholders and parameters.

● If a single statement
encounters an error, all data
will be rolled back,
complicating the error recovery
process.

● The number of placeholders is
limited; therefore, it is essential
to carefully manage the batch
size.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

Applicable Versions
This applies only to GaussDB 503.1.0 and later versions.

13.1.1.1.2 Requirements and Objectives

Service Pain Points
When dealing with large data sizes, single-record insertion generates numerous
network requests and consumes substantial system resources. Moreover, the
database server has to repeatedly parse similar statements, leading to a decline in
service performance. Batch insertion is introduced as a solution to these issues.

Service Objectives
Utilize JDBC to implement batch insertion with transactions, obtain column data
in the result set, and output the result information.

13.1.1.2 Architecture Principles

Core Principles
Batch processing of the JDBC driver allows adding multiple SQL statements to the
batch execution list and collectively sending them to the database in one go. All
insert or update operations in the transaction are carried in a single U packet.
Consequently, completing the batch operation only necessitates once instance of
network connection establishment and data exchange.

Solution Advantages
Sending all batch updates at once in a single U packet significantly decreases
network communication overhead and enhances execution efficiency when
compared to sending PBE packets multiple times.

13.1.1.3 Preparations
● JDK version: 1.7 or later.
● Database environment: GaussDB 503.1.0 or later.
● JDBC driver environment:

Refer to "Application Development Guide > Development Based on JDBC >
Development Procedure > Obtaining the JAR Package of the Driver and
Configuring the JDK Environment" in Developer Guide.

● Data: Create a test table and insert test data, as follows:
gaussdb=# CREATE TABLE TEST_BATCH(
V1 TEXT,
V2 TEXT)
CREATE TABLE

13.1.1.4 Procedure

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

13.1.1.4.1 Process Overview

The process of batch data insertion using JDBC includes preparing the
environment, establishing a database connection, executing batch insertion
through APIs, querying the execution results, and closing the connection.

Figure 13-1 shows the overall process.

Figure 13-1 Process of batch data insertion using JDBC

13.1.1.4.2 Detailed Procedure

Step 1 Establish a database connection.

Here are suggestions for commonly used parameters in the connection string. For
more detailed settings, refer to "Application Development Guide > Development
Based on JDBC > Development Procedure > Connecting to a Database >
Connection Parameter Reference" in Developer Guide.

● connectTimeout: timeout interval (in seconds) for connecting to the server's
OS. If the time taken for JDBC to establish a TCP connection with the
database exceeds this interval, the connection will be closed. It is advisable to
set this parameter based on network conditions. The default value is 0,
whereas the recommended value is 2.

● socketTimeout: timeout interval (in seconds) for socket reads. If the time
taken to read data streams from the server exceeds this interval, the

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

connection will be closed. Not setting this parameter may lead to prolonged
waiting times for the client in the event of abnormal database processes. It is
advisable to set this parameter based only the acceptable SQL execution time
for services. The default value is 0, with no specific recommended value
provided.

● connectionExtraInfo: specifies whether the driver reports its deployment
path, process owner, and URL connection configurations to the database. The
default value is false, whereas the recommended value is true.

● logger: specifies a third-party log framework as needed by your application. It
is advisable to choose one that incorporates slf4j APIs. These APIs can record
JDBC logs to facilitate exception locating. The recommended value is
Slf4JLogger when a third-party log framework is needed.

● autoBalance: specifies whether to enable load balancing for establishing new
connections. The default value is false, but it is advisable to set it to true to
utilize the polling load balancing policy.

● batchMode: specifies whether the connection operates in batch mode. When
batchMode is set to on, batch insertion and modification are allowed, with
the data type of each column determined by the type specified in the first
data record.
String url = "jdbc:gaussdb://$ip:$port/database?
connectTimeout=xx&socketTimeout=xx&connectionExtraInfo=true&logger=Slf4JLogger&autoBalance=t
rue&batchMode=on"
Connection conn = DriverManager.getConnection("url",userName,password);

Step 2 Prepare SQL statements for batch execution.

Use preparedStatement to prepare statements. For example, to insert data into a
test table, prepare the statements provided below. You can substitute these
statements with the necessary ones for your services.
String sql = "INSERT INTO TEST_BATCH(v1,v2) VALUES(?,?)";
PreparedStatement preparedStatement = conn.prepareStatement(sql);

Step 3 Bind parameters in batches.

Use preparedStatement to bind parameters. Then call the addBatch API to add the
SQL statements to the batch execution list.
for(int i=0;i<5;i++){
 preparedStatement.setString(1,"value1_"+i);
 preparedStatement.setString(2,"value2_"+i);
 preparedStatement.addBatch();
}

Step 4 Execute the batch operation.

By calling the executeBatch API, preparedStatement executes the batch operation.
Upon completion, it returns an array of int results, from which you can determine
the number of data records affected by the batch operation.
Int[] results = preparedStatement.executeBatch();
System.out.println(Arrays.toString(results));

Step 5 Release resources and close the database connection.

Use try-with-resources to automatically close any open file resources.

try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(sql))

Step 6 Handle exceptions if any.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

If your program encounters any SQL exception during runtime, utilize the try-
catch module to handle them and add the necessary exception handling logic for
the actual services.
try {
// Service code
} catch (SQLException e) {
// Exception handling logic
}

----End

13.1.1.4.3 Complete Example
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.Arrays;
import java.sql.DriverManager;
public class TestBatch {
 public static Connection getConnection() throws ClassNotFoundException, SQLException{
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Specify the source URL of the database. (Adjust $ip, $port, and database based on the actual
services.)
 String sourceURL = "jdbc:gaussdb://$ip:$port/database";
 // Obtain the username and password from the environment variables.
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Class.forName(driver);
 return DriverManager.getConnection(sourceURL, userName, password);
 }
 public static void main(String[] args) {
 String sql = "insert into test_batch(v1,v2) values(?,?)";
 try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(sql)) {
 conn.setAutoCommit(false);
 for (int i = 0; i < 5; i++) {
 preparedStatement.setInt(1, 1);
 preparedStatement.setString(2, "value2_" + i);
 preparedStatement.addBatch();
 }
 int[] results = preparedStatement.executeBatch();
 conn.commit();
 System.out.println(Arrays.toString(results));
 } catch (ClassNotFoundException | SQLException e) {
 throw new RuntimeException(e);
 }
 }
}

Result Verification
The execution results in Complete Example show the number of data records
affected by the batch operation.

When you use preparedStatement for batch insertion, it returns an array of INT
results, with results[0] indicating the total number of data records affected by the
batch operation.

[5, 0, 0, 0, 0]

Rollback Method
To roll back operations within a specific transaction, call the Rollback API of the
transaction object.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

13.1.1.5 Typical Issues
1. Symptom: When preparedStatement binds parameters multiple times, the

following error occurs during batch insertion:
java.lang.RuntimeException: java.sql.BatchUpdateException: Batch entry 0 - 5 insert into
test_batch1(v1,v2) values(('1'),('value2_0')) was aborted: [*.*.*.*:*/*.*.*.*:*] ERROR: invalid input syntax
for integer: "ss" Call getNextException to see other errors in the batch.

Cause: The data type of a bound parameter differs from the initially bound
parameter.
Solution: To ensure successful batch insertion using preparedStatement,
maintain consistency in the data types of bound parameters.

2. Symptom: The array of results returned by preparedStatement after batch
insertion does not match the results returned by Oracle Database.
Cause: When batchMode is set to on, JDBC utilizes GaussDB's distinct packet
processing logic, which differs from Oracle Database's logic but offers faster
speed. Setting batchMode to off in the connection string will ensure
consistency with Oracle Database's results.
When batchMode is set to on, Complete Example will produce results that
differ from those generated by Oracle Database's corresponding API.
[5, 0, 0, 0, 0]

Oracle Database's results:
[1, 1, 1, 1, 1]

When batchMode is set to off, the results become consistent with Oracle
Database's corresponding API.
[1, 1, 1, 1, 1]

13.1.2 Streaming Query

13.1.2.1 Scenario Overview
This section explains how to execute a streaming query with GaussDB JDBC.

13.1.2.1.1 Usage Scenarios

Scenario Description
GaussDB's streaming query mechanism processes results one by one rather than
loading them all at once. It is designed for big data query scenarios with limited
memory resources, such as big data export, offline analysis tasks, and
pagination/on-demand loading. This mechanism helps prevent excessive memory
consumption and potential memory overflow, ultimately enhancing processing
speed.

Trigger Conditions
The JDBC connection parameter enableStreamingQuery is set to true. In
addition, fetchSize is set to Integer.MIN_VALUE before the executeQuery method
of Statement and PreparedStatement is called.

Impact on Services
Streaming query offers the following advantages:

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

● Low memory consumption: Streaming query significantly reduces the memory
usage of applications.

● Fast response: Clients can start processing immediately upon receiving the
first batch of data, without having to wait for the entire data set to be ready.

However, there are also associated risks:

● Prolonged connection occupation: Streaming query requires the database
connection to remain open throughout the transmission of data streams. This
prolonged connection occupation may result in connection pool depletion or
other resource scheduling issues.

● Extended transaction duration: Transactions involving streaming queries may
hold locks or MVCC snapshots for an extended period, increasing the
probability of deadlocks or impacting write performance.

Applicable Versions
This applies only to GaussDB 505.1.0 and later versions.

13.1.2.1.2 Requirements and Objectives

Service Pain Points
In a standard query, JDBC will receive a significant amount of data when querying
massive data. Reading all this data in full can potentially cause memory overflow.

Service Objectives
Execute streaming queries with JDBC to prevent memory overflow.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

13.1.2.2 Architecture Principles

Core Principles

Figure 13-2 Principles of streaming query

● When a streaming query is executed, the server keeps sending data to the
client's socket buffer until the buffer is full. Upon the arrival of the first data
record in the buffer, the first D packet is returned. JDBC then begins loading
and processing data from the buffer row by row.

● The result set is designed to store only one row of data. The next data record
is read from the buffer and stored into the result set only when the "next"
method is called. This process repeats until all records have been read.

Solution Advantages

Streaming query is recommended for big data query scenarios with limited
memory resources. If streaming query does not meet your service requirements,
consider the following alternative methods:

● Standard query: All data is read in one go.
Advantages: This method allows traversal of the entire result set in both
forward and backward directions. In addition, data can be reprocessed after
being consumed.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

Disadvantages: Processing is slow, and there is a risk of memory overflow with
large result sets.

● Batch query: Multiple rows are read at a time. For details, see Batch Query.
Advantages: Data is returned in the specified size, which helps prevent
memory overflow.
Disadvantages: Processing is slow, and multiple query requests need to be
sent to the server.

13.1.2.3 Preparations
● Environment: Ensure that GaussDB is running properly, obtain the JDBC driver,

and configure the environment. For details, see "Application Development
Guide > Development Based on JDBC > Development Procedure > Obtaining
the JAR Package of the Driver and Configuring the JDK Environment" in
Developer Guide.

● Data: Create a test table and insert test data, as follows:
gaussdb=# CREATE TABLE tab_test(id int,context varchar(1000),PRIMARY KEY(id));
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "tab_test_pkey" for table "tab_test"
CREATE TABLE
gaussdb=# INSERT INTO tab_test SELECT generate_series(1,1000000),repeat('GaussDB Test', 50);
INSERT 0 1000000

13.1.2.4 Procedure

13.1.2.4.1 Process Overview

The process of executing a streaming query with GaussDB JDBC includes preparing
the environment, establishing a database connection, executing a streaming query,
processing the query results, and releasing resources.

Figure 13-3 shows the overall process.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

Figure 13-3 Process of executing a streaming query with GaussDB JDBC

13.1.2.4.2 Detailed Procedure

Step 1 Database connection: Set enableStreamingQuery to true, in addition to setting
other connection parameters. For details, see "Application Development Guide >
Development Based on JDBC > Development Procedure > Connecting to a
Database" in Developer Guide.

Step 2 Streaming query: Set fetchSize to Integer.MIN_VALUE before calling the
executeQuery method of Statement and PreparedStatement.

Step 3 Result processing: Process the query results based on the actual services.

Step 4 Resource release: Upon completion, release the result set, statement, connection,
and other resources. It is advisable to use the try-with-resources syntax or the
close method in the try-finally block to release resources.

----End

13.1.2.4.3 Complete Example
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

public class StreamQueryTest {
 // Establish a database connection.
 public static Connection getConnection() throws ClassNotFoundException, SQLException {
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Specify the source URL of the database. (Adjust $ip, $port, and database as needed.) Set the
connection parameter enableStreamingQuery to true.
 String sourceURL = "jdbc:gaussdb://$ip:$port/database?enableStreamingQuery=true";

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

 // Obtain the username and password from the environment variables.
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Class.forName(driver);
 return DriverManager.getConnection(sourceURL, userName, password);
 }

 public static void main(String[] args) {
 String selectSql = "select * from tab_test order by id asc limit ?";
 // Use the try-with-resources syntax to release resources.
 try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(selectSql,
 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)) {
 preparedStatement.setInt(1, 100000);
 // Set fetchSize to Integer.MIN_VALUE and call executeQuery to query data.
 preparedStatement.setFetchSize(Integer.MIN_VALUE);
 int totalCount = 0;
 try (ResultSet resultSet = preparedStatement.executeQuery()) {
 while (resultSet.next()) {
 // Process the query results. The sample code below prints only a portion of the query results
along with the total number of data records.
 if (totalCount++ < 5) {
 System.out.println("row:" + resultSet.getRow() + ",id :" + resultSet.getInt(1));
 }
 }
 System.out.println("totalCount:" + totalCount);
 }
 } catch (ClassNotFoundException | SQLException e) {
 e.printStackTrace();
 }
 }
}

Result Verification
1. Place gaussdbjdbc.jar and StreamQueryTest.java from Complete Example

into the same directory.
2. Compile and execute the sample code. During execution, set the maximum

heap memory of JVM to 16 MB.
javac -classpath ".:gaussdbjdbc.jar" StreamQueryTest.java
java -Xmx16M -classpath ".:gaussdbjdbc.jar" StreamQueryTest

3. Run the example code. It completes successfully without encountering
memory overflow. During the streaming query, the result set stores only one
data record at a time. Therefore, the return value of resultSet.getRow() is 1.
The execution result of the code is like this:
row:1,id :1
row:1,id :2
row:1,id :3
row:1,id :4
row:1,id :5
totalCount:100000

Rollback Method
● To disable streaming query for a single statement, delete

setFetchSize(Integer.MIN_VALUE) from Statement and PreparedStatement.
● To disable streaming query for the current connection, set the connection

parameter enableStreamingQuery to false.

13.1.2.5 Typical Issues
1. Symptom: The following exception occurs when fetchSize is set to

Integer.MIN_VALUE in Statement and PreparedStatement:

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

org.postgresql.util.PSQLException: Fetch size must be a value greater to or equal to 0.
 at org.postgresql.jdbc.PgStatement.setFetchSize(PgStatement.java:1623)

Cause: The JDBC connection parameter enableStreamingQuery is not set to
true.

2. Symptom: The following exception occurs when the execute, executeQuery,
and executeUpdate methods of Statement and PreparedStatement are called
to query, insert, and update data:
org.postgresql.util.PSQLException: Streaming query statement is still active. No statements may be
issued when any streaming result sets are open and in use on a given connection. Ensure that you
have called .close() on any active streaming statement sets before attempting more queries.
 at org.postgresql.jdbc.PgStatement.execute(PgStatement.java:492)
 at org.postgresql.jdbc.PgPreparedStatement.executeWithFlags(PgPreparedStatement.java:210)
 at org.postgresql.jdbc.PgPreparedStatement.executeQuery(PgPreparedStatement.java:147)

Cause: The result set from the previous streaming query has not been
completely read or has not been closed.

3. Sequential access only: Streaming query utilizes the FORWARD_ONLY result
set, which means that data can only be accessed row by row in the forward
direction. It does not support randomly locating or rolling back to previous
records. If your services involve frequent traversal or require random data
access, do not use streaming query.

4. Configuration and compatibility requirements: Streaming query requires
special configurations (Trigger Conditions) in the JDBC driver or ORM
framework. Without proper configurations, the desired outcome cannot be
achieved.

13.1.3 User-defined Type

13.1.3.1 Scenario Overview
This section explains how JDBC can use user-defined data types.

13.1.3.1.1 Usage Scenarios

Scenario Description
In real-world production, users' service systems often involve complex data
analysis and operations. Traditional data types may not fully or efficiently
represent or process their data scenarios. To address this, JDBC provides user-
defined data types, Struct and Array, enabling the creation of new data types from
existing ones. These user-defined types offer users a more convenient way to add,
delete, and modify data.

Trigger Conditions
JDBC operations involve user-defined data types.

Impact on Services
● Improved data consistency and integrity

User-defined types allow users to declare data types and check constraints for
columns during the type definition phase, ensuring that all columns
referencing these types automatically inherit the same verification logic.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

● Improved data reusability and encapsulation
User-defined types encapsulate frequently used data structures for reuse
across multiple tables or functions. This minimizes redundant definitions and
enhances maintenance efficiency.

● Additional performance overhead
Using user-defined types will take up additional storage space and necessitate
object assembly and disassembly during access, potentially leading to
increased CPU and I/O usage.

Applicable Versions
This applies only to GaussDB 503.0 and later versions.

13.1.3.1.2 Requirements and Objectives

Service Pain Points
When dealing with complex data structures in services, basic data types may not
accurately express complex service concepts, leading to potential code redundancy
and impacting development efficiency.

Service Objectives
Utilize user-defined types in JDBC's stored procedures.

13.1.3.2 Architecture Principles

Core Principles
The database system creates metadata records for each user-defined type,
including the type name, structure, and constraints. When working with user-
defined types, JDBC converts them based on their structures as well as the user-
defined type objects in the programming language.

Solution Advantages
● Support for complex data modeling

The ability to process complex data structures, such as nested objects and
arrays, improves the expression capability of data models.

● Improved data quality and development efficiency
When querying complex data structures, you can utilize user-defined types for
filtering. Reusing user-defined types helps enhance development efficiency.

13.1.3.3 Preparations
● JDK version: 1.7 or later.
● Database environment: GaussDB 503.0 or later.
● JDBC driver environment:

Refer to "Application Development Guide > Development Based on JDBC >
Development Procedure > Obtaining the JAR Package of the Driver and
Configuring the JDK Environment" in Developer Guide.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

● Data: Create a user-defined type and stored procedure, as follows:
// Create a user-defined type, PUBLIC.COMPFOO, that includes two records.
gaussdb=# CREATE TYPE PUBLIC.COMPFOO AS(
 ID INTEGER,
 NAME TEXT
);
CREATE TYPE
// Create a user-defined table type, PUBLIC.COMPFOO_TABLE.
gaussdb=# CREATE TYPE PUBLIC.COMPFOO_TABLE IS TABLE OF PUBLIC.COMPFOO;
CREATE TYEP
// Create the stored procedure public.test_proc with two input parameters of a user-defined type and
two output parameters of a user-defined type.
gaussdb=# CREATE OR REPLACE PROCEDURE public.test_proc(
 IN INPUT_COMPFOO PUBLIC.COMPFOO,
 IN INPUT_COMPFOO_TABLE PUBLIC.COMPFOO_TABLE,
 OUT OUTPUT_COMPFOO PUBLIC.COMPFOO,
 OUT OUTPUT_COMPFOO_TABLE PUBLIC.COMPFOO_TABLE
)
AS
BEGIN
 OUTPUT_COMPFOO := INPUT_COMPFOO;
 OUTPUT_COMPFOO_TABLE := INPUT_COMPFOO_TABLE;
END;
/
CREATE PROCEDURE

13.1.3.4 Procedure

13.1.3.4.1 Process Overview

Figure 13-4 shows the process for JDBC to insert and query data of user-defined
types using a stored procedure.

This process includes preparing the environment, establishing a database
connection, executing SQL statements of user-defined types, viewing the results,
and closing the connection.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

Figure 13-4 Process of using stored procedures in JDBC to handle user-defined
types

13.1.3.4.2 Detailed Procedure

Step 1 Establish a database connection.

Here are suggestions for commonly used parameters in the connection string. For
more detailed settings, refer to "Application Development Guide > Development
Based on JDBC > Development Procedure > Connecting to a Database" in
Developer Guide.

● connectTimeout: timeout interval (in seconds) for connecting to the server's
OS. If the time taken for JDBC to establish a TCP connection with the
database exceeds this interval, the connection will be closed. It is advisable to
set this parameter based on network conditions. The default value is 0,
whereas the recommended value is 2.

● socketTimeout: timeout interval (in seconds) for socket reads. If the time
taken to read data streams from the server exceeds this interval, the
connection will be closed. Not setting this parameter may lead to prolonged
waiting times for the client in the event of abnormal database processes. It is
advisable to set this parameter based only the acceptable SQL execution time
for services. The default value is 0, with no specific recommended value
provided.

● connectionExtraInfo: specifies whether the driver reports its deployment
path, process owner, and URL connection configurations to the database. The
default value is false, whereas the recommended value is true.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

● logger: specifies a third-party log framework as needed by your application. It
is advisable to choose one that incorporates slf4j APIs. These APIs can record
JDBC logs to facilitate exception locating. The recommended value is
Slf4JLogger when a third-party log framework is needed.

● autoBalance: specifies whether to enable load balancing for establishing new
connections. The default value is false, but it is advisable to set it to true to
utilize the polling load balancing policy.
String url = "jdbc:gaussdb://$ip:$port/database?
connectTimeout=xx&socketTimeout=xx&connectionExtraInfo=true&logger=Slf4JLogger&autoBalance=t
rue"
Connection conn = DriverManager.getConnection("url",userName,password);

Step 2 Set GUC parameters.

Execute the SQL statement SET
behavior_compat_options='proc_outparam_override'; to enable
proc_outparam_override, that is, overloading of stored procedures.
Statement statement = conn.createStatement();
statement.execute("SET behavior_compat_options='proc_outparam_override'");
statement.close();

Step 3 Prepare a stored procedure.

Use the Call syntax to declare the SQL statement for calling the stored procedure
TEST_PROC. Then use prepareCall to prepare the statement.
CallableStatement cs = conn.prepareCall("{CALL PUBLIC.TEST_PROC(?,?,?,?)}");

Step 4 Bind input parameters.

Use PGobject to assemble data of the user-defined type. Then use prepareCall to
bind input parameters.

PGobject pgObject = new PGobject();
pgObject.setType("public.compfoo"); // Set the name of a composite type.
pgObject.setValue("(1,demo)"); // Bind values of the composite type, formatted as "(value1,value2)".
cs.setObject(1, pgObject);
pgObject = new PGobject();
pgObject.setType("public.compfoo_table"); // Set the name of a table type.
pgObject.setValue("{\"(10,demo10)\",\"(11,demo111)\"}"); // Bind values of the table type, formatted as
"{\"(value1,value2)\",\"(value1,value2)\",...}".
cs.setObject(2, pgObject);

Step 5 Register the output type.

Use prepareCall to register the output type of the stored procedure. For the
composite type, register Types.STRUCT. For the table type, register Types.ARRAY.

// Register output parameters for the composite type.
cs.registerOutParameter(3, Types.STRUCT, "public.compfoo");
// Register output parameters for the table type, in the "schema.typename" format.
cs.registerOutParameter(4, Types.ARRAY, "public.compfoo_table");

Step 6 Execute SQL statements and view the results.

Call the stored procedure and view the results corresponding to the output
parameters.

cs.execute();
// Obtain output parameters.
// The return structure is of the user-defined type.
PGobject result = (PGobject) cs.getObject(3); // Obtain output parameters.
result.getValue(); // Obtain character string values of the composite type.
String[] arrayValue = result.getArrayValue(); // Obtain array values of the composite type and sort them
based on columns of the composite type.
result.getStruct(); // Obtain the names of subtypes in the composite type and sort them based on the order

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

in which they were created.
result.getAttributes(); // Return objects of the user-defined type in each column. For the array and table
types, PgArray is returned. For the user-defined type, PGobject is encapsulated. Other types of data are
stored as character strings.
for (String s : arrayValue) {
 System.out.println(s);
}
PgArray pgArray = (PgArray) cs.getObject(4);
ResultSet rs = pgArray.getResultSet();
Object[] array = (Object[]) pgArray.getArray();
for (Object element : array) {
 System.out.println(element);
}

Step 7 Release resources and close the database connection.
cs.close();
conn.close();

Step 8 (Optional) Handle exceptions if any.

If your program encounters any SQL exception during runtime, utilize the try-
catch module to handle them and add the necessary exception handling logic for
the actual services.
try {
 // Service code
} catch (SQLException e) {
 // Exception handling logic
}

----End

13.1.3.4.3 Complete Example
import com.huawei.gaussdb.jdbc.jdbc.PgArray;
import com.huawei.gaussdb.jdbc.util.PGobject;
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.Types;
import java.sql.DriverManager;
public class TypesTest {
 public static Connection getConnection() throws ClassNotFoundException, SQLException {
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Specify the source URL of the database. (Adjust $ip, $port, and database based on the actual
services.)
 String sourceURL = "jdbc:gaussdb://$ip:$port/database";
 // Obtain the username and password from the environment variables.
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Class.forName(driver);
 return DriverManager.getConnection(sourceURL, userName, password);
 }
 public static void main(String[] args) {
 try {
 Connection conn = getConnection();
 Statement statement = conn.createStatement();
 statement.execute("set behavior_compat_options='proc_outparam_override'");
 statement.close();
 CallableStatement cs = conn.prepareCall("{CALL PUBLIC.TEST_PROC(?,?,?,?)}");
 // Set parameters.
 PGobject pgObject = new PGobject();
 pgObject.setType("public.compfoo"); // Set the name of a composite type.
 pgObject.setValue("(1,demo)"); // Bind values of the composite type.
 cs.setObject(1, pgObject);
 pgObject = new PGobject();

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

 pgObject.setType("public.compfoo_table"); // Set the name of a table type.
 pgObject.setValue("{\"(10,demo10)\",\"(11,demo111)\"}"); // Bind values of the table type, formatted as
"{\"(value1,value2)\",\"(value1,value2)\",...}".
 cs.setObject(2, pgObject);
 // Register output parameters.
 // Register output parameters for the composite type.
 cs.registerOutParameter(3, Types.STRUCT, "public.compfoo");
 // Register output parameters for the table type.
 cs.registerOutParameter(4, Types.ARRAY, "public.compfoo_table");
 cs.execute();
 // Obtain output parameters.
 // The return structure is of the user-defined type.
 PGobject result = (PGobject) cs.getObject(3); // Obtain output parameters.
 result.getValue(); // Obtain character string values of the composite type.
 String[] arrayValue = result.getArrayValue(); // Obtain array values of the composite type and sort them
based on columns of the composite type.
 result.getStruct(); // Obtain the names of subtypes in the composite type and sort them based on the
order in which they were created.
 result.getAttributes(); // Return objects of the user-defined type in each column. For the array and table
types, PgArray is returned. For the user-defined type, PGobject is encapsulated. Other types of data are
stored as character strings.
 for (String s : arrayValue) {
 System.out.println(s);
 }
 PgArray pgArray = (PgArray) cs.getObject(4);
 ResultSet rs = pgArray.getResultSet();
 Object[] array = (Object[]) pgArray.getArray();
 for (Object element : array) {
 System.out.println(element);
 }
 cs.close();
 conn.close();
 } catch (ClassNotFoundException | SQLException e) {
 throw new RuntimeException(e);
 }
 }
}

Result Verification

Data of user-defined types is correctly obtained in Complete Example. Below are
the execution results for Complete Example:

1
demo
(10,demo10)
(11,demo111)

Rollback Method

N/A

13.1.3.5 Typical Issues
1. Symptom: Users encounter the following exception when calling a stored

procedure, even though they have bound input parameters of a user-defined
type and registered output parameters for the procedure:
ERROR: Function public.test_proc(compfoo, public.compfoo_table, compfoo, public.compfoo_table)
does not exist.
 ???No function matches the given name and argument types. You might need to add explicit type
casts.

Cause: The user-defined type bound to the input and output parameters does
not match the one set in the stored procedure.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

Solution: Keep the user-defined type bound to the input and output
parameters consistent with the one set in the stored procedure.

2. Symptom: Users encounter the following exception when calling a stored
procedure, even though they have bound input parameters of a user-defined
type and registered output parameters for the procedure:
java.lang.RuntimeException: org.postgresql.util.PSQLException: ?? CallableStatement ?????????????
java.sql.Types=1111 ?? 1?????????? java.sql.Types=2002?

Cause: The enableGaussArrayAndStruct parameter is set to true when
pgArray compatibility is in effect. However, it is impossible to maintain
compatibility with both pgArray and GaussArray simultaneously.
Solution: When pgArray compatibility is in effect, check for and delete
enableGaussArrayAndStruct=true.

13.1.4 Batch Query

13.1.4.1 Scenario Overview
This section explains how to use JDBC for batch query.

13.1.4.1.1 Usage Scenarios

Scenario Description
Returning a large number of query results to JDBC at once may lead to JVM
memory overflow. To decrease JVM memory usage, consider using batch queries,
where you can specify the number of data records to be returned to JDBC each
time.

Trigger Conditions
Java applications connect to the database through JDBC and query data in large
batches.

Impact on Services
Developers must start and stop transactions correctly prior to database operations.
In batch query scenarios, data is processed in smaller batches to effectively reduce
JVM memory usage. This approach can prevent the problem of Java application
memory overflow caused by clients receiving all data at once in the traditional full
data transmission mode. However, it is worth noting that traversing the result set
increases the number of network interactions between the database and the client
(especially when each record needs to be transmitted independently). This can
lead to additional performance loss, necessitating a thoughtful balance during
system design.

13.1.4.1.2 Requirements and Objectives

Service Pain Points
In data-intensive service scenarios, traditional queries face the following
challenges:

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

1. Large result sets can deplete application memory, resulting in JVM memory
overflow and query failures.

2. Obtaining a large amount of data at once may saturate the network
bandwidth, impacting data transmission efficiency.

3. The continuous occupation of database connections and related resources
impedes overall throughput.

Service Objectives
Execute batch queries to prevent memory overflow.

13.1.4.2 Architecture Principles

Core Principles
During batch queries, JDBC leverages the cursor traversal capability of GaussDB
Kernel to obtain a specific number of rows of data from the database server. This
number is predetermined. The database server then returns result data to JDBC in
batches based on the specified number until all query results are returned.

Solution Advantages and Disadvantages
1. During batch queries, the database returns a specific number of rows of data

each time. This helps prevent memory overflow in Java applications when
dealing with large result sets.

2. Batch queries involve multiple interactions with the database network, which
can lead to a certain level of performance loss.

13.1.4.3 Preparations
● JDK version: 1.7 or later.
● Database environment: GaussDB 503.0 or later.
● JDBC driver environment:

Refer to "Application Development Guide > Development Based on JDBC >
Development Procedure > Obtaining the JAR Package of the Driver and
Configuring the JDK Environment" in Developer Guide.
Data: Create a test table and insert test data, as follows:
gaussdb=# CREATE TABLE tab_test(id int,context varchar(1000),PRIMARY KEY(id));
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "tab_test_pkey" for table "tab_test"
CREATE TABLE
gaussdb=# INSERT INTO tab_test SELECT generate_series(1,5),repeat('GaussDB Test', 50);
INSERT 0 5

13.1.4.4 Procedure

13.1.4.4.1 Process Overview

Figure 13-5 shows the process of executing a batch query with JDBC.

This process includes preparing the environment, establishing a database
connection, starting a transaction, executing SELECT statements, traversing the
result set, and closing the connection.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

Figure 13-5 Process of executing a batch query with JDBC

13.1.4.4.2 Detailed Procedure

Step 1 Create a Connection object to connect to the database.

Here are suggestions for commonly used parameters in the connection string. For
more detailed settings, refer to "Application Development Guide > Development
Based on JDBC > Development Procedure > Connecting to a Database >
Connection Parameter Reference" in Developer Guide.

● connectTimeout: timeout interval (in seconds) for connecting to the server's
OS. If the time taken for JDBC to establish a TCP connection with the
database exceeds this interval, the connection will be closed. It is advisable to

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

set this parameter based on network conditions. The default value is 0,
whereas the recommended value is 2.

● socketTimeout: timeout interval (in seconds) for socket reads. If the time
taken to read data streams from the server exceeds this interval, the
connection will be closed. Not setting this parameter may lead to prolonged
waiting times for the client in the event of abnormal database processes. It is
advisable to set this parameter based only the acceptable SQL execution time
for services. The default value is 0, with no specific recommended value
provided.

● connectionExtraInfo: specifies whether the driver reports its deployment
path, process owner, and URL connection configurations to the database. The
default value is false, whereas the recommended value is true.

● logger: specifies a third-party log framework as needed by your application. It
is advisable to choose one that incorporates slf4j APIs. These APIs can record
JDBC logs to facilitate exception locating. The recommended value is
Slf4JLogger when a third-party log framework is needed.

● autoBalance: specifies whether to enable load balancing for establishing new
connections. The default value is false, but it is advisable to set it to true to
utilize the polling load balancing policy.
String url = "jdbc:gaussdb://$ip:$port/database?
connectTimeout=xx&socketTimeout=xx&connectionExtraInfo=true&logger=Slf4JLogger&autoBalance=t
rue"
Connection conn = DriverManager.getConnection("url",userName,password);

Step 2 Start a transaction.

Set AutoCommit to false so that JDBC will deliver "BEGIN" to proactively start a
transaction prior to executing a query from the database.
conn.setAutoCommit(false);

Step 3 Create PreparedStatement objects and specify the number of rows to be returned
by the database each time.

Use the setFetchSize method to specify this number at the statement level. If
fetchsize has been set in the connection string, it will be overridden by the
setFetchSize method.
String selectSql = "select * from tab_test";
PreparedStatement preparedStatement = conn.prepareStatement(selectSql);
preparedStatement.setFetchSize(3);

Step 4 Execute a query to obtain a result set.
ResultSet resultSet = preparedStatement.executeQuery();

Step 5 Process the result set and check data in the first column of the table.
while (resultSet.next()) {
 int id = resultSet.getInt(1);
 System.out.println("row:" + resultSet.getRow() + ",id :" + id);
}

Step 6 Obtain metadata in the result set, including the column count and types.

Obtain metadata from the resultSet returned by executeQuery.
ResultSetMetaData metaData = resultSet.getMetaData();
System.out.println("Result column: " + metaData.getColumnCount());
System.out.println("Type ID: " + metaData.getColumnType(1));
System.out.println("Type name: " + metaData.getColumnTypeName(1));
System.out.println("Column name: " + metaData.getColumnName(1));

Step 7 Close resources.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

Use try-with-resources to automatically close any open file resources.
try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(selectSql))

Step 8 (Optional) Handle exceptions if any.

If your program encounters any exception during runtime, utilize the try-catch
module to handle them and add the necessary exception handling logic for your
services.
try {
// Service code
} catch (Exception e) {
// Exception handling logic
}

----End

13.1.4.4.3 Complete Example
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;

public class BatchQuery {
 public static Connection getConnection() throws ClassNotFoundException, SQLException {
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Specify the source URL of the database. (Adjust $ip, $port, and database based on the actual
services.)
 String sourceURL = "jdbc:gaussdb://$ip:$port/database";
 // Obtain the username and password from the environment variables.
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Class.forName(driver);
 return DriverManager.getConnection(sourceURL, userName, password);
 }

 public static void main(String[] args) {
 String selectSql = "select * from tab_test";
 try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(selectSql)) {
 conn.setAutoCommit(false);
 preparedStatement.setFetchSize(3);
 try (ResultSet resultSet = preparedStatement.executeQuery()) {
 while (resultSet.next()) {
 // Print only a portion of the query results.
 int id = resultSet.getInt(1);
 System.out.println("row:" + resultSet.getRow() + ",id :" + id);
 }
 ResultSetMetaData metaData = resultSet.getMetaData();
 System.out.println("Result column: " + metaData.getColumnCount());
 System.out.println("Type ID: " + metaData.getColumnType(1));
 System.out.println("Type name: " + metaData.getColumnTypeName(1));
 System.out.println("Column name: " + metaData.getColumnName(1));
 }
 conn.commit();
 } catch (ClassNotFoundException | Exception e) {
 throw new RuntimeException(e);
 }
 }
}

Result Verification
Below are the execution results for Complete Example:

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

row:1,id :1
row:2,id :2
row:3,id :3
row:4,id :4
row:5,id :5
Result column: 2
Type ID: 4
Type name: int4
Column name: id

Rollback Method

To disable batch query, remove the fetchsize parameter from the connection
string and reset setFetchSize to the default value of 0.

13.1.4.5 Typical Issues
1. Symptom: Customers using the Spring framework have set the fetchsize

parameter in the connection string, but OutOfMemoryError is reported during
a batch query.
Cause: Transactions are not started prior to the batch query. Generally,
connection transactions are managed by the Spring framework. However, if
transactions are not started, the database will return all data to JDBC in one
go.
Solution: Check the service code and be sure to start transactions before
executing batch queries.

2. Symptom: The fetchsize parameter has been set in the connection string, but
OutOfMemoryError is reported during a batch query.
Cause: Other call points in the application code consume substantial memory.
In this situation, JDBC may encounter OutOfMemoryError when it attempts to
read only a small amount of data.
Solution: Use JDK to check memory usage and determine whether the
memory overflow is caused by table data.

3. Symptom: The table query speed is fast with gsql but slow with JDBC.
Cause: The fetchsize parameter has been set to a small value in the
connection string. This results in a high number of packet interactions
between Kernel and the result set, leading to performance degradation.
Solution: Before querying data, determine whether to start transactions based
on the table size or call the prepareStatement.setFetchSize() method to adjust
the number of rows to be returned by the database each time. If this number
is set to 0, all query results will be returned in one go.

13.2 Best Practices for JDBC (Centralized Instances)

13.2.1 Batch Insertion

13.2.1.1 Scenario Overview

This section explains how to use JDBC for batch data insertion.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

13.2.1.1.1 Usage Scenarios

Scenario Description

When you have a large data size to insert into a database, using batch insertion is
much more efficient than executing SQL statements multiple times, one at a time.

This section illustrates various operations using the JDBC driver, including
establishing database connections, utilizing transactions, executing batch insertion,
and obtaining column information in the result set.

Trigger Conditions

JDBC adds SQL statements to the batch execution list through its addBatch API.
The batch operation is then executed through the executeBatch API.

Impact on Services
● Lower network interaction costs

Combining multiple INSERT statements into one batch operation significantly
reduces the number of round trips between the client and the database. This
enhances the overall throughput and minimizes the impact of network
congestion on performance.

● Higher data processing efficiency

In single-record insertion, the database must parse the syntax and generate
an execution plan for each SQL statement. In contrast, batch insertion
requires parsing the syntax and generating the plan only once, eliminating
repetitive tasks and saving CPU cycles and memory allocation time.

● Reduced system resource usage and overhead

In single-record insertion, transaction commits or Xlog writes occur at least
once. In contrast, batch insertion allows multiple records to be inserted within
a single transaction, significantly reducing the frequency of transaction
commits, Xlog pressure, and transaction management overhead. In addition, it
decreases the total number of network packet processing, transaction
management, log write, and row format conversion tasks, which in turn
lowers the CPU loads and temporary memory usage of the database server.
This results in more resources being available for core query and computing
operations.

● Higher memory usage

When large data sizes are involved, constructing SQL statements for batch
insertion can significantly increase memory usage. This is particularly
noticeable when you construct SQL statements through string concatenation,
as it can lead to a sharp rise in memory consumption. Large-size batch
processing may exceed the maximum SQL length limit of the database or
driver, or trigger other parameter restrictions, potentially leading to errors or
performance issues.

Here is a detailed comparison between batch insertion and single-record insertion.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

Mode Advantages Disadvantages

Single-
record
insertio
n

● Its code is simple,
straightforward, and easy to
implement.

● If any single record fails, it
can be accurately identified
and handled without
impacting other records.

● This mode is less demanding
in terms of database and
driver compatibility.

● Extensive network interactions
are needed. Each INSERT
operation requires connecting,
parsing, and committing,
leading to suboptimal
performance.

● Inserting a large number of
records is likely to cause a
bottleneck.

● Not using transactions may
result in failure to guarantee
the consistency of INSERT
operations.

Batch
insertio
n

● This mode greatly reduces the
number of network round
trips and SQL parsing
instances, leading to a
notable improvement in
insertion throughput.

● Multiple rows can be
committed within a single
transaction to guarantee
atomicity.

● Its code is complex, requiring
manual concatenation of
placeholders and parameters.

● If a single statement
encounters an error, all data
will be rolled back,
complicating the error recovery
process.

● The number of placeholders is
limited; therefore, it is essential
to carefully manage the batch
size.

Applicable Versions
This applies only to GaussDB 503.1.0 and later versions.

13.2.1.1.2 Requirements and Objectives

Service Pain Points
When dealing with large data sizes, single-record insertion generates numerous
network requests and consumes substantial system resources. Moreover, the
database server has to repeatedly parse similar statements, leading to a decline in
service performance. Batch insertion is introduced as a solution to these issues.

Service Objectives
Utilize JDBC to implement batch insertion with transactions, obtain column data
in the result set, and output the result information.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

13.2.1.2 Architecture Principles

Core Principles
Batch processing of the JDBC driver allows adding multiple SQL statements to the
batch execution list and collectively sending them to the database in one go. All
insert or update operations in the transaction are carried in a single U packet.
Consequently, completing the batch operation only necessitates once instance of
network connection establishment and data exchange.

Solution Advantages
Sending all batch updates at once in a single U packet significantly decreases
network communication overhead and enhances execution efficiency when
compared to sending PBE packets multiple times.

13.2.1.3 Preparations
● JDK version: 1.7 or later.
● Database environment: GaussDB 503.1.0 or later.
● JDBC driver environment:

Refer to "Application Development Guide > Development Based on JDBC >
Development Procedure > Obtaining the JAR Package of the Driver and
Configuring the JDK Environment" in Developer Guide.

● Data: Create a test table and insert test data, as follows:
gaussdb=# CREATE TABLE TEST_BATCH(
V1 TEXT,
V2 TEXT);
CREATE TABLE

13.2.1.4 Procedure

13.2.1.4.1 Process Overview

The process of batch data insertion using JDBC includes preparing the
environment, establishing a database connection, executing batch insertion
through APIs, querying the execution results, and closing the connection.

Figure 13-6 shows the overall process.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

Figure 13-6 Process of batch data insertion using JDBC

13.2.1.4.2 Detailed Procedure

Step 1 Establish a database connection.

Here are suggestions for commonly used parameters in the connection string. For
more detailed settings, refer to "Application Development Guide > Development
Based on JDBC > Development Procedure > Connecting to a Database >
Connection Parameter Reference" in Developer Guide.

● connectTimeout: timeout interval (in seconds) for connecting to the server's
OS. If the time taken for JDBC to establish a TCP connection with the
database exceeds this interval, the connection will be closed. It is advisable to
set this parameter based on network conditions. The default value is 0,
whereas the recommended value is 2.

● socketTimeout: timeout interval (in seconds) for socket reads. If the time
taken to read data streams from the server exceeds this interval, the
connection will be closed. Not setting this parameter may lead to prolonged
waiting times for the client in the event of abnormal database processes. It is
advisable to set this parameter based only the acceptable SQL execution time
for services. The default value is 0, with no specific recommended value
provided.

● connectionExtraInfo: specifies whether the driver reports its deployment
path, process owner, and URL connection configurations to the database. The
default value is false, whereas the recommended value is true.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

● logger: specifies a third-party log framework as needed by your application. It
is advisable to choose one that incorporates slf4j APIs. These APIs can record
JDBC logs to facilitate exception locating. The recommended value is
Slf4JLogger when a third-party log framework is needed.

● batchMode: specifies whether the connection operates in batch mode. When
batchMode is set to on, batch insertion and modification are allowed, with
the data type of each column determined by the type specified in the first
data record.
String url = "jdbc:gaussdb://$ip:$port/database?
connectTimeout=xx&socketTimeout=xx&connectionExtraInfo=true&logger=Slf4JLogger&autoBalance=t
rue&batchMode=on"
Connection conn = DriverManager.getConnection("url",userName,password);

Step 2 Prepare SQL statements for batch execution.

Use preparedStatement to prepare statements. For example, to insert data into a
test table, prepare the statements provided below. You can substitute these
statements with the necessary ones for your services.
String sql = "INSERT INTO TEST_BATCH(v1,v2) VALUES(?,?)";
PreparedStatement preparedStatement = conn.prepareStatement(sql);

Step 3 Bind parameters in batches.

Use preparedStatement to bind parameters. Then call the addBatch API to add the
SQL statements to the batch execution list.
for(int i=0;i<5;i++){
 preparedStatement.setString(1,"value1_"+i);
 preparedStatement.setString(2,"value2_"+i);
 preparedStatement.addBatch();
}

Step 4 Execute the batch operation.

By calling the executeBatch API, preparedStatement executes the batch operation.
Upon completion, it returns an array of int results, from which you can determine
the number of data records affected by the batch operation.
Int[] results = preparedStatement.executeBatch();
System.out.println(Arrays.toString(results));

Step 5 Release resources and close the database connection.
preparedStatement.close();
conn.close();

Step 6 Handle exceptions if any.

If your program encounters any SQL exception during runtime, utilize the try-
catch module to handle them and add the necessary exception handling logic for
your services.
try {
// Service code
} catch (SQLException e) {
// Exception handling logic
}

----End

13.2.1.4.3 Complete Example
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.Arrays;

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

import java.sql.DriverManager;
public class TestBatch {
 public static Connection getConnection() throws ClassNotFoundException, SQLException{
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Specify the source URL of the database. (Adjust $ip, $port, and database based on the actual
services.)
 String sourceURL = "jdbc:gaussdb://$ip:$port/database";
 // Obtain the username and password from the environment variables.
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Class.forName(driver);
 return DriverManager.getConnection(sourceURL, userName, password);
 }
 public static void main(String[] args) {
 String sql = "insert into test_batch(v1,v2) values(?,?)";
 try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(sql)) {
 conn.setAutoCommit(false);
 for (int i = 0; i < 5; i++) {
 preparedStatement.setInt(1, 1);
 preparedStatement.setString(2, "value2_" + i);
 preparedStatement.addBatch();
 }
 int[] results = preparedStatement.executeBatch();
 conn.commit();
 System.out.println(Arrays.toString(results));
 } catch (ClassNotFoundException | SQLException e) {
 throw new RuntimeException(e);
 }
 }
}

Result Verification

The preceding execution result shows the number of data records affected by the
batch operation.

When you use preparedStatement for batch insertion, it returns an array of INT
results, with results[0] indicating the total number of data records affected by the
batch operation.

[5, 0, 0, 0, 0]

Rollback Method

To roll back operations within a specific transaction, call the Rollback API of the
transaction object.

13.2.1.5 Typical Issues
1. Symptom: When preparedStatement binds parameters multiple times, the

following error occurs during batch insertion:
java.lang.RuntimeException: java.sql.BatchUpdateException: Batch entry 0 - 5 insert into
test_batch1(v1,v2) values(('1'),('value2_0')) was aborted: [*.*.*.*:*/*.*.*.*:*] ERROR: invalid input syntax
for integer: "ss" Call getNextException to see other errors in the batch.

Cause: The data type of a bound parameter differs from the initially bound
parameter.
Solution: To ensure successful batch insertion using preparedStatement,
maintain consistency in the data types of bound parameters.

2. Symptom: The array of results returned by preparedStatement after batch
insertion does not match the results returned by Oracle Database.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

Cause: When batchMode is set to on, JDBC utilizes GaussDB's distinct packet
processing logic, which differs from Oracle Database's logic but offers faster
speed. Setting batchMode to off in the connection string will ensure
consistency with Oracle Database's results.
When batchMode is set to on, Complete Example will produce results that
differ from those generated by Oracle Database's corresponding API.
[5, 0, 0, 0, 0]

Oracle Database's results:
[1, 1, 1, 1, 1]

When batchMode is set to off, the results become consistent with Oracle
Database's corresponding API.
[1, 1, 1, 1, 1]

13.2.2 Streaming Query

13.2.2.1 Scenario Overview

This section explains how to execute a streaming query with GaussDB JDBC.

13.2.2.1.1 Usage Scenarios

Scenario Description

GaussDB JDBC's streaming query mechanism processes results one by one rather
than loading them all at once. It is designed for big data query scenarios with
limited memory resources, such as big data export, offline analysis tasks, and
pagination/on-demand loading. This mechanism helps prevent excessive memory
consumption and potential memory overflow, ultimately enhancing processing
speed.

Trigger Conditions

The JDBC connection parameter enableStreamingQuery is set to true. In
addition, fetchSize is set to Integer.MIN_VALUE before the executeQuery method
of Statement and PreparedStatement is called.

Impact on Services

Streaming query offers the following advantages:

● Low memory consumption: Streaming query significantly reduces the memory
usage of applications.

● Fast response: Clients can start processing immediately upon receiving the
first batch of data, without having to wait for the entire data set to be ready.

However, there are also associated risks:

● Prolonged connection occupation: Streaming query requires the database
connection to remain open throughout the transmission of data streams. This
prolonged connection occupation may result in connection pool depletion or
other resource scheduling issues.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

● Extended transaction duration: Transactions involving streaming queries may
hold locks or MVCC snapshots for an extended period, increasing the
probability of deadlocks or impacting write performance.

Applicable Versions

This applies only to GaussDB 505.1.0 and later versions.

13.2.2.1.2 Requirements and Objectives

Service Pain Points

In a standard query, JDBC will receive a significant amount of data when querying
massive data. Reading all this data in full can potentially cause memory overflow.

Service Objectives

Execute streaming queries with JDBC to prevent memory overflow.

13.2.2.2 Architecture Principles

Core Principles

Figure 13-7 Principles of streaming query

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

● When a streaming query is executed, the server keeps sending data to the
client's socket buffer until the buffer is full. Upon the arrival of the first data
record in the buffer, the first D packet is returned. JDBC then begins loading
and processing data from the buffer row by row.

● The result set is designed to store only one row of data. The next data record
is read from the buffer and stored into the result set only when the "next"
method is called. This process repeats until all records have been read.

Solution Advantages

Streaming query is recommended for big data query scenarios with limited
memory resources. If streaming query does not meet your service requirements,
consider the following alternative methods:

● Standard query: All data is read in one go.

Advantages: This method allows traversal of the entire result set in both
forward and backward directions. In addition, data can be reprocessed after
being consumed.

Disadvantages: Processing is slow, and there is a risk of memory overflow with
large result sets.

● Batch query: Multiple rows are read at a time. For details, see Batch Query.

Advantages: Data is returned in the specified size, which helps prevent
memory overflow.

Disadvantages: Processing is slow, and multiple query requests need to be
sent to the server.

13.2.2.3 Preparations
● Environment: Ensure that the database is running properly, obtain the JDBC

driver, and configure the environment. For details, see "Application
Development Guide > Development Based on JDBC > Development Procedure
> Obtaining the JAR Package of the Driver and Configuring the JDK
Environment" in Developer Guide.

● Data: Create a test table and insert test data, as follows:
gaussdb=# CREATE TABLE tab_test(id int,context varchar(1000),PRIMARY KEY(id));
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "tab_test_pkey" for table "tab_test"
CREATE TABLE
gaussdb=# INSERT INTO tab_test SELECT generate_series(1,1000000),repeat('GaussDB Test', 50);
INSERT 0 1000000

13.2.2.4 Procedure

13.2.2.4.1 Process Overview

The process of executing a streaming query with GaussDB JDBC includes preparing
the environment, establishing a database connection, executing a streaming query,
processing the query results, and releasing resources.

Figure 13-8 shows the overall process.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

Figure 13-8 Process of executing a streaming query with GaussDB JDBC

13.2.2.4.2 Detailed Procedure

Step 1 Database connection: Set enableStreamingQuery to true, in addition to setting
other connection parameters. For details, see "Application Development Guide >
Development Based on JDBC > Development Procedure > Connecting to a
Database" in Developer Guide.

Step 2 Streaming query: Set fetchSize to Integer.MIN_VALUE before calling the
executeQuery method of Statement and PreparedStatement.

Step 3 Result processing: Process the query results based on the actual services.

Step 4 Resource release: Upon completion, release the result set, statement, connection,
and other resources. It is advisable to use the try-with-resources syntax or the
close method in the try-finally block to release resources.

----End

13.2.2.4.3 Complete Example
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

public class StreamQueryTest {
 // Establish a database connection.
 public static Connection getConnection() throws ClassNotFoundException, SQLException {
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Specify the source URL of the database. (Adjust $ip, $port, and database as needed.) Set the
connection parameter enableStreamingQuery to true.
 String sourceURL = "jdbc:gaussdb://$ip:$port/database?enableStreamingQuery=true";

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

 // Obtain the username and password from the environment variables.
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Class.forName(driver);
 return DriverManager.getConnection(sourceURL, userName, password);
 }

 public static void main(String[] args) {
 String selectSql = "select * from tab_test order by id asc limit ?";
 // Use the try-with-resources syntax to release resources.
 try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(selectSql,
 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)) {
 preparedStatement.setInt(1, 100000);
 // Set fetchSize to Integer.MIN_VALUE and call executeQuery to query data.
 preparedStatement.setFetchSize(Integer.MIN_VALUE);
 int totalCount = 0;
 try (ResultSet resultSet = preparedStatement.executeQuery()) {
 while (resultSet.next()) {
 // Process the query results. The sample code below prints only a portion of the query results
along with the total number of data records.
 if (totalCount++ < 5) {
 System.out.println("row:" + resultSet.getRow() + ",id :" + resultSet.getInt(1));
 }
 }
 System.out.println("totalCount:" + totalCount);
 }
 } catch (ClassNotFoundException | SQLException e) {
 e.printStackTrace();
 }
 }
}

Result Verification
1. Place gaussdbjdbc.jar and StreamQueryTest.java from Complete Example

into the same directory.
2. Compile and execute the sample code. During execution, set the maximum

heap memory of JVM to 16 MB.
javac -classpath ".:gaussdbjdbc.jar" StreamQueryTest.java
java -Xmx16M -classpath ".:gaussdbjdbc.jar" StreamQueryTest

3. Run Complete Example. It completes successfully without encountering
memory overflow. During the streaming query, the result set stores only one
data record at a time. Therefore, the return value of resultSet.getRow() is 1.
The execution result of the code is like this:
row:1,id :1
row:1,id :2
row:1,id :3
row:1,id :4
row:1,id :5
totalCount:100000

Rollback Method
● To disable streaming query for a single statement, delete

setFetchSize(Integer.MIN_VALUE) from Statement and PreparedStatement.
● To disable streaming query for the current connection, set the connection

parameter enableStreamingQuery to false.

13.2.2.5 Typical Issues
1. Symptom: The following exception occurs when fetchSize is set to

Integer.MIN_VALUE in Statement and PreparedStatement:

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

org.postgresql.util.PSQLException: Fetch size must be a value greater to or equal to 0.
 at org.postgresql.jdbc.PgStatement.setFetchSize(PgStatement.java:1623)

Cause: The JDBC connection parameter enableStreamingQuery is not set to
true.

2. Symptom: The following exception occurs when the execute, executeQuery,
and executeUpdate methods of Statement and PreparedStatement are called
to query, insert, and update data:
org.postgresql.util.PSQLException: Streaming query statement is still active. No statements may be
issued when any streaming result sets are open and in use on a given connection. Ensure that you
have called .close() on any active streaming statement sets before attempting more queries.
 at org.postgresql.jdbc.PgStatement.execute(PgStatement.java:492)
 at org.postgresql.jdbc.PgPreparedStatement.executeWithFlags(PgPreparedStatement.java:210)
 at org.postgresql.jdbc.PgPreparedStatement.executeQuery(PgPreparedStatement.java:147)

Cause: The result set from the previous streaming query has not been
completely read or has not been closed.

3. Sequential access only: Streaming query utilizes the FORWARD_ONLY result
set, which means that data can only be accessed row by row in the forward
direction. It does not support randomly locating or rolling back to previous
records. If your services involve frequent traversal or require random data
access, do not use streaming query.

4. Configuration and compatibility requirements: Streaming query requires
special configurations (Trigger Conditions) in the JDBC driver or ORM
framework. Without proper configurations, the desired outcome cannot be
achieved.

13.2.3 User-defined Type

13.2.3.1 Scenario Overview
This section explains how JDBC can use user-defined data types.

13.2.3.1.1 Usage Scenarios

Scenario Description
In real-world production, users' service systems often involve complex data
analysis and operations. Traditional data types may not fully or efficiently
represent or process their data scenarios. To address this, JDBC provides user-
defined data types, Struct and Array, enabling the creation of new data types from
existing ones. These user-defined types offer users a more convenient way to add,
delete, and modify data.

Trigger Conditions
JDBC operations involve user-defined data types.

Impact on Services
● Improved data consistency and integrity

User-defined types allow users to declare data types and check constraints for
columns during the type definition phase, ensuring that all columns
referencing these types automatically inherit the same verification logic.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

● Improved data reusability and encapsulation
User-defined types encapsulate frequently used data structures for reuse
across multiple tables or functions. This minimizes redundant definitions and
enhances maintenance efficiency.

● Additional performance overhead
Using user-defined types will take up additional storage space and necessitate
object assembly and disassembly during access, potentially leading to
increased CPU and I/O usage.

Applicable Versions
This applies only to GaussDB 503.0 and later versions.

13.2.3.1.2 Requirements and Objectives

Service Pain Points
When dealing with complex data structures in services, basic data types may not
accurately express complex service concepts, leading to potential code redundancy
and impacting development efficiency.

Service Objectives
Utilize user-defined types in JDBC's stored procedures.

13.2.3.2 Architecture Principles

Core Principles
The database system creates metadata records for each user-defined type,
including the type name, structure, and constraints. When working with user-
defined types, JDBC converts them based on their structures as well as the user-
defined type objects in the programming language.

Solution Advantages
● Support for complex data modeling

The ability to process complex data structures, such as nested objects and
arrays, improves the expression capability of data models.

● Improved data quality and development efficiency
When querying complex data structures, you can utilize user-defined types for
filtering. Reusing user-defined types helps enhance development efficiency.

13.2.3.3 Preparations
● JDK version: 1.7 or later.
● Database environment: GaussDB 503.0 or later.
● JDBC driver environment:

Refer to "Application Development Guide > Development Based on JDBC >
Development Procedure > Obtaining the JAR Package of the Driver and
Configuring the JDK Environment" in Developer Guide.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

● Data: Create a user-defined type and stored procedure, as follows:
// Create a user-defined type, PUBLIC.COMPFOO, that includes two records.
gaussdb=# CREATE TYPE PUBLIC.COMPFOO AS(
 ID INTEGER,
 NAME TEXT
);
CREATE TYPE
// Create a user-defined table type, PUBLIC.COMPFOO_TABLE.
gaussdb=# CREATE TYPE PUBLIC.COMPFOO_TABLE IS TABLE OF PUBLIC.COMPFOO;
CREATE TYEP
// Create the stored procedure public.test_proc with two input parameters of a user-defined type and
two output parameters of a user-defined type.
gaussdb=# CREATE OR REPLACE PROCEDURE public.test_proc(
 IN INPUT_COMPFOO PUBLIC.COMPFOO,
 IN INPUT_COMPFOO_TABLE PUBLIC.COMPFOO_TABLE,
 OUT OUTPUT_COMPFOO PUBLIC.COMPFOO,
 OUT OUTPUT_COMPFOO_TABLE PUBLIC.COMPFOO_TABLE
)
AS
BEGIN
 OUTPUT_COMPFOO := INPUT_COMPFOO;
 OUTPUT_COMPFOO_TABLE := INPUT_COMPFOO_TABLE;
END;
/
CREATE PROCEDURE

13.2.3.4 Procedure

13.2.3.4.1 Process Overview

Figure 13-9 shows the process for JDBC to insert and query data of user-defined
types using a stored procedure.

This process includes preparing the environment, establishing a database
connection, executing SQL statements of user-defined types, viewing the results,
and closing the connection.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

Figure 13-9 Process of using stored procedures in JDBC to handle user-defined
types

13.2.3.4.2 Detailed Procedure

Step 1 Establish a database connection.

Here are suggestions for commonly used parameters in the connection string. For
more detailed settings, refer to "Application Development Guide > Development
Based on JDBC > Development Procedure > Connecting to a Database" in
Developer Guide.

● connectTimeout: timeout interval (in seconds) for connecting to the server's
OS. If the time taken for JDBC to establish a TCP connection with the
database exceeds this interval, the connection will be closed. It is advisable to
set this parameter based on network conditions. The default value is 0,
whereas the recommended value is 2.

● socketTimeout: timeout interval (in seconds) for socket reads. If the time
taken to read data streams from the server exceeds this interval, the
connection will be closed. Not setting this parameter may lead to prolonged
waiting times for the client in the event of abnormal database processes. It is
advisable to set this parameter based only the acceptable SQL execution time
for services. The default value is 0, with no specific recommended value
provided.

● connectionExtraInfo: specifies whether the driver reports its deployment
path, process owner, and URL connection configurations to the database. The
default value is false, whereas the recommended value is true.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

● logger: specifies a third-party log framework as needed by your application. It
is advisable to choose one that incorporates slf4j APIs. These APIs can record
JDBC logs to facilitate exception locating. The recommended value is
Slf4JLogger when a third-party log framework is needed.
String url = "jdbc:gaussdb://$ip:$port/database?
connectTimeout=xx&socketTimeout=xx&connectionExtraInfo=true&logger=Slf4JLogger&autoBalance=t
rue"
Connection conn = DriverManager.getConnection("url",userName,password);

Step 2 Set GUC parameters.

Execute the SQL statement SET
behavior_compat_options='proc_outparam_override'; to enable
proc_outparam_override, that is, overloading of stored procedures.
Statement statement = conn.createStatement();
statement.execute("SET behavior_compat_options='proc_outparam_override'");
statement.close();

Step 3 Prepare a stored procedure.

Use the Call syntax to declare the SQL statement for calling the stored procedure
TEST_PROC. Then use prepareCall to prepare the statement.
CallableStatement cs = conn.prepareCall("{CALL PUBLIC.TEST_PROC(?,?,?,?)}");

Step 4 Bind input parameters.

Use PGobject to assemble data of the user-defined type. Then use prepareCall to
bind input parameters.

PGobject pgObject = new PGobject();
pgObject.setType("public.compfoo"); // Set the name of a composite type.
pgObject.setValue("(1,demo)"); // Bind values of the composite type, formatted as "(value1,value2)".
cs.setObject(1, pgObject);
pgObject = new PGobject();
pgObject.setType("public.compfoo_table"); // Set the name of a table type.
pgObject.setValue("{\"(10,demo10)\",\"(11,demo111)\"}"); // Bind values of the table type, formatted as
"{\"(value1,value2)\",\"(value1,value2)\",...}".
cs.setObject(2, pgObject);

Step 5 Register the output type.

Use prepareCall to register the output type of the stored procedure. For the
composite type, register Types.STRUCT. For the table type, register Types.ARRAY.

// Register output parameters for the composite type.
cs.registerOutParameter(3, Types.STRUCT, "public.compfoo");
// Register output parameters for the table type.
cs.registerOutParameter(4, Types.ARRAY, "public.compfoo_table");

Step 6 Execute SQL statements and view the results.

Call the stored procedure and view the results corresponding to the output
parameters.

cs.execute();
// Obtain output parameters.
// The return structure is of the user-defined type.
PGobject result = (PGobject) cs.getObject(3); // Obtain output parameters.
result.getValue(); // Obtain character string values of the composite type.
String[] arrayValue = result.getArrayValue(); // Obtain array values of the composite type and sort them
based on columns of the composite type.
result.getStruct(); // Obtain the names of subtypes in the composite type and sort them based on the order
in which they were created.
result.getAttributes(); // Return objects of the user-defined type in each column. For the array and table
types, PgArray is returned. For the user-defined type, PGobject is encapsulated. Other types of data are
stored as character strings.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

for (String s : arrayValue) {
 System.out.println(s);
}
PgArray pgArray = (PgArray) cs.getObject(4);
ResultSet rs = pgArray.getResultSet();
Object[] array = (Object[]) pgArray.getArray();
for (Object element : array) {
 System.out.println(element);
}

Step 7 Release resources and close the database connection.
cs.close();
conn.close();

Step 8 (Optional) Handle exceptions if any.

If your program encounters any SQL exception during runtime, utilize the try-
catch module to handle them and add the necessary exception handling logic for
your services.
try {
 // Service code
} catch (SQLException e) {
 // Exception handling logic
}

----End

13.2.3.4.3 Complete Example
import com.huawei.gaussdb.jdbc.jdbc.PgArray;
import com.huawei.gaussdb.jdbc.util.PGobject;
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.Types;
import java.sql.DriverManager;
public class TypesTest {
 public static Connection getConnection() throws ClassNotFoundException, SQLException {
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Specify the source URL of the database. (Adjust $ip, $port, and database based on the actual
services.)
 String sourceURL = "jdbc:gaussdb://$ip:$port/database";
 // Obtain the username and password from the environment variables.
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Class.forName(driver);
 return DriverManager.getConnection(sourceURL, userName, password);
 }
 public static void main(String[] args) {
 try {
 Connection conn = getConnection();
 Statement statement = conn.createStatement();
 statement.execute("set behavior_compat_options='proc_outparam_override'");
 statement.close();
 CallableStatement cs = conn.prepareCall("{CALL PUBLIC.TEST_PROC(?,?,?,?)}");
 // Set parameters.
 PGobject pgObject = new PGobject();
 pgObject.setType("public.compfoo"); // Set the name of a composite type.
 pgObject.setValue("(1,demo)"); // Bind values of the composite type.
 cs.setObject(1, pgObject);
 pgObject = new PGobject();
 pgObject.setType("public.compfoo_table"); // Set the name of a table type.
 pgObject.setValue("{\"(10,demo10)\",\"(11,demo111)\"}"); // Bind values of the table type, formatted as
"{\"(value1,value2)\",\"(value1,value2)\",...}".
 cs.setObject(2, pgObject);

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

 // Register output parameters.
 // Register output parameters for the composite type.
 cs.registerOutParameter(3, Types.STRUCT, "public.compfoo");
 // Register output parameters for the table type.
 cs.registerOutParameter(4, Types.ARRAY, "public.compfoo_table");
 cs.execute();
 // Obtain output parameters.
 // The return structure is of the user-defined type.
 PGobject result = (PGobject) cs.getObject(3); // Obtain output parameters.
 result.getValue(); // Obtain character string values of the composite type.
 String[] arrayValue = result.getArrayValue(); // Obtain array values of the composite type and sort them
based on columns of the composite type.
 result.getStruct(); // Obtain the names of subtypes in the composite type and sort them based on the
order in which they were created.
 result.getAttributes(); // Return objects of the user-defined type in each column. For the array and table
types, PgArray is returned. For the user-defined type, PGobject is encapsulated. Other types of data are
stored as character strings.
 for (String s : arrayValue) {
 System.out.println(s);
 }
 PgArray pgArray = (PgArray) cs.getObject(4);
 ResultSet rs = pgArray.getResultSet();
 Object[] array = (Object[]) pgArray.getArray();
 for (Object element : array) {
 System.out.println(element);
 }
 cs.close();
 conn.close();
 } catch (ClassNotFoundException | SQLException e) {
 throw new RuntimeException(e);
 }
 }
}

Result Verification

Data of user-defined types is correctly obtained in Complete Example. Below are
the execution results for Complete Example:

1
demo
(10,demo10)
(11,demo111)

Rollback Method

N/A

13.2.3.5 Typical Issues
1. Symptom: Users encounter the following exception when calling a stored

procedure, even though they have bound input parameters of a user-defined
type and registered output parameters for the procedure:
ERROR: Function public.test_proc(compfoo, public.compfoo_table, compfoo, public.compfoo_table)
does not exist.
 ???No function matches the given name and argument types. You might need to add explicit type
casts.

Cause: The user-defined type bound to the input and output parameters does
not match the one set in the stored procedure.

Solution: Keep the user-defined type bound to the input and output
parameters consistent with the one set in the stored procedure.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

2. Symptom: Users encounter the following exception when calling a stored
procedure, even though they have bound input parameters of a user-defined
type and registered output parameters for the procedure:
java.lang.RuntimeException: org.postgresql.util.PSQLException: ?? CallableStatement ?????????????
java.sql.Types=1111 ?? 1?????????? java.sql.Types=2002?

Cause: The enableGaussArrayAndStruct parameter is set to true when
pgArray compatibility is in effect. However, it is impossible to maintain
compatibility with both pgArray and GaussArray simultaneously.
Solution: When pgArray compatibility is in effect, check for and delete
enableGaussArrayAndStruct=true.

13.2.4 Batch Query

13.2.4.1 Scenario Overview
This section explains how to use JDBC for batch query.

13.2.4.1.1 Usage Scenarios

Scenario Description
Returning a large number of query results to JDBC at once may lead to JVM
memory overflow. To decrease JVM memory usage, consider using batch queries,
where you can specify the number of data records to be returned to JDBC each
time.

Trigger Conditions
Java applications connect to the database through JDBC and query data in large
batches.

Impact on Services
Developers must start and stop transactions correctly prior to database operations.
In batch query scenarios, data is processed in smaller batches to effectively reduce
JVM memory usage. This approach can prevent the problem of Java application
memory overflow caused by clients receiving all data at once in the traditional full
data transmission mode. However, it is worth noting that traversing the result set
increases the number of network interactions between the database and the client
(especially when each record needs to be transmitted independently). This can
lead to additional performance loss, necessitating a thoughtful balance during
system design.

13.2.4.1.2 Requirements and Objectives

Service Pain Points
In data-intensive service scenarios, traditional queries face the following
challenges:

1. Large result sets can deplete application memory, resulting in JVM memory
overflow and query failures.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

2. Obtaining a large amount of data at once may saturate the network
bandwidth, impacting data transmission efficiency.

3. The continuous occupation of database connections and related resources
impedes overall throughput.

Service Objectives

Execute batch queries to prevent memory overflow.

13.2.4.2 Architecture Principles

Core Principles

During batch queries, JDBC leverages the cursor traversal capability of GaussDB
Kernel to obtain a specific number of rows of data from the database server. This
number is predetermined. The database server then returns result data to JDBC in
batches based on the specified number until all query results are returned.

Solution Advantages and Disadvantages
1. During batch queries, the database returns a specific number of rows of data

each time. This helps prevent memory overflow in Java applications when
dealing with large result sets.

2. Batch queries involve multiple interactions with the database network, which
can lead to a certain level of performance loss.

13.2.4.3 Preparations
● JDK version: 1.7 or later.
● Database environment: GaussDB 503.0 or later.
● JDBC driver environment:

Refer to "Application Development Guide > Development Based on JDBC >
Development Procedure > Obtaining the JAR Package of the Driver and
Configuring the JDK Environment" in Developer Guide.
Data: Create a test table and insert test data, as follows:
gaussdb=# CREATE TABLE tab_test(id int,context varchar(1000),PRIMARY KEY(id));
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "tab_test_pkey" for table "tab_test"
CREATE TABLE
gaussdb=# INSERT INTO tab_test SELECT generate_series(1,5),repeat('GaussDB Test', 50);
INSERT 0 5

13.2.4.4 Procedure

13.2.4.4.1 Process Overview

Figure 13-10 shows the process of executing a batch query with JDBC.

This process includes preparing the environment, establishing a database
connection, starting a transaction, executing SELECT statements, traversing the
result set, and closing the connection.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

Figure 13-10 Process of executing a batch query with JDBC

13.2.4.4.2 Detailed Procedure

Step 1 Create a Connection object to connect to the database.

Here are suggestions for commonly used parameters in the connection string. For
more detailed settings, refer to "Application Development Guide > Development
Based on JDBC > Development Procedure > Connecting to a Database >
Connection Parameter Reference" in Developer Guide.

● connectTimeout: timeout interval (in seconds) for connecting to the server's
OS. If the time taken for JDBC to establish a TCP connection with the
database exceeds this interval, the connection will be closed. It is advisable to

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

set this parameter based on network conditions. The default value is 0,
whereas the recommended value is 2.

● socketTimeout: timeout interval (in seconds) for socket reads. If the time
taken to read data streams from the server exceeds this interval, the
connection will be closed. Not setting this parameter may lead to prolonged
waiting times for the client in the event of abnormal database processes. It is
advisable to set this parameter based only the acceptable SQL execution time
for services. The default value is 0, with no specific recommended value
provided.

● connectionExtraInfo: specifies whether the driver reports its deployment
path, process owner, and URL connection configurations to the database. The
default value is false, whereas the recommended value is true.

● logger: specifies a third-party log framework as needed by your application. It
is advisable to choose one that incorporates slf4j APIs. These APIs can record
JDBC logs to facilitate exception locating. The recommended value is
Slf4JLogger when a third-party log framework is needed.
String url = "jdbc:gaussdb://$ip:$port/database?
connectTimeout=xx&socketTimeout=xx&connectionExtraInfo=true&logger=Slf4JLogger&autoBalance=t
rue"
Connection conn = DriverManager.getConnection("url",userName,password);

Step 2 Start a transaction.

Set AutoCommit to false so that JDBC will deliver "BEGIN" to proactively start a
transaction prior to executing a query from the database.
conn.setAutoCommit(false);

Step 3 Create PreparedStatement objects and specify the number of rows to be returned
by the database each time.

Use the setFetchSize method to specify this number at the statement level. If
fetchsize has been set in the connection string, it will be overridden by the
setFetchSize method.
String selectSql = "select * from tab_test";
PreparedStatement preparedStatement = conn.prepareStatement(selectSql);
preparedStatement.setFetchSize(20);

Step 4 Execute a query to obtain a result set.
ResultSet resultSet = preparedStatement.executeQuery();

Step 5 Process the result set and check data in the first column of the table.
while (resultSet.next()) {
 int id = resultSet.getInt(1);
 System.out.println("row:" + resultSet.getRow() + ",id :" + id);
}

Step 6 Obtain metadata in the result set, including the column count and types.

Obtain metadata from the resultSet returned by executeQuery.
ResultSetMetaData metaData = resultSet.getMetaData();
System.out.println("Result column: " + metaData.getColumnCount());
System.out.println("Type ID: " + metaData.getColumnType(1));
System.out.println("Type name: " + metaData.getColumnTypeName(1));
System.out.println("Column name: " + metaData.getColumnName(1));

Step 7 Close resources.

Use try-with-resources to automatically close any open file resources.
try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(selectSql))

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

Step 8 (Optional) Handle exceptions if any.

If your program encounters any exception during runtime, utilize the try-catch
module to handle them and add the necessary exception handling logic for your
services.
try {
// Service code
} catch (Exception e) {
// Exception handling logic
}

----End

13.2.4.4.3 Complete Example
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;

public class BatchQuery {
 public static Connection getConnection() throws ClassNotFoundException, SQLException {
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Specify the source URL of the database. (Adjust $ip, $port, and database based on the actual
services.)
 String sourceURL = "jdbc:gaussdb://$ip:$port/database";
 // Obtain the username and password from the environment variables.
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Class.forName(driver);
 return DriverManager.getConnection(sourceURL, userName, password);
 }

 public static void main(String[] args) {
 String selectSql = "select * from tab_test";
 try (Connection conn = getConnection(); PreparedStatement preparedStatement =
conn.prepareStatement(selectSql)) {
 conn.setAutoCommit(false);
 preparedStatement.setFetchSize(3);
 try (ResultSet resultSet = preparedStatement.executeQuery()) {
 while (resultSet.next()) {
 // Print only a portion of the query results.
 int id = resultSet.getInt(1);
 System.out.println("row:" + resultSet.getRow() + ",id :" + id);
 }
 ResultSetMetaData metaData = resultSet.getMetaData();
 System.out.println("Result column: " + metaData.getColumnCount());
 System.out.println("Type ID: " + metaData.getColumnType(1));
 System.out.println("Type name: " + metaData.getColumnTypeName(1));
 System.out.println("Column name: " + metaData.getColumnName(1));
 }
 conn.commit();
 } catch (ClassNotFoundException | Exception e) {
 throw new RuntimeException(e);
 }
 }
}

Result Verification
Below are the execution results for Complete Example:

row:1,id :1
row:2,id :2
row:3,id :3

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

row:4,id :4
row:5,id :5
Result column: 2
Type ID: 4
Type name: int4
Column name: id

Rollback Method
To disable batch query, remove the fetchsize parameter from the connection
string and reset setFetchSize to the default value of 0.

13.2.4.5 Typical Issues
1. Symptom: Customers using the Spring framework have set the fetchsize

parameter in the connection string, but OutOfMemoryError is reported during
a batch query.
Cause: Transactions are not started prior to the batch query. Generally,
connection transactions are managed by the Spring framework. However, if
transactions are not started, the database will return all data to JDBC in one
go.
Solution: Check the service code and be sure to start transactions before
executing batch queries.

2. Symptom: The fetchsize parameter has been set in the connection string, but
OutOfMemoryError is reported during a batch query.
Cause: Other call points in the application code consume substantial memory.
In this situation, JDBC may encounter OutOfMemoryError when it attempts to
read only a small amount of data.
Solution: Use JDK to check memory usage and determine whether the
memory overflow is caused by table data.

3. Symptom: The table query speed is fast with gsql but slow with JDBC.
Cause: The fetchsize parameter has been set to a small value in the
connection string. This results in a high number of packet interactions
between Kernel and the result set, leading to performance degradation.
Solution: Before querying data, determine whether to start transactions based
on the table size or call the prepareStatement.setFetchSize() method to adjust
the number of rows to be returned by the database each time. If this number
is set to 0, all query results will be returned in one go.

GaussDB
Best Practices 13 Best Practices for JDBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

14 Best Practices for ODBC

14.1 Best Practices for ODBC (Distributed Instances)

14.1.1 Scenario Overview
This section explains how to use the ODBC driver for batch data insertion.

14.1.1.1 Usage Scenarios

Scenario Description

Batch insertion offers a more efficient way to write multiple records into the
database in a single operation. Compared to single-record insertion, batch
insertion decreases interactions between the application and the database, leading
to lower network latency and system resource usage, while significantly improving
data write efficiency.

This section illustrates various operations using the ODBC driver, including
establishing database connections, utilizing transactions, executing batch insertion,
and obtaining column information in the result set.

Trigger Conditions

The UseServerSidePrepare and UseBatchProtocol parameters are enabled in the
ODBC configurations (both are enabled by default). Batch binding parameters are
set and batch data is initialized in the application code. Batch insertion is then
executed under these settings.

Impact on Services
● Lower network interaction costs

Combining multiple INSERT statements into one batch operation significantly
reduces the number of round trips between the client and the database. This
enhances the overall throughput and minimizes the impact of network
congestion on performance.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

● Higher data processing efficiency
In single-record insertion, the database must parse the syntax and generate
an execution plan for each SQL statement. In contrast, batch insertion
requires parsing the syntax and generating the plan only once, eliminating
repetitive tasks and saving CPU cycles and memory allocation time.

● Reduced system resource usage and overhead
In single-record insertion, transaction commits or Xlog writes occur at least
once. In contrast, batch insertion allows multiple records to be inserted within
a single transaction, significantly reducing the frequency of transaction
commits, Xlog pressure, and transaction management overhead. In addition, it
decreases the total number of network packet processing, transaction
management, log write, and row format conversion tasks, which in turn
lowers the CPU loads and temporary memory usage of the database server.
This results in more resources being available for core query and computing
operations.

● Higher memory usage
When large data sizes are involved, constructing SQL statements for batch
insertion can significantly increase memory usage. This is particularly
noticeable when you construct SQL statements through string concatenation,
as it can lead to a sharp rise in memory consumption. Large-size batch
processing may exceed the maximum SQL length limit of the database or
driver, or trigger other parameter restrictions, potentially leading to errors or
performance issues.

Here is a detailed comparison between batch insertion and single-record insertion.

Mode Advantages Disadvantages

Single-
record
insertio
n

● Its code is simple,
straightforward, and easy to
implement.

● If any single record fails, it
can be accurately identified
and handled without
impacting other records.

● This mode is less demanding
in terms of database and
driver compatibility.

● Extensive network interactions
are needed. Each INSERT
operation requires connecting,
parsing, and committing,
leading to suboptimal
performance.

● Inserting a large number of
records is likely to cause a
bottleneck.

● Not using transactions may
result in failure to guarantee
the consistency of INSERT
operations.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

Mode Advantages Disadvantages

Batch
insertio
n

● This mode greatly reduces the
number of network round
trips and SQL parsing
instances, leading to a
notable improvement in
insertion throughput.

● Multiple rows can be
committed within a single
transaction to guarantee
atomicity.

● Its code is complex, requiring
manual concatenation of
placeholders and parameters.

● If a single statement
encounters an error, all data
will be rolled back,
complicating the error recovery
process.

● The number of placeholders is
limited; therefore, it is essential
to carefully manage the batch
size.

Applicable Versions

This applies only to GaussDB V500R002C10 and later versions.

14.1.1.2 Requirements and Objectives

Service Pain Points

When dealing with large data sizes, single-record insertion generates numerous
network requests and consumes substantial system resources. Moreover, the
database server has to repeatedly parse similar statements, leading to a decline in
service performance. Batch insertion is introduced as a solution to these issues.

Service Objectives

Use the ODBC driver to initialize the target table, and insert the required data in
batches through transactions for future queries. Compared to inserting data
individually through SQL statements, this approach decreases interactions with the
database and alleviates the database load.

14.1.2 Architecture Principles

Core Principles

When the UseBatchProtocol and UseServerSidePrepare parameters are enabled,
batch processing of ODBC can reuse the same execution plan for a prepared SQL
statement. All batch data to be committed within the current transaction is carried
in a single U packet. Consequently, completing the batch operation only
necessitates once instance of network connection establishment and data
exchange.

Solution Advantages
● Optimized network communication

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

Sending all batch updates at once in a single U packet significantly decreases
network communication overhead when compared to sending PBE packets
multiple times.

● Improved execution efficiency
Due to the reduced number and frequency of network communication, the
overall execution efficiency is significantly improved, especially for large data
sizes.

● Optimized resource utilization
Batch insertion optimizes the utilization of database server resources, cutting
down on unnecessary system overhead associated with single-record
insertion.

14.1.3 Preparations
● ODBC version: V500R002C10 or later.
● Database environment: GaussDB V500R002C10 or later.
● ODBC driver environment:

Refer to "Application Development Guide > Development Based on ODBC >
Development Procedure > Obtaining the Source Code Package, ODBC
Packages, and Dependency Libraries" in Developer Guide.

● ODBC data source:
Refer to "Configuring a Data Source in the Linux OS" or "Configuring a Data
Source in the Windows OS" under "Application Development Guide >
Development Based on ODBC > Development Procedure > Connecting to a
Database" in Developer Guide.
Taking Linux environments as an example, you are advised to set parameters
in the odbc.ini file as follows:
[gaussdb]
Driver=GaussMPP
Servername=127.0.0.1 # IP address of the database server.
Database=db1 # Database name.
Username=omm # Name of a database user.
Password=****** # Password for the database user.
Port=8000 # Database listening port.
Sslmode=allow # Specifies whether to enable SSL encryption. When set to allow, it means that the
database server can use SSL encryption as required, but the server's authenticity is not verified.
UseServerSidePrepare=1 # This parameter is enabled by default. If it is set to 1, the client sends
PU/PBE packets in soft parsing mode. If it is set to 0, the client sends Q packets in hard parsing mode.
UseBatchProtocol=1 # Specifies whether to enable batch query. This parameter is enabled by default.
MaxCacheQueries=1024 # Number of prepared statements cached for each connection.
MaxCacheSizeMiB=5 # Total size of prepared statements cached for each connection. This parameter
takes effect when MaxCacheQueries is greater than 0.
ConnSettings=set client_encoding=UTF8 # Client-side encoding, which must be consistent with server-
side encoding.
SocketTimeout=5 # Timeout interval for socket reads/writes after a connection is successfully
established between the client and the server.
TargetServerType=primary # Type of the target server to connect to. A connection can be successfully
established only when the actual server type matches the value of this parameter. primary indicates
that only the primary node in a primary/standby system can be connected to.
AutoBalance=1 # Specifies whether to enable load balancing for ODBC. Load balancing is
unavailable for DR clusters if the connected database version is earlier than 506.0.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

NO TE

● The AutoBalance parameter is supported in GaussDB V500R002C20 and later
versions.

● The MaxCacheQueries and MaxCacheSizeMiB parameters are supported in
GaussDB 503.1 and later versions.

● The SocketTimeout parameter is supported in GaussDB 505.2 and later versions.

● The TargetServerType options of cluster-primary, cluster-standby, and cluster-
mainnode are available only from GaussDB 506.0. Other options have been
supported since GaussDB 505.2.

Figure 14-1 shows the recommended configurations for the data source
manager in Windows environments.

Figure 14-1 Data source manager configurations in Windows environments

NO TE

Adjust the preceding data source configurations, including but not limited to the
database server IP address, port number, and other connection parameters, to match
the actual services.

14.1.4 Procedure

14.1.4.1 Process Overview

The process of batch binding and insertion includes steps such as configuring a
connection, setting batch binding parameters, and executing batch insertion.
Typical APIs involved include SQLSetConnectAttr, SQLSetStmtAttr, SQLPrepare,
SQLBindParameter, SQLExecute, and SQLRowCount.

For details about these APIs, see "Application Development Guide > Development
Based on ODBC > ODBC API Reference" in Developer Guide.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

14.1.4.2 Detailed Procedure

Step 1 Configure a connection.

1. Set the connection timeout interval.
To manage the timeout interval (in seconds) for clients to connect to the
server, adjust the SQL_LOGIN_TIMEOUT parameter in the SQLSetConnectAttr
function. This parameter corresponds to the libpq parameter
connect_timeout. A default value of 0 indicates that the parameter is not in
effect. You are advised to set it based on the actual network conditions.
SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)5, 0);

2. Disable the autocommit option in order to use transactions for commit or
rollback.
To use transactions for commit or rollback, disable autocommit by setting
SQL_AUTOCOMMIT_OFF in the SQLSetConnectAttr function.
SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF, 0);

3. Establish a database connection.
Establish a database connection through the SQLConnect function. Below is
the function prototype:
SQLRETURN SQLConnect(SQLHDBC ConnectionHandle,
 SQLCHAR *ServerName,
 SQLSMALLINT NameLength1,
 SQLCHAR *UserName,
 SQLSMALLINT NameLength2,
 SQLCHAR *Authentication,
 SQLSMALLINT NameLength3);

If ServerName of the data source was set to gaussdb in Preparations, ODBC
automatically obtains connection parameters from the odbc.ini file (in Linux
environments) or from the data source manager (in Windows environments).
After obtaining the data source, the function utilizes the connection handle
hdbc to access all details about the connected data source, including program
running status, transaction processing status, and error information.
Subsequently, the function employs the appropriate parameters to connect to
the database.
SQLConnect(hdbc, (SQLCHAR *)"gaussdb", SQL_NTS, (SQLCHAR *)"", 0, (SQLCHAR *)"", 0);

Step 2 Set batch binding parameters.

1. Set batch binding parameters.
Set the total number of rows in the batch binding parameter array. The
batchCount variable indicates the total number of rows to be inserted in
batches.
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)batchCount, sizeof(batchCount));

Set the number of processed rows. The processRows variable indicates the
number of rows that have been inserted in batches.
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR, (SQLPOINTER)&processRows,
sizeof(processRows));

2. Prepare statements and bind parameters.
Use the SQLPrepare function to prepare SQL statements. The sql variable
holds the SQL statement string. SQL_NTS indicates that the string ends with a
null character. Use the SQLBindParameter function to bind parameters to the
prepared statements. ids and cols correspond to the two arrays in the id
column (INT type) and col column (VARCHAR type).

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

SQLPrepare(hstmt, (SQLCHAR *)sql, SQL_NTS);
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, sizeof(ids[0]), 0,
&(ids[0]), 0, bufLenIds);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 50, 50, cols, 50,
bufLenCols);

Step 3 Execute batch insertion.

1. Execute batch insertion.
Use the SQLExecute function to execute the prepared SQL statements for
batch insertion. The return value of retcode indicates the result of the
insertion.
retcode = SQLExecute(hstmt);

2. Manually commit or roll back the transaction.
If retcode returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the insertion
was successful. In this case, call the SQLEndTran function to commit the
transaction. However, if retcode returns any other value, the insertion has
failed. In this case, call the SQLEndTran function to roll back the transaction.
SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT); // Commit the transaction.
SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK); // Roll back the transaction.

3. Obtain the number of rows processed in batches.
Use the SQLRowCount function to obtain the number of rows actually
inserted and store the number in the rowsCount variable.
SQLRowCount(hstmt, &rowsCount);

----End

14.1.4.3 Complete Example
/**
 * Enable UseBatchProtocol in the data source and set the database parameter support_batch_bind to on.
 * CHECK_ERROR and CHECK_ERROR_VOID are used to check for and print error information.
 * This example interactively obtains the DSN and the data size for batch binding, and inserts the final data
into test_odbc_batch_insert.
 ***/
#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <sql.h>
#include <sqlext.h>
#include <string.h>
#define CHECK_ERROR(e, s, t, h) \
 ({ \
 if (e != SQL_SUCCESS && e != SQL_SUCCESS_WITH_INFO) { \
 fprintf(stderr, "FAILED:\t"); \
 print_diag(s, h, t); \
 goto exit; \
 } \
 })
#define CHECK_ERROR_VOID(e, s, t, h) \
 ({ \
 if (e != SQL_SUCCESS && e != SQL_SUCCESS_WITH_INFO) { \
 fprintf(stderr, "FAILED:\t"); \
 print_diag(s, h, t); \
 } \
 })
#define BATCH_SIZE 100 // Data size to be bound in batches.
// Print error information.
void print_diag(char *msg, SQLSMALLINT htype, SQLHANDLE handle);
// Execute SQL statements.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

void Exec(SQLHDBC hdbc, SQLCHAR *sql)
{
 SQLRETURN retcode; // Returned error code.
 SQLHSTMT hstmt = SQL_NULL_HSTMT; // Statement handle.
 SQLCHAR loginfo[2048];
 // Allocate a statement handle.
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLAllocHandle(SQL_HANDLE_STMT) failed");
 return;
 }
 // Prepare statements.
 retcode = SQLPrepare(hstmt, (SQLCHAR *)sql, SQL_NTS);
 sprintf((char *)loginfo, "SQLPrepare log: %s", (char *)sql);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLPrepare(hstmt, (SQLCHAR*) sql, SQL_NTS) failed");
 return;
 }
 // Execute statements.
 retcode = SQLExecute(hstmt);
 sprintf((char *)loginfo, "SQLExecute stmt log: %s", (char *)sql);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLExecute(hstmt) failed");
 return;
 }
 // Release the handle.
 retcode = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 sprintf((char *)loginfo, "SQLFreeHandle stmt log: %s", (char *)sql);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLFreeHandle(SQL_HANDLE_STMT, hstmt) failed");
 return;
 }
}
int main()
{
 SQLHENV henv = SQL_NULL_HENV;
 SQLHDBC hdbc = SQL_NULL_HDBC;
 SQLLEN rowsCount = 0;
 int i = 0;
 SQLRETURN retcode;
 SQLCHAR dsn[1024] = {'\0'};
 SQLCHAR loginfo[2048];
 // Allocate an environment handle.
 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLAllocHandle failed");
 goto exit;
 }
 CHECK_ERROR(retcode, "SQLAllocHandle henv", henv, SQL_HANDLE_ENV);
 // Set the ODBC version.
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER *)SQL_OV_ODBC3, 0);
 CHECK_ERROR(retcode, "SQLSetEnvAttr", henv, SQL_HANDLE_ENV);
 // Allocate connections.
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 CHECK_ERROR(retcode, "SQLAllocHandle hdbc", hdbc, SQL_HANDLE_DBC);
 // Set the login timeout.
 retcode = SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)5, 0);
 CHECK_ERROR(retcode, "SQLSetConnectAttr SQL_LOGIN_TIMEOUT", hdbc, SQL_HANDLE_DBC);
 // Disable the autocommit option in order to use transactions for commit.
 retcode = SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF, 0);
 CHECK_ERROR(retcode, "SQLSetConnectAttr SQL_ATTR_AUTOCOMMIT", hdbc, SQL_HANDLE_DBC);
 // Establish a database connection.
 retcode = SQLConnect(hdbc, (SQLCHAR *)"gaussdb", SQL_NTS, (SQLCHAR *)"", 0, (SQLCHAR *)"", 0);
 CHECK_ERROR(retcode, "SQLSetConnectAttr SQL_ATTR_AUTOCOMMIT", hdbc, SQL_HANDLE_DBC);
 printf("SQLConnect success\n");
 // Initialize table information.
 Exec(hdbc, "DROP TABLE IF EXISTS test_odbc_batch_insert");
 Exec(hdbc, "CREATE TABLE test_odbc_batch_insert (id INT PRIMARY KEY, col VARCHAR2(50))");
 // Commit the transaction in segments for other SQL operations.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

 retcode = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
 CHECK_ERROR(retcode, "SQLEndTran", hdbc, SQL_HANDLE_DBC);
 // Construct the data to be inserted in batches based on the user-specified data size.
 {
 SQLRETURN retcode;
 SQLHSTMT hstmt = SQL_NULL_HSTMT;
 SQLCHAR *sql = NULL;
 SQLINTEGER *ids = NULL;
 SQLCHAR *cols = NULL;
 SQLLEN *bufLenIds = NULL;
 SQLLEN *bufLenCols = NULL;
 SQLUSMALLINT *operptr = NULL;
 SQLUSMALLINT *statusptr = NULL;
 SQLULEN process = 0;
 // Construct fields by column.
 ids = (SQLINTEGER *)malloc(sizeof(ids[0]) * BATCH_SIZE);
 cols = (SQLCHAR *)malloc(sizeof(cols[0]) * BATCH_SIZE * 50);
 // Memory length for each row of data with each field.
 bufLenIds = (SQLLEN *)malloc(sizeof(bufLenIds[0]) * BATCH_SIZE);
 bufLenCols = (SQLLEN *)malloc(sizeof(bufLenCols[0]) * BATCH_SIZE);
 if (NULL == ids || NULL == cols || NULL == bufLenCols || NULL == bufLenIds) {
 fprintf(stderr, "FAILED:\tmalloc data memory failed\n");
 goto exit;
 }
 // Assign values to data.
 for (i = 0; i < BATCH_SIZE; i++) {
 ids[i] = i;
 sprintf(cols + 50 * i, "column test value %d", i);
 bufLenIds[i] = sizeof(ids[i]);
 bufLenCols[i] = strlen(cols + 50 * i);
 }
 // Allocate a statement handle.
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
 CHECK_ERROR(retcode, "SQLSetConnectAttr SQL_ATTR_AUTOCOMMIT", hstmt, SQL_HANDLE_STMT);
 // Prepare statements.
 sql = (SQLCHAR *)"INSERT INTO test_odbc_batch_insert VALUES(?, ?)";
 retcode = SQLPrepare(hstmt, (SQLCHAR *)sql, SQL_NTS);
 CHECK_ERROR(retcode, "SQLPrepare", hstmt, SQL_HANDLE_STMT);
 // Bind parameters.
 retcode = SQLBindParameter(
 hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, sizeof(ids[0]), 0, &(ids[0]), 0,
bufLenIds);
 CHECK_ERROR(retcode, "SQLBindParameter 1", hstmt, SQL_HANDLE_STMT);
 retcode = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 50, 50, cols, 50,
bufLenCols);
 CHECK_ERROR(retcode, "SQLBindParameter 2", hstmt, SQL_HANDLE_STMT);
 // Set the total number of rows in the parameter array.
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)BATCH_SIZE,
sizeof(BATCH_SIZE));
 CHECK_ERROR(retcode, "SQLSetStmtAttr", hstmt, SQL_HANDLE_STMT);
 // Set the number of processed rows.
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR, (SQLPOINTER)&process,
sizeof(process));
 CHECK_ERROR(retcode, "SQLSetStmtAttr SQL_ATTR_PARAMS_PROCESSED_PTR", hstmt,
SQL_HANDLE_STMT);
 // Execute batch insertion.
 retcode = SQLExecute(hstmt);
 // Manually commit the transaction.
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 retcode = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
 CHECK_ERROR(retcode, "SQLEndTran", hdbc, SQL_HANDLE_DBC);
 }
 // On failure, roll back the transaction.
 else {
 CHECK_ERROR_VOID(retcode, "SQLExecute", hstmt, SQL_HANDLE_STMT);
 retcode = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
 printf("Transaction rollback\n");
 CHECK_ERROR(retcode, "SQLEndTran", hdbc, SQL_HANDLE_DBC);
 }

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

 // Obtain the number of rows processed in batches.
 SQLRowCount(hstmt, &rowsCount);
 sprintf((char *)loginfo, "SQLRowCount : %ld", rowsCount);
 puts(loginfo);
 // Check whether the number of inserted rows matches the number of processed rows.
 if (rowsCount != process) {
 sprintf(loginfo, "process(%d) != rowsCount(%d)", process, rowsCount);
 puts(loginfo);
 } else {
 sprintf(loginfo, "process(%d) == rowsCount(%d)", process, rowsCount);
 }
 retcode = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 CHECK_ERROR(retcode, "SQLFreeHandle", hstmt, SQL_HANDLE_STMT);
 }
exit:
 (void)printf("Complete.\n");
 // Close the connection.
 if (hdbc != SQL_NULL_HDBC) {
 SQLDisconnect(hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 }
 // Release the environment handle.
 if (henv != SQL_NULL_HENV)
 SQLFreeHandle(SQL_HANDLE_ENV, henv);
 return 0;
}
void print_diag(char *msg, SQLSMALLINT htype, SQLHANDLE handle)
{
 char sqlstate[32];
 char message[1000];
 SQLINTEGER nativeerror;
 SQLSMALLINT textlen;
 SQLRETURN ret;
 SQLSMALLINT recno = 0;
 if (msg)
 printf("%s\n", msg);
 do {
 recno++;
 // Obtain diagnostic information.
 ret = SQLGetDiagRec(
 htype, handle, recno, (SQLCHAR *)sqlstate, &nativeerror, (SQLCHAR *)message, sizeof(message),
&textlen);
 if (ret == SQL_INVALID_HANDLE)
 printf("Invalid handle\n");
 else if (SQL_SUCCEEDED(ret))
 printf("%s=%s\n", sqlstate, message);
 } while (ret == SQL_SUCCESS);
 if (ret == SQL_NO_DATA && recno == 1)
 printf("No error information\n");
}

Result Verification

After successfully connecting to the database, ODBC inserts 100 data records in
batches. Below are the expected results for Complete Example:

SQLConnect success
SQLRowCount : 100
Complete.

Rollback Method

If any abnormal operations occur during the transaction, call the SQLEndTran API
to roll them back, as follows:

SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

14.1.5 Typical Issues
1. Question: After setting ignoreCount (which specifies the data size to

exclude), can I select which specific data to exclude from the database?

Answer: Sure. In Complete Example, you can adjust the operator pointer
operptr to specify which data should be inserted and which should be
excluded. Specifically, when operptr is set to SQL_PARAM_IGNORE, the data
will be excluded; when operptr is set to SQL_PARAM_PROCEED, the data will
be inserted.

2. Question: If batch insertion fails, can the transaction be committed for
successfully inserted data and rolled back only for data that encounters an
error?

Answer: No, but in the event of insertion failure, the transaction must be
rolled back for all scheduled data. However, to address the issue, one possible
solution is to define smaller data batches in the application code to commit
the data in batches for better exception capture.

3. Question: I have set UseServerSidePrepare to 0 and inserted n records in
batches, but why does the SQLRowCount API return 1 as the number of
inserted records?

Answer: This result is as expected. Let's revisit the explanation of
UseServerSidePrepare provided in Preparations for the odbc.ini file for Linux
environments: When UseServerSidePrepare is set to 1, PU/PBE packets will
be sent for soft parsing. In this case, SQLRowCount returns the number of
records updated last time. Conversely, when UseServerSidePrepare is set to
0, Q packets will be sent for hard parsing, where SQLRowCount still returns
the number of records updated last time. However, because only one SQL
statement is carried in each Q packet, the number of inserted records is 1.

14.2 Best Practices for ODBC (Centralized Instances)

14.2.1 Scenario Overview
This section explains how to use the ODBC driver for batch data insertion.

14.2.1.1 Usage Scenarios

Scenario Description

Batch insertion offers a more efficient way to write multiple records into the
database in a single operation. Compared to single-record insertion, batch
insertion decreases interactions between the application and the database, leading
to lower network latency and system resource usage, while significantly improving
data write efficiency.

This section illustrates various operations using the ODBC driver, including
establishing database connections, utilizing transactions, executing batch insertion,
and obtaining column information in the result set.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

Trigger Conditions
The UseServerSidePrepare and UseBatchProtocol parameters are enabled in the
ODBC configurations (both are enabled by default). Batch binding parameters are
set and batch data is initialized in the application code. Batch insertion is then
executed under these settings.

Impact on Services
● Lower network interaction costs

Combining multiple INSERT statements into one batch operation significantly
reduces the number of round trips between the client and the database. This
enhances the overall throughput and minimizes the impact of network
congestion on performance.

● Higher data processing efficiency
In single-record insertion, the database must parse the syntax and generate
an execution plan for each SQL statement. In contrast, batch insertion
requires parsing the syntax and generating the plan only once, eliminating
repetitive tasks and saving CPU cycles and memory allocation time.

● Reduced system resource usage and overhead
In single-record insertion, transaction commits or Xlog writes occur at least
once. In contrast, batch insertion allows multiple records to be inserted within
a single transaction, significantly reducing the frequency of transaction
commits, Xlog pressure, and transaction management overhead. In addition, it
decreases the total number of network packet processing, transaction
management, log write, and row format conversion tasks, which in turn
lowers the CPU loads and temporary memory usage of the database server.
This results in more resources being available for core query and computing
operations.

● Higher memory usage
When large data sizes are involved, constructing SQL statements for batch
insertion can significantly increase memory usage. This is particularly
noticeable when you construct SQL statements through string concatenation,
as it can lead to a sharp rise in memory consumption. Large-size batch
processing may exceed the maximum SQL length limit of the database or
driver, or trigger other parameter restrictions, potentially leading to errors or
performance issues.

Here is a detailed comparison between batch insertion and single-record insertion.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

Mode Advantages Disadvantages

Single-
record
insertio
n

● Its code is simple,
straightforward, and easy to
implement.

● If any single record fails, it
can be accurately identified
and handled without
impacting other records.

● This mode is less demanding
in terms of database and
driver compatibility.

● Extensive network interactions
are needed. Each INSERT
operation requires connecting,
parsing, and committing,
leading to suboptimal
performance.

● Inserting a large number of
records is likely to cause a
bottleneck.

● Not using transactions may
result in failure to guarantee
the consistency of INSERT
operations.

Batch
insertio
n

● This mode greatly reduces the
number of network round
trips and SQL parsing
instances, leading to a
notable improvement in
insertion throughput.

● Multiple rows can be
committed within a single
transaction to guarantee
atomicity.

● Its code is complex, requiring
manual concatenation of
placeholders and parameters.

● If a single statement
encounters an error, all data
will be rolled back,
complicating the error recovery
process.

● The number of placeholders is
limited; therefore, it is essential
to carefully manage the batch
size.

Applicable Versions

This applies only to GaussDB V500R002C10 and later versions.

14.2.1.2 Requirements and Objectives

Service Pain Points

When dealing with large data sizes, single-record insertion generates numerous
network requests and consumes substantial system resources. Moreover, the
database server has to repeatedly parse similar statements, leading to a decline in
service performance. Batch insertion is introduced as a solution to these issues.

Service Objectives

Use the ODBC driver to initialize the target table, and insert the required data in
batches through transactions for future queries. Compared to inserting data
individually through SQL statements, this approach decreases interactions with the
database and alleviates the database load.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

14.2.2 Architecture Principles

Core Principles
When the UseBatchProtocol and UseServerSidePrepare parameters are enabled,
batch processing of ODBC can reuse the same execution plan for a prepared SQL
statement. All batch data to be committed within the current transaction is carried
in a single U packet. Consequently, completing the batch operation only
necessitates once instance of network connection establishment and data
exchange.

Solution Advantages
● Optimized network communication

Sending all batch updates at once in a single U packet significantly decreases
network communication overhead when compared to sending PBE packets
multiple times.

● Improved execution efficiency
Due to the reduced number and frequency of network communication, the
overall execution efficiency is significantly improved, especially for large data
sizes.

● Optimized resource utilization
Batch insertion optimizes the utilization of database server resources, cutting
down on unnecessary system overhead associated with single-record
insertion.

14.2.3 Preparations
● ODBC version: V500R002C10 or later.
● Database environment: GaussDB V500R002C10 or later.
● ODBC driver environment:

Refer to "Application Development Guide > Development Based on ODBC >
Development Procedure > Obtaining the Source Code Package, ODBC
Packages, and Dependency Libraries" in Developer Guide.

● ODBC data source:
Refer to "Configuring a Data Source in the Linux OS" or "Configuring a Data
Source in the Windows OS" under "Application Development Guide >
Development Based on ODBC > Development Procedure > Connecting to a
Database" in Developer Guide.
Taking Linux environments as an example, you are advised to set parameters
in the odbc.ini file as follows:
[gaussdb]
Driver=GaussMPP
Servername=127.0.0.1 # IP address of the database server.
Database=db1 # Database name.
Username=omm # Name of a database user.
Password=****** # Password for the database user.
Port=8000 # Database listening port.
Sslmode=allow # Specifies whether to enable SSL encryption. When set to allow, it means that the
database server can use SSL encryption as required, but the server's authenticity is not verified.
UseServerSidePrepare=1 # This parameter is enabled by default. If it is set to 1, the client sends
PU/PBE packets in soft parsing mode. If it is set to 0, the client sends Q packets in hard parsing mode.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

UseBatchProtocol=1 # Specifies whether to enable batch query. This parameter is enabled by default.
MaxCacheQueries=1024 # Number of prepared statements cached for each connection.
MaxCacheSizeMiB=5 # Total size of prepared statements cached for each connection. This parameter
takes effect when MaxCacheQueries is greater than 0.
ConnSettings=set client_encoding=UTF8 # Client-side encoding, which must be consistent with server-
side encoding.
SocketTimeout=5 # Timeout interval for socket reads/writes after a connection is successfully
established between the client and the server.
TargetServerType=primary # Type of the target server to connect to. A connection can be successfully
established only when the actual server type matches the value of this parameter. primary indicates
that only the primary node in a primary/standby system can be connected to.

NO TE

● The MaxCacheQueries and MaxCacheSizeMiB parameters are supported in
GaussDB 503.1 and later versions.

● The SocketTimeout parameter is supported in GaussDB 505.2 and later versions.
● The TargetServerType options of cluster-primary, cluster-standby, and cluster-

mainnode are available only from GaussDB 506.0. Other options have been
supported since GaussDB 505.2.

Figure 14-2 shows the recommended configurations for the data source
manager in Windows environments.

Figure 14-2 Data source manager configurations in Windows environments

NO TE

Adjust the preceding data source configurations, including but not limited to the
database server IP address, port number, and other connection parameters, to match
the actual services.

14.2.4 Procedure

14.2.4.1 Process Overview
The process of batch binding and insertion includes steps such as configuring a
connection, setting batch binding parameters, and executing batch insertion.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Typical APIs involved include SQLSetConnectAttr, SQLSetStmtAttr, SQLPrepare,
SQLBindParameter, SQLExecute, and SQLRowCount.

For details about these APIs, see "Application Development Guide > Development
Based on ODBC > ODBC API Reference" in Developer Guide.

14.2.4.2 Detailed Procedure

Step 1 Configure a connection.

1. Set the connection timeout interval.
To manage the timeout interval (in seconds) for clients to connect to the
server, adjust the SQL_LOGIN_TIMEOUT parameter in the SQLSetConnectAttr
function. This parameter corresponds to the libpq parameter
connect_timeout. A default value of 0 indicates that the parameter is not in
effect. You are advised to set it based on the actual network conditions.
SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)5, 0);

2. Disable the autocommit option in order to use transactions for commit or
rollback.
To use transactions for commit or rollback, disable autocommit by setting
SQL_AUTOCOMMIT_OFF in the SQLSetConnectAttr function.
SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF, 0);

3. Establish a database connection.
Establish a database connection through the SQLConnect function. Below is
the function prototype:
SQLRETURN SQLConnect(SQLHDBC ConnectionHandle,
 SQLCHAR *ServerName,
 SQLSMALLINT NameLength1,
 SQLCHAR *UserName,
 SQLSMALLINT NameLength2,
 SQLCHAR *Authentication,
 SQLSMALLINT NameLength3);

If ServerName of the data source was set to gaussdb in Preparations, ODBC
automatically obtains connection parameters from the odbc.ini file (in Linux
environments) or from the data source manager (in Windows environments).
After obtaining the data source, the function utilizes the connection handle
hdbc to access all details about the connected data source, including program
running status, transaction processing status, and error information.
Subsequently, the function employs the appropriate parameters to connect to
the database.
SQLConnect(hdbc, (SQLCHAR *)"gaussdb", SQL_NTS, (SQLCHAR *)"", 0, (SQLCHAR *)"", 0);

Step 2 Set batch binding parameters.

1. Set batch binding parameters.
Set the total number of rows in the batch binding parameter array. The
batchCount variable indicates the total number of rows to be inserted in
batches.
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)batchCount, sizeof(batchCount));

Set the number of processed rows. The processRows variable indicates the
number of rows that have been inserted in batches.
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR, (SQLPOINTER)&processRows,
sizeof(processRows));

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

2. Prepare statements and bind parameters.
Use the SQLPrepare function to prepare SQL statements. Use the
SQLBindParameter function to bind parameters to the prepared statements.
The sql variable holds the SQL statement string. SQL_NTS indicates that the
string ends with a null character. ids and cols correspond to the two arrays in
the id column (INT type) and col column (VARCHAR type).
SQLPrepare(hstmt, (SQLCHAR *)sql, SQL_NTS);
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, sizeof(ids[0]), 0,
&(ids[0]), 0, bufLenIds);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 50, 50, cols, 50,
bufLenCols);

Step 3 Execute batch insertion.

1. Execute batch insertion.
Use the SQLExecute function to execute the prepared SQL statements for
batch insertion. The return value of retcode indicates the result of the
insertion.
retcode = SQLExecute(hstmt);

2. Manually commit or roll back the transaction.
If retcode returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the insertion
was successful. In this case, call the SQLEndTran function to commit the
transaction. However, if retcode returns any other value, the insertion has
failed. In this case, call the SQLEndTran function to roll back the transaction.
SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT); // Commit the transaction.
SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK); // Roll back the transaction.

3. Obtain the number of rows processed in batches.
Use the SQLRowCount function to obtain the number of rows actually
inserted and store the number in the rowsCount variable.
SQLRowCount(hstmt, &rowsCount);

----End

14.2.4.3 Complete Example
/**
 * Enable UseBatchProtocol in the data source and set the database parameter support_batch_bind to on.
 * CHECK_ERROR and CHECK_ERROR_VOID are used to check for and print error information.
 * This example interactively obtains the DSN and the data size for batch binding, and inserts the final data
into test_odbc_batch_insert.
 ***/
#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <sql.h>
#include <sqlext.h>
#include <string.h>
#define CHECK_ERROR(e, s, t, h) \
 ({ \
 if (e != SQL_SUCCESS && e != SQL_SUCCESS_WITH_INFO) { \
 fprintf(stderr, "FAILED:\t"); \
 print_diag(s, h, t); \
 goto exit; \
 } \
 })
#define CHECK_ERROR_VOID(e, s, t, h) \
 ({ \
 if (e != SQL_SUCCESS && e != SQL_SUCCESS_WITH_INFO) { \

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

 fprintf(stderr, "FAILED:\t"); \
 print_diag(s, h, t); \
 } \
 })
#define BATCH_SIZE 100 // Data size to be bound in batches.
// Print error information.
void print_diag(char *msg, SQLSMALLINT htype, SQLHANDLE handle);
// Execute SQL statements.
void Exec(SQLHDBC hdbc, SQLCHAR *sql)
{
 SQLRETURN retcode; // Returned error code.
 SQLHSTMT hstmt = SQL_NULL_HSTMT; // Statement handle.
 SQLCHAR loginfo[2048];
 // Allocate a statement handle.
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLAllocHandle(SQL_HANDLE_STMT) failed");
 return;
 }
 // Prepare statements.
 retcode = SQLPrepare(hstmt, (SQLCHAR *)sql, SQL_NTS);
 sprintf((char *)loginfo, "SQLPrepare log: %s", (char *)sql);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLPrepare(hstmt, (SQLCHAR*) sql, SQL_NTS) failed");
 return;
 }
 // Execute statements.
 retcode = SQLExecute(hstmt);
 sprintf((char *)loginfo, "SQLExecute stmt log: %s", (char *)sql);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLExecute(hstmt) failed");
 return;
 }
 // Release the handle.
 retcode = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 sprintf((char *)loginfo, "SQLFreeHandle stmt log: %s", (char *)sql);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLFreeHandle(SQL_HANDLE_STMT, hstmt) failed");
 return;
 }
}
int main()
{
 SQLHENV henv = SQL_NULL_HENV;
 SQLHDBC hdbc = SQL_NULL_HDBC;
 SQLLEN rowsCount = 0;
 int i = 0;
 SQLRETURN retcode;
 SQLCHAR dsn[1024] = {'\0'};
 SQLCHAR loginfo[2048];
 // Allocate an environment handle.
 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (!SQL_SUCCEEDED(retcode)) {
 printf("SQLAllocHandle failed");
 goto exit;
 }
 CHECK_ERROR(retcode, "SQLAllocHandle henv", henv, SQL_HANDLE_ENV);
 // Set the ODBC version.
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER *)SQL_OV_ODBC3, 0);
 CHECK_ERROR(retcode, "SQLSetEnvAttr", henv, SQL_HANDLE_ENV);
 // Allocate connections.
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 CHECK_ERROR(retcode, "SQLAllocHandle hdbc", hdbc, SQL_HANDLE_DBC);
 // Set the login timeout.
 retcode = SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)5, 0);
 CHECK_ERROR(retcode, "SQLSetConnectAttr SQL_LOGIN_TIMEOUT", hdbc, SQL_HANDLE_DBC);
 // Disable the autocommit option in order to use transactions for commit.
 retcode = SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF, 0);
 CHECK_ERROR(retcode, "SQLSetConnectAttr SQL_ATTR_AUTOCOMMIT", hdbc, SQL_HANDLE_DBC);

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

 // Establish a database connection.
 retcode = SQLConnect(hdbc, (SQLCHAR *)"gaussdb", SQL_NTS, (SQLCHAR *)"", 0, (SQLCHAR *)"", 0);
 CHECK_ERROR(retcode, "SQLSetConnectAttr SQL_ATTR_AUTOCOMMIT", hdbc, SQL_HANDLE_DBC);
 printf("SQLConnect success\n");
 // Initialize table information.
 Exec(hdbc, "DROP TABLE IF EXISTS test_odbc_batch_insert");
 Exec(hdbc, "CREATE TABLE test_odbc_batch_insert (id INT PRIMARY KEY, col VARCHAR2(50))");
 // Commit the transaction in segments for other SQL operations.
 retcode = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
 CHECK_ERROR(retcode, "SQLEndTran", hdbc, SQL_HANDLE_DBC);
 // Construct the data to be inserted in batches based on the user-specified data size.
 {
 SQLRETURN retcode;
 SQLHSTMT hstmt = SQL_NULL_HSTMT;
 SQLCHAR *sql = NULL;
 SQLINTEGER *ids = NULL;
 SQLCHAR *cols = NULL;
 SQLLEN *bufLenIds = NULL;
 SQLLEN *bufLenCols = NULL;
 SQLUSMALLINT *operptr = NULL;
 SQLUSMALLINT *statusptr = NULL;
 SQLULEN process = 0;
 // Construct fields by column.
 ids = (SQLINTEGER *)malloc(sizeof(ids[0]) * BATCH_SIZE);
 cols = (SQLCHAR *)malloc(sizeof(cols[0]) * BATCH_SIZE * 50);
 // Memory length for each row of data with each field.
 bufLenIds = (SQLLEN *)malloc(sizeof(bufLenIds[0]) * BATCH_SIZE);
 bufLenCols = (SQLLEN *)malloc(sizeof(bufLenCols[0]) * BATCH_SIZE);
 if (NULL == ids || NULL == cols || NULL == bufLenCols || NULL == bufLenIds) {
 fprintf(stderr, "FAILED:\tmalloc data memory failed\n");
 goto exit;
 }
 // Assign values to data.
 for (i = 0; i < BATCH_SIZE; i++) {
 ids[i] = i;
 sprintf(cols + 50 * i, "column test value %d", i);
 bufLenIds[i] = sizeof(ids[i]);
 bufLenCols[i] = strlen(cols + 50 * i);
 }
 // Allocate a statement handle.
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
 CHECK_ERROR(retcode, "SQLSetConnectAttr SQL_ATTR_AUTOCOMMIT", hstmt, SQL_HANDLE_STMT);
 // Prepare statements.
 sql = (SQLCHAR *)"INSERT INTO test_odbc_batch_insert VALUES(?, ?)";
 retcode = SQLPrepare(hstmt, (SQLCHAR *)sql, SQL_NTS);
 CHECK_ERROR(retcode, "SQLPrepare", hstmt, SQL_HANDLE_STMT);
 // Bind parameters.
 retcode = SQLBindParameter(
 hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, sizeof(ids[0]), 0, &(ids[0]), 0,
bufLenIds);
 CHECK_ERROR(retcode, "SQLBindParameter 1", hstmt, SQL_HANDLE_STMT);
 retcode = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 50, 50, cols, 50,
bufLenCols);
 CHECK_ERROR(retcode, "SQLBindParameter 2", hstmt, SQL_HANDLE_STMT);
 // Set the total number of rows in the parameter array.
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)BATCH_SIZE,
sizeof(BATCH_SIZE));
 CHECK_ERROR(retcode, "SQLSetStmtAttr", hstmt, SQL_HANDLE_STMT);
 // Set the number of processed rows.
 retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR, (SQLPOINTER)&process,
sizeof(process));
 CHECK_ERROR(retcode, "SQLSetStmtAttr SQL_ATTR_PARAMS_PROCESSED_PTR", hstmt,
SQL_HANDLE_STMT);
 // Execute batch insertion.
 retcode = SQLExecute(hstmt);
 // Manually commit the transaction.
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 retcode = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
 CHECK_ERROR(retcode, "SQLEndTran", hdbc, SQL_HANDLE_DBC);

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

 }
 // On failure, roll back the transaction.
 else {
 CHECK_ERROR_VOID(retcode, "SQLExecute", hstmt, SQL_HANDLE_STMT);
 retcode = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
 printf("Transaction rollback\n");
 CHECK_ERROR(retcode, "SQLEndTran", hdbc, SQL_HANDLE_DBC);
 }
 // Obtain the number of rows processed in batches.
 SQLRowCount(hstmt, &rowsCount);
 sprintf((char *)loginfo, "SQLRowCount : %ld", rowsCount);
 puts(loginfo);
 // Check whether the number of inserted rows matches the number of processed rows.
 if (rowsCount != process) {
 sprintf(loginfo, "process(%d) != rowsCount(%d)", process, rowsCount);
 puts(loginfo);
 } else {
 sprintf(loginfo, "process(%d) == rowsCount(%d)", process, rowsCount);
 }
 retcode = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 CHECK_ERROR(retcode, "SQLFreeHandle", hstmt, SQL_HANDLE_STMT);
 }
exit:
 (void)printf("Complete.\n");
 // Close the connection.
 if (hdbc != SQL_NULL_HDBC) {
 SQLDisconnect(hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 }
 // Release the environment handle.
 if (henv != SQL_NULL_HENV)
 SQLFreeHandle(SQL_HANDLE_ENV, henv);
 return 0;
}
void print_diag(char *msg, SQLSMALLINT htype, SQLHANDLE handle)
{
 char sqlstate[32];
 char message[1000];
 SQLINTEGER nativeerror;
 SQLSMALLINT textlen;
 SQLRETURN ret;
 SQLSMALLINT recno = 0;
 if (msg)
 printf("%s\n", msg);
 do {
 recno++;
 // Obtain diagnostic information.
 ret = SQLGetDiagRec(
 htype, handle, recno, (SQLCHAR *)sqlstate, &nativeerror, (SQLCHAR *)message, sizeof(message),
&textlen);
 if (ret == SQL_INVALID_HANDLE)
 printf("Invalid handle\n");
 else if (SQL_SUCCEEDED(ret))
 printf("%s=%s\n", sqlstate, message);
 } while (ret == SQL_SUCCESS);
 if (ret == SQL_NO_DATA && recno == 1)
 printf("No error information\n");
}

Result Verification
After successfully connecting to the database, ODBC inserts 100 data records in
batches. Below are the expected results for Complete Example:

SQLConnect success
SQLRowCount : 100
Complete.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

Rollback Method
If any abnormal operations occur during the transaction, call the SQLEndTran API
to roll them back, as follows:

SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);

14.2.5 Typical Issues
1. Question: After setting ignoreCount (which specifies the data size to

exclude), can I select which specific data to exclude from the database?
Answer: Sure. In Complete Example, you can adjust the operator pointer
operptr to specify which data should be inserted and which should be
excluded. Specifically, when operptr is set to SQL_PARAM_IGNORE, the data
will be excluded; when operptr is set to SQL_PARAM_PROCEED, the data will
be inserted.

2. Question: If batch insertion fails, can the transaction be committed for
successfully inserted data and rolled back only for data that encounters an
error?
Answer: No, but in the event of insertion failure, the transaction must be
rolled back for all scheduled data. However, to address the issue, one possible
solution is to define smaller data batches in the application code to commit
the data in batches for better exception capture.

3. Question: I have set UseServerSidePrepare to 0 and inserted n records in
batches, but why does the SQLRowCount API return 1 as the number of
inserted records?
Answer: This result is as expected. Let's revisit the explanation of
UseServerSidePrepare provided in Preparations for the odbc.ini file for Linux
environments: When UseServerSidePrepare is set to 1, PU/PBE packets will
be sent for soft parsing. In this case, SQLRowCount returns the number of
records updated last time. Conversely, when UseServerSidePrepare is set to
0, Q packets will be sent for hard parsing, where SQLRowCount still returns
the number of records updated last time. However, because only one SQL
statement is carried in each Q packet, the number of inserted records is 1.

GaussDB
Best Practices 14 Best Practices for ODBC

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

15 Best Practices for Go

15.1 Best Practices for Go (Distributed Instances)

15.1.1 Scenario Overview
This section explains how to use the Go driver for batch data insertion.

15.1.1.1 Usage Scenarios

Scenario Description
Batch insertion offers a more efficient way to write multiple records into the
database in a single operation. Compared to single-record insertion, batch
insertion decreases interactions between the application and the database, leading
to lower network latency and system resource usage, while significantly improving
data write efficiency.

This section illustrates various operations using the Go driver, including
establishing database connections, utilizing transactions, executing batch insertion,
and obtaining column information in the result set.

Trigger Conditions
The application code has generated an SQL statement for batch insertion and
bound the necessary parameters. Subsequently, the Exec API is called within a
transaction to execute the SQL statement.

Impact on Services
● Lower network interaction costs

Combining multiple INSERT statements into one batch operation significantly
reduces the number of round trips between the client and the database. This
enhances the overall throughput and minimizes the impact of network
congestion on performance.

● Higher data processing efficiency

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

In single-record insertion, the database must parse the syntax and generate
an execution plan for each SQL statement. In contrast, batch insertion
requires parsing the syntax and generating the plan only once, eliminating
repetitive tasks and saving CPU cycles and memory allocation time.

● Reduced system resource usage and overhead
In single-record insertion, transaction commits or Xlog writes occur at least
once. In contrast, batch insertion allows multiple records to be inserted within
a single transaction, significantly reducing the frequency of transaction
commits, Xlog pressure, and transaction management overhead. In addition, it
decreases the total number of network packet processing, transaction
management, log write, and row format conversion tasks, which in turn
lowers the CPU loads and temporary memory usage of the database server.
This results in more resources being available for core query and computing
operations.

● Higher memory usage
When large data sizes are involved, constructing SQL statements for batch
insertion can significantly increase memory usage. This is particularly
noticeable when you construct SQL statements through string concatenation,
as it can lead to a sharp rise in memory consumption. Large-size batch
processing may exceed the maximum SQL length limit of the database or
driver, or trigger other parameter restrictions, potentially leading to errors or
performance issues.

Here is a detailed comparison between batch insertion and single-record insertion.

Mode Advantages Disadvantages

Single-
record
insertio
n

● Its code is simple,
straightforward, and easy to
implement.

● If any single record fails, it
can be accurately identified
and handled without
impacting other records.

● This mode is less demanding
in terms of database and
driver compatibility.

● Extensive network interactions
are needed. Each INSERT
operation requires connecting,
parsing, and committing,
leading to suboptimal
performance.

● Inserting a large number of
records is likely to cause a
bottleneck.

● Not using transactions may
result in failure to guarantee
the consistency of INSERT
operations.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

Mode Advantages Disadvantages

Batch
insertio
n

● This mode greatly reduces the
number of network round
trips and SQL parsing
instances, leading to a
notable improvement in
insertion throughput.

● Multiple rows can be
committed within a single
transaction to guarantee
atomicity.

● Its code is complex, requiring
manual concatenation of
placeholders and parameters.

● If a single statement
encounters an error, all data
will be rolled back,
complicating the error recovery
process.

● The number of placeholders is
limited; therefore, it is essential
to carefully manage the batch
size.

Applicable Versions
This applies only to GaussDB 503.1.0 and later versions.

15.1.1.2 Requirements and Objectives

Service Pain Points
When dealing with large data sizes, single-record insertion generates numerous
network requests and consumes substantial system resources. Moreover, the
database server has to repeatedly parse similar statements, leading to a decline in
service performance. Batch insertion is introduced as a solution to these issues.

Service Objectives
Use the Go driver to initialize the target table, and insert the required data in
batches through transactions for future queries. Once the batch insertion is
complete, obtain column data from the result set and output the result
information.

15.1.2 Architecture Principles

Core Principles
Batch processing of Go allows using one SQL statement to send multiple records
into the database in one go. All insert or update operations in the transaction are
carried in a single U packet. Consequently, completing the batch operation only
necessitates once instance of network connection establishment and data
exchange.

Solution Advantages
● Optimized network communication: Sending all batch updates at once in a

single U packet significantly decreases network communication overhead
when compared to sending PBE packets multiple times.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

● Improved execution efficiency: Due to the reduced number and frequency of
network communication, the overall execution efficiency is significantly
improved, especially for large data sizes.

● Optimized resource utilization: Batch insertion optimizes the utilization of
database server resources, cutting down on unnecessary system overhead
associated with single-record insertion.

15.1.3 Preparations
● Golang version: 1.13 or later.

● Database environment:

GaussDB 503.1.0 or later

● Go driver environment:

Refer to "Application Development Guide > Development Based on the Go
Driver > Development Procedure > Preparing the Environment" in Developer
Guide.

● Environment variables needed by code:

Taking Linux environments as an example:
export GOHOSTIP='127.0.0.1' # IP address. Adjust it based on the actual services.
export GOPORT='5432' # Port number. Adjust it based on the actual services.
export GOUSRNAME='test_user' # Name of a database user. Adjust it based on the actual
services.
export GOPASSWD='xxxxxxxx' # Password for the database user. Adjust it based on the
actual services.
export GODBNAME='gaussdb' # Database name. Adjust it based on the actual services.
export GOCONNECT_TIMEOUT='3' # Timeout interval for database connection. Adjust it
based on the actual services.
export GOSOCKET_TIMEOUT='1' # Timeout interval for a single SQL statement. Adjust it
based on the actual services.
export GOSSLMODE='verify-full' # Specifies whether to enable SSL encryption. Adjust it
based on the actual services.
export GOROOTCERT='certs/cacert.pem' # Path to the root certificate. Adjust it based on the
actual services.
export GOSSLKEY='certs/client-key.pem' # Path to the client key. Adjust it based on the actual
services.
export GOSSLCERT='certs/client-cert.pem' # Path to the client certificate. Adjust it based on the
actual services.

NO TE

Adjust the values of environment variables as needed. However, if your code does not
intend to obtain connection parameter values from environment variables, you may
skip this step.

15.1.4 Procedure

15.1.4.1 Process Overview

The Go driver can create database connections and insert data in batches within a
transaction.

Figure 15-1 shows the overall process.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

Figure 15-1 Process of batch insertion

15.1.4.2 Detailed Procedure

Step 1 Obtain the variable values needed by connection parameters and concatenate
them to create a connection string.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

NO TE

● The connection string can be in DSN or URL format.
● For details about database connection parameters, refer to "Application Development

Guide > Development Based on the Go Driver > Development Procedure > Preparing the
Environment" in Developer Guide.

The parameter values involved in Detailed Procedure can be obtained from the
environment variables set in Preparations and concatenated, as shown in the following
code. You can obtain the values of connection parameters from environment variables by
using os.Getenv. Alternatively, you can set these values by reading configuration files or
writing fixed values.
hostip := os.Getenv("GOHOSTIP") // GOHOSTIP: IP address written to environment
variables.
port := os.Getenv("GOPORT") // GOPORT: port number written to environment
variables.
usrname := os.Getenv("GOUSRNAME") // GOUSRNAME: username written to environment
variables.
passwd := os.Getenv("GOPASSWD") // GOPASSWD: user password written to environment
variables.
dbname := os.Getenv("GODBNAME") // GODBNAME: name of the target database
written to environment variables.
connect_timeout := os.Getenv("GOCONNECT_TIMEOUT") // GOCONNECT_TIMEOUT: timeout interval
for connecting to the database written to environment variables.
socket_timeout := os.Getenv("GOSOCKET_TIMEOUT") // GOSOCKET_TIMEOUT: maximum duration
of the SQL statement written to environment variables.
rootcertPath := os.Getenv("GOROOTCERT") // GOROOTCERT: path to the root certificate
written to environment variables.
sslkeyPath := os.Getenv("GOSSLKEY") // GOSSLKEY: path to the key of the client certificate
written to environment variables.
sslcertPath := os.Getenv("GOSSLCERT") // GOSSLCERT: path to the client SSL certificate
written to environment variables.
sslmode := os.Getenv("GOSSLMODE") // GOSSLMODE: SSL encryption written to
environment variables.

● In case of a DSN connection string, refer to the following recommended
connection settings and format when assigning values to the dsn variable:
dsn := fmt.Sprintf("host=%s port=%s user=%s password=%s dbname=%s connect_timeout=%s
socketTimeout=%s sslmode=%s sslrootcert=%s sslkey=%s sslcert=%s target_session_attrs=master
autoBalance=true",
 hostip,
 port,
 usrname,
 passwd,
 dbname,
 connect_timeout,
 socket_timeout,
 sslmode,
 rootcertPath,
 sslkeyPath,
 sslcertPath,
)

● In case of a URL connection string, refer to the following recommended URL
connection settings and format when assigning values to the url variable:
url := fmt.Sprintf("gaussdb://%s:%s@%s:%s/%s?connect_timeout=%s&socketTimeout=%s&sslmode=
%s&sslrootcert=%s&sslkey=%s&sslcert=%s&target_session_attrs=master&autoBalance=true",
 usrname,
 passwd,
 hostip,
 port,
 dbname,
 connect_timeout,
 socket_timeout,
 sslmode,
 rootcertPath,
 sslkeyPath,

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

 sslcertPath,
)

NO TE

● connect_timeout: timeout interval (in seconds) for connecting to the database server.
The timeout interval must be set based on the actual network conditions. A default
value of 0 indicates that no timeout will occur.

● socket_timeout: maximum duration of a single SQL statement. If a statement exceeds
this limit, it will be interrupted and reconnected. You are advised to set this parameter
based on service characteristics. If not specified, the default value 0 will be applied,
indicating that no timeout will occur.

● sslmode: specifies whether to enable SSL encryption.
● target_session_attrs: connection type of the database. This parameter is used to

identify the primary and standby nodes. The default value is any.
● autoBalance: load balancing policy. It is a character string, with a default value of false.

Step 2 Create a database connection object using the connection string concatenated in
Step 1.

Golang's database/sql standard library provides the sql.Open API for creating a
database connection object. Upon completion, the API returns the database
connection object and any error information.

func Open(driverName, dataSourceName string) (*DB, error)

● Define a DSN connection string as follows:
db, err := sql.Open("gaussdb", dsn)

● Define a URL connection string as follows:
db, err := sql.Open("gaussdb", url)

Step 3 Create a transaction object using the database connection object created in Step
2.

The database connection object provides the Begin API for creating a transaction
object. Upon completion, the API returns the transaction object and any error
information.

func (db *DB) Begin() (*Tx, error)

The following creates a transaction object and receives the transaction object
through the tx variable:

tx, err := db.Begin()

Step 4 Execute batch insertion using the transaction object created in Step 3.

The Exec API is used as an example. For details, see "Application Development
Guide > Development Based on the Go Driver > Go API Reference > type Tx" in
Developer Guide.

(tx *Tx)Exec(query string, args ...interface{})

The Exec API is called to insert the user-specified data size into the employee
table in batches by using the transaction object "tx" created in Step 3. This
involves concatenating the SQL statement for batch insertion and passing the
necessary values.

employee := []struct {
 Name string
 Age uint8
}{{Name: "zhangsan", Age: 21}, {Name: "lisi", Age: 22}, {Name: "zhaowu", Age: 23}}

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

batchSql := "INSERT INTO employee (name, age) VALUES "
vals := []interface{}{}

placeholders := ""
for i, u := range employee {
 placeholders += "(?, ?)"
 if i < len(employee)-1 {
 placeholders += ","
 }
 vals = append(vals, u.Name, u.Age)
}

stmt := batchSql + placeholders
result, err := tx.Exec(stmt, vals...)

Step 5 (Optional) Roll back the transaction using the transaction object created in Step 3.

The transaction object provides the Rollback API for rolling back the transaction.

func (tx *Tx) Rollback() error

If an error occurs in the transaction, call the Rollback API of the transaction object
"tx" created in Step 3 to roll back the transaction.

tx.Rollback()

Step 6 Commit the transaction using the transaction object created in Step 3.

The transaction object provides the Commit API for committing the transaction.

func (tx *Tx) Commit() error

Commit the transaction through the Commit API of the transaction object "tx"
created in Step 3.

err := tx.Commit()

Step 7 (Optional) Execute a query using the database connection object created in Step
2.

Both the database object and the transaction object provide the Query API. For
details, see "type DB" and "type Tx" under "Application Development Guide >
Development Based on the Go Driver > Go API Reference" in Developer Guide.

For example, call the Query API provided by the database object "db" created in
Step 2 to query the batch insertion results in Step 4 and receive the result object
through the "rows" variable.

rows, err := db.Query("SELECT id, name, created_at FROM users;"

Step 8 (Optional) Obtain the column count and column name list in the result set using
the result object in Step 7.

The result object in Step 7 is of the Rows type in database/sql of Golang. This
type provides a Columns API to return the list of column names in the query result
set. For details, see "Application Development Guide > Development Based on the
Go Driver > Go API Reference > type Rows".

func (rs *Rows) Columns() ([]string, error)

The following calls the Columns API provided by the result object in Step 7 to
obtain the list of queried column names and assign values to the columns
variable.

columns, err := rows.Columns()

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

The column count in the result set can be obtained by calling the len function to
calculate columns.

len(columns)

Step 9 (Optional) Obtain metadata such as column types in the result set by using the
result object in Step 7.

The result object in Step 7 is of the Rows type in database/sql of Golang. This
type provides a ColumnTypes API to return the list of column names in the query
result set. For details, see "Application Development Guide > Development Based
on the Go Driver > Go API Reference > type Rows".

func (rs *Rows) ColumnTypes() ([]*ColumnType, error)

Obtain column information from the result in Step 7.

The following calls the ColumnTypes API provided by the result object in Step 7 to
obtain the list of queried column types ([]*ColumnType) and assign values to the
columnTypes variable.

columnTypes, err := rows.ColumnTypes()

By traversing the columnTypes list, the application code can determine the types
of returned columns.

The type ColumnType variable provides APIs to describe the column types
available in database tables.

Table 15-1 Common methods for using the APIs provided by type ColumnType

Method Description Return
Type

(ci
*ColumnType)Dat
abaseTypeName()

Returns a column-type database system
name. If an empty string is returned, that
type of name is not supported.

Error

(ci
*ColumnType)Deci
malSize()

Returns the scale and precision of the
decimal type. If the value of ok is false, the
specified type is unavailable or unsupported.

Precision
and scale:
int64; ok:
Boolean

(ci
*ColumnType)Len
gth()

Returns the length of a data column type. If
the value of ok is false, the specified type
does not have a variable length.

Length:
int64; ok:
Boolean

(ci
*ColumnType)Sca
nType()

Returns a Go type that can be used for
Rows.scan.

reflect.Type

(ci
*ColumnType)Na
me()

Returns the name of a data column. String

Step 10 Close the connection using the database connection object created in Step 2.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

The database connection object provides the Close API for closing the database
connection.

func (db *DB) Close() error

Execute the following statement to close the database connection object "db"
created in Step 2:

db.Close()

----End

15.1.4.3 Complete Example
The following uses a DSN connection string as an example to explain how to
initialize the employee table, insert data in batches, and obtain column
information in the result set:
// main.go
package main

import (
 "database/sql"
 "fmt"
 _ "gitee.com/opengauss/openGauss-connector-go-pq"
 "log"
 "os"
)

func main() {
 // Create a database object.
 hostip := os.Getenv("GOHOSTIP") // GOHOSTIP: IP address written to environment variables.
 port := os.Getenv("GOPORT") // GOPORT: port number written to environment variables.
 usrname := os.Getenv("GOUSRNAME") // GOUSRNAME: username written to environment
variables.
 passwd := os.Getenv("GOPASSWD") // GOPASSWD: user password written to environment
variables.
 dbname := os.Getenv("GODBNAME") // GODBNAME: name of the target database written to
environment variables.
 connect_timeout := os.Getenv("GOCONNECT_TIMEOUT") // GOCONNECT_TIMEOUT: timeout interval for
connecting to the database written to environment variables.
 socket_timeout := os.Getenv("GOSOCKET_TIMEOUT") // GOSOCKET_TIMEOUT: maximum duration of
the SQL statement written to environment variables.
 rootcertPath := os.Getenv("GOROOTCERT") // GOROOTCERT: path to the root certificate written to
environment variables.
 sslkeyPath := os.Getenv("GOSSLKEY") // GOSSLKEY: path to the key of the client certificate
written to environment variables.
 sslcertPath := os.Getenv("GOSSLCERT") // GOSSLCERT: path to the client SSL certificate written to
environment variables.
 sslmode := os.Getenv("GOSSLMODE") // GOSSLMODE: SSL encryption written to environment
variables.

dsn := fmt.Sprintf("host=%s port=%s user=%s password=%s dbname=%s connect_timeout=%s
socketTimeout=%s "+
 "sslmode=%s sslrootcert=%s sslkey=%s sslcert=%s target_session_attrs=master",
 hostip,
 port,
 usrname,
 passwd,
 dbname,
 connect_timeout,
 socket_timeout,
 sslmode,
 rootcertPath,
 sslkeyPath,
 sslcertPath,
)

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

 db, err := sql.Open("gaussdb", dsn)
 if err != nil {
 panic(err)
 }
 defer db.Close()
 err = db.Ping()
 if err != nil {
 panic(err)
 }
 fmt.Println("connect success.")
 // Start a transaction.
 tx, err := db.Begin()
 if err != nil {
 log.Fatal(err)
 return
 }
 // Initialize a data table.
 _, err = tx.Exec("drop table if exists employee;")
 if err != nil {
 fmt.Println("drop table employee failed, err:", err)
 err = tx.Rollback() // On error, roll back the transaction.
 return
 }
 fmt.Println("drop table employee success.")
 _, err = tx.Exec("create table employee (id SERIAL PRIMARY KEY, name varchar(20), age int, created_at
TIMESTAMP DEFAULT CURRENT_TIMESTAMP);")
 if err != nil {
 fmt.Println("create table employee failed, err:", err)
 err = tx.Rollback()
 return
 }
 fmt.Println("create table employee success.")
 // Insert data in batches.
 employee := []struct {
 Name string
 Age uint8
 }{{Name: "zhangsan", Age: 21}, {Name: "lisi", Age: 22}, {Name: "zhaowu", Age: 23}}

 batchSql := "INSERT INTO employee (name, age) VALUES "
 vals := []interface{}{}

 placeholders := "(?, ?)"
 for _, u := range employee {
 vals = append(vals, u.Name, u.Age)
 }

 stmt := batchSql + placeholders
 _, err = tx.Exec(stmt, vals...)

 if err != nil {
 fmt.Println("batch insert into table employee failed, err:", err)
 err = tx.Rollback()
 return
 }
 fmt.Println("batch insert into table employee success.")
 // Commit the transaction.
 err = tx.Commit()
 if err != nil {
 fmt.Println("commit failed, err:", err)
 err = tx.Rollback()
 log.Fatal(err)
 return
 }
 fmt.Println("commit success.")
 // Obtain column information in the result set.
 rows, err := db.Query("SELECT id, name, created_at FROM employee;")
 if err != nil {
 fmt.Println("query table employee failed, err:", err)
 return

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

 }
 columns, err := rows.Columns()
 if err != nil {
 fmt.Println("get query rows columns failed, err:", err)
 return
 }
fmt.Println("Column count: ", len(columns))
 fmt.Println("Column name list: ", columns)
 fmt.Println("--------------------------")
 // Obtain column types.
 columnTypes, err := rows.ColumnTypes()
 if err != nil {
 fmt.Println("get query rows ColumnTypes failed, err:", err)
 return
 }

 for _, ct := range columnTypes {
 fmt.Println("Column name: ", ct.Name())
 fmt.Println("Database type: ", ct.DatabaseTypeName())
 length, ok := ct.Length()
 if ok {
 fmt.Println("Length: ", length)
 }
 precision, scale, ok := ct.DecimalSize()
 if ok {
 fmt.Printf("Precision/Scale: %d/%d\n", precision, scale)
 }
 nullable, ok := ct.Nullable()
 if ok {
 fmt.Println("Nullable: ", nullable)
 }
 fmt.Println("Go type: ", ct.ScanType())
 fmt.Println("-----")
 }
}

Result Verification

Below are the execution results for Complete Example:

connect success.
drop table employee success.
create table employee success.
batch insert into table employee success.
commit success.
Column count: 3
Column name list: [id name created_at]

Column name: id
Database type: INT4
Go type: int32

Column name: name
Database type: VARCHAR
Length: 20
Go type: string

Column name: created_at
Database type: TIMESTAMP
Go type: time.Time

The following tasks have been completed as expected:

1. Concatenate the database connection string, create a connection object using
sql.Open, and verify the connection status through the db.Ping() method.

2. Start a transaction and initialize the test table employee in the transaction.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

3. Construct employee test data in the transaction, generate an SQL statement
for batch insertion, bind parameters through the Exec API provided by the
transaction object, and send packets to the database to execute the SQL
statement.

4. After a successful batch insertion, call the Commit API to commit the
transaction. (If the insertion fails, call the Rollback API to roll back the
transaction.)

5. Call the Query API provided by the database connection object "db" to query
the batch insertion results. Call the Columns API provided by the result object
"rows" to obtain the list of all column names. Call the ColumnTypes API
provided by the result object "rows" to obtain metadata about columns in
the result set.

Rollback Method
To roll back operations within a specific transaction, call the Rollback API of the
transaction object.

15.1.5 Typical Issues
1. SQL injection risks during the construction of batch insertion statements

Placeholders and parameter binding are used rather than directly
concatenating user-specified values. When inserting data, multi-line VALUES
statements use placeholders (?) and a parameter list to prevent injection
attacks. All dynamic data must be passed as parameters. For example, the
Prepare or Exec API of the database object *DB can be used to pass variable
parameter forms.

2. Batch insertion failure
If a record fails to be inserted during batch insertion, the database returns
only general error information (such as primary key conflict, foreign key
constraint violated, or data type mismatch). However, it does not indicate
which specific record is causing the error. If an SQL statement contains
multiple records and one of them fails to be inserted, the entire transaction
may fail (unless the error ignoring mechanism is enabled). To pinpoint the
specific row causing the error, it is common practice to divide the batch into
smaller batches or insert data row by row for better error capture.

3. Increased memory usage
When large data sizes are involved, constructing SQL statements for batch
insertion can significantly increase memory usage. This is particularly
noticeable when you construct SQL statements through string concatenation,
as it can lead to a sharp rise in memory consumption. Large-size batch
processing may exceed the maximum SQL length limit of the database or Go
driver, or trigger other parameter restrictions, potentially leading to errors or
performance issues.

15.2 Best Practices for Go (Centralized Instances)

15.2.1 Scenario Overview
This section explains how to use the Go driver for batch data insertion.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

15.2.1.1 Usage Scenarios

Scenario Description
Batch insertion offers a more efficient way to write multiple records into the
database in a single operation. Compared to single-record insertion, batch
insertion decreases interactions between the application and the database, leading
to lower network latency and system resource usage, while significantly improving
data write efficiency.

This section illustrates various operations using the Go driver, including
establishing database connections, utilizing transactions, executing batch insertion,
and obtaining column information in the result set.

Trigger Conditions
The application code has generated an SQL statement for batch insertion and
bound the necessary parameters. Subsequently, the Exec API is called within a
transaction to execute the SQL statement.

Impact on Services
● Lower network interaction costs

Combining multiple INSERT statements into one batch operation significantly
reduces the number of round trips between the client and the database. This
enhances the overall throughput and minimizes the impact of network
congestion on performance.

● Higher data processing efficiency
In single-record insertion, the database must parse the syntax and generate
an execution plan for each SQL statement. In contrast, batch insertion
requires parsing the syntax and generating the plan only once, eliminating
repetitive tasks and saving CPU cycles and memory allocation time.

● Reduced system resource usage and overhead
In single-record insertion, transaction commits or Xlog writes occur at least
once. In contrast, batch insertion allows multiple records to be inserted within
a single transaction, significantly reducing the frequency of transaction
commits, Xlog pressure, and transaction management overhead. In addition, it
decreases the total number of network packet processing, transaction
management, log write, and row format conversion tasks, which in turn
lowers the CPU loads and temporary memory usage of the database server.
This results in more resources being available for core query and computing
operations.

● Higher memory usage
When large data sizes are involved, constructing SQL statements for batch
insertion can significantly increase memory usage. This is particularly
noticeable when you construct SQL statements through string concatenation,
as it can lead to a sharp rise in memory consumption. Large-size batch
processing may exceed the maximum SQL length limit of the database or
driver, or trigger other parameter restrictions, potentially leading to errors or
performance issues.

Here is a detailed comparison between batch insertion and single-record insertion.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Mode Advantages Disadvantages

Single-
record
insertio
n

● Its code is simple,
straightforward, and easy to
implement.

● If any single record fails, it
can be accurately identified
and handled without
impacting other records.

● This mode is less demanding
in terms of database and
driver compatibility.

● Extensive network interactions
are needed. Each INSERT
operation requires connecting,
parsing, and committing,
leading to suboptimal
performance.

● Inserting a large number of
records is likely to cause a
bottleneck.

● Not using transactions may
result in failure to guarantee
the consistency of INSERT
operations.

Batch
insertio
n

● This mode greatly reduces the
number of network round
trips and SQL parsing
instances, leading to a
notable improvement in
insertion throughput.

● Multiple rows can be
committed within a single
transaction to guarantee
atomicity.

● Its code is complex, requiring
manual concatenation of
placeholders and parameters.

● If a single statement
encounters an error, all data
will be rolled back,
complicating the error recovery
process.

● The number of placeholders is
limited; therefore, it is essential
to carefully manage the batch
size.

Applicable Versions

This applies only to GaussDB V500R002C10 and later versions.

15.2.1.2 Requirements and Objectives

Service Pain Points

When dealing with large data sizes, single-record insertion generates numerous
network requests and consumes substantial system resources. Moreover, the
database server has to repeatedly parse similar statements, leading to a decline in
service performance. Batch insertion is introduced as a solution to these issues.

Service Objectives

Use the Go driver to initialize the target table, and insert the required data in
batches through transactions for future queries. Once the batch insertion is
complete, obtain column data from the result set and output the result
information.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

15.2.2 Architecture Principles

Core Principles
Batch processing of Go allows using one SQL statement to send multiple records
into the database in one go. All insert or update operations in the transaction are
carried in a single U packet. Consequently, completing the batch operation only
necessitates once instance of network connection establishment and data
exchange.

Solution Advantages
● Optimized network communication

Sending all batch updates at once in a single U packet significantly decreases
network communication overhead when compared to sending PBE packets
multiple times.

● Improved execution efficiency
Due to the reduced number and frequency of network communication, the
overall execution efficiency is significantly improved, especially for large data
sizes.

● Optimized resource utilization
Batch insertion optimizes the utilization of database server resources, cutting
down on unnecessary system overhead associated with single-record
insertion.

15.2.3 Preparations
● Golang version: 1.13 or later.
● Database environment: GaussDB V500R002C10 or later.
● Go driver environment:

Refer to "Application Development Guide > Development Based on the Go
Driver > Development Procedure > Preparing the Environment" in Developer
Guide.

● Environment variables needed by code:
Taking Linux environments as an example:
export GOHOSTIP='127.0.0.1' # IP address. Adjust it based on the actual services.
export GOPORT='5432' # Port number. Adjust it based on the actual services.
export GOUSRNAME='test_user' # Name of a database user. Adjust it based on the actual
services.
export GOPASSWD='xxxxxxxx' # Password for the database user. Adjust it based on the
actual services.
export GODBNAME='gaussdb' # Database name. Adjust it based on the actual services.
export GOCONNECT_TIMEOUT='3' # Timeout interval for database connection. Adjust it
based on the actual services.
export GOSOCKET_TIMEOUT='1' # Timeout interval for a single SQL statement. Adjust it
based on the actual services.
export GOSSLMODE='verify-full' # Specifies whether to enable SSL encryption. Adjust it
based on the actual services.
export GOROOTCERT='certs/cacert.pem' # Path to the root certificate. Adjust it based on the
actual services.
export GOSSLKEY='certs/client-key.pem' # Path to the client key. Adjust it based on the actual
services.
export GOSSLCERT='certs/client-cert.pem' # Path to the client certificate. Adjust it based on the
actual services.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

NO TE

Adjust the values of environment variables as needed. However, if your code does not
intend to obtain connection parameter values from environment variables, you may
skip this step.

15.2.4 Procedure

15.2.4.1 Process Overview

The Go driver can create database connections and insert data in batches within a
transaction.

Figure 15-2 shows the overall process.

Figure 15-2 Process of batch insertion

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

15.2.4.2 Detailed Procedure

Step 1 Obtain the variable values needed by connection parameters and concatenate
them to create a connection string.

NO TE

● The connection string can be in DSN or URL format.

● For details about database connection parameters, refer to "Application Development
Guide > Development Based on the Go Driver > Development Procedure > Preparing the
Environment" in Developer Guide.

The parameter values involved in Detailed Procedure can be obtained from the
environment variables set in Preparations and concatenated, as shown in the following
code. You can obtain the values of connection parameters from environment variables by
using os.Getenv. Alternatively, you can set these values by reading configuration files or
writing fixed values.
hostip := os.Getenv("GOHOSTIP") // GOHOSTIP: IP address written to environment
variables.
port := os.Getenv("GOPORT") // GOPORT: port number written to environment
variables.
usrname := os.Getenv("GOUSRNAME") // GOUSRNAME: username written to environment
variables.
passwd := os.Getenv("GOPASSWD") // GOPASSWD: user password written to environment
variables.
dbname := os.Getenv("GODBNAME") // GODBNAME: name of the target database
written to environment variables.
connect_timeout := os.Getenv("GOCONNECT_TIMEOUT") // GOCONNECT_TIMEOUT: timeout interval
for connecting to the database written to environment variables.
socket_timeout := os.Getenv("GOSOCKET_TIMEOUT") // GOSOCKET_TIMEOUT: maximum duration
of the SQL statement written to environment variables.
rootcertPath := os.Getenv("GOROOTCERT") // GOROOTCERT: path to the root certificate
written to environment variables.
sslkeyPath := os.Getenv("GOSSLKEY") // GOSSLKEY: path to the key of the client certificate
written to environment variables.
sslcertPath := os.Getenv("GOSSLCERT") // GOSSLCERT: path to the client SSL certificate
written to environment variables.
sslmode := os.Getenv("GOSSLMODE") // GOSSLMODE: SSL encryption written to
environment variables.

● In case of a DSN connection string, refer to the following recommended
connection settings and format when assigning values to the dsn variable:
dsn := fmt.Sprintf("host=%s port=%s user=%s password=%s dbname=%s connect_timeout=%s
socketTimeout=%s sslmode=%s sslrootcert=%s sslkey=%s sslcert=%s target_session_attrs=master",
 hostip,
 port,
 usrname,
 passwd,
 dbname,
 connect_timeout,
 socket_timeout,
 sslmode,
 rootcertPath,
 sslkeyPath,
 sslcertPath,
)

● In case of a URL connection string, refer to the following recommended URL
connection settings and format when assigning values to the url variable:
url := fmt.Sprintf("gaussdb://%s:%s@%s:%s/%s?connect_timeout=%s&socketTimeout=%s&sslmode=
%s&sslrootcert=%s&sslkey=%s&sslcert=%s&target_session_attrs=master",
 usrname,
 passwd,
 hostip,
 port,
 dbname,
 connect_timeout,

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

 socket_timeout,
 sslmode,
 rootcertPath,
 sslkeyPath,
 sslcertPath,
)

NO TE

● connect_timeout: timeout interval (in seconds) for connecting to the database server.
The timeout interval must be set based on the actual network conditions. A default
value of 0 indicates that no timeout will occur.

● socket_timeout: maximum duration of a single SQL statement. If a statement exceeds
this limit, it will be interrupted and reconnected. You are advised to set this parameter
based on service characteristics. If not specified, the default value 0 will be applied,
indicating that no timeout will occur.

● sslmode: specifies whether to enable SSL encryption.
● target_session_attrs: connection type of the database. This parameter is used to

identify the primary and standby nodes. The default value is any.

Step 2 Create a database connection object using the connection string concatenated in
Step 1.

Golang's database/sql standard library provides the sql.Open API for creating a
database connection object. Upon completion, the API returns the database
connection object and any error information.

func Open(driverName, dataSourceName string) (*DB, error)

● Define a DSN connection string as follows:
db, err := sql.Open("gaussdb", dsn)

● Define a URL connection string as follows:
db, err := sql.Open("gaussdb", url)

Step 3 Create a transaction object using the database connection object created in Step
2.

The database connection object provides the Begin API for creating a transaction
object. Upon completion, the API returns the transaction object and any error
information.

func (db *DB) Begin() (*Tx, error)

The following creates a transaction object and receives the transaction object
through the tx variable:

tx, err := db.Begin()

Step 4 Execute batch insertion using the transaction object created in Step 3.

The Exec API is used as an example. For details, see "Application Development
Guide > Development Based on the Go Driver > Go API Reference > type Tx" in
Developer Guide.

(tx *Tx)Exec(query string, args ...interface{})

The Exec API is called to insert the user-specified data size into the employee
table in batches by using the transaction object "tx" created in Step 3. This
involves concatenating the SQL statement for batch insertion and passing the
necessary values.

employee := []struct {
 Name string

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

 Age uint8
}{{Name: "zhangsan", Age: 21}, {Name: "lisi", Age: 22}, {Name: "zhaowu", Age: 23}}

batchSql := "INSERT INTO employee (name, age) VALUES "
vals := []interface{}{}

placeholders := ""
for i, u := range employee {
 placeholders += "(?, ?)"
 if i < len(employee)-1 {
 placeholders += ","
 }
 vals = append(vals, u.Name, u.Age)
}

stmt := batchSql + placeholders
result, err := tx.Exec(stmt, vals...)

Step 5 (Optional) Roll back the transaction using the transaction object created in Step 3.

The transaction object provides the Rollback API for rolling back the transaction.

func (tx *Tx) Rollback() error

If an error occurs in the transaction, call the Rollback API of the transaction object
"tx" created in Step 3 to roll back the transaction.

tx.Rollback()

Step 6 Commit the transaction using the transaction object created in Step 3.

The transaction object provides the Commit API for committing the transaction.

func (tx *Tx) Commit() error

Commit the transaction through the Commit API of the transaction object "tx"
created in Step 3.

err := tx.Commit()

Step 7 (Optional) Execute a query using the database connection object created in Step
2.

Both the database object and the transaction object provide the Query API. For
details, see "type DB" and "type Tx" under "Application Development Guide >
Development Based on the Go Driver > Go API Reference" in Developer Guide.

For example, call the Query API provided by the database object "db" created in
Step 2 to query the batch insertion results in Step 4 and receive the result object
through the "rows" variable.

rows, err := db.Query("SELECT id, name, created_at FROM users;"

Step 8 (Optional) Obtain the column count and column name list in the result set using
the result object in Step 7.

The result object in Step 7 is of the Rows type in database/sql of Golang. This
type provides a Columns API to return the list of column names in the query result
set. For details, see "Application Development Guide > Development Based on the
Go Driver > Go API Reference > type Rows".

func (rs *Rows) Columns() ([]string, error)

The following calls the Columns API provided by the result object in Step 7 to
obtain the list of queried column names and assign values to the columns
variable.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

columns, err := rows.Columns()

The column count in the result set can be obtained by calling the len function to
calculate columns.

len(columns)

Step 9 (Optional) Obtain metadata such as column types in the result set by using the
result object in Step 7.

The result object in Step 7 is of the Rows type in database/sql of Golang. This
type provides a ColumnTypes API to return the list of column names in the query
result set. For details, see "Application Development Guide > Development Based
on the Go Driver > Go API Reference > type Rows".

func (rs *Rows) ColumnTypes() ([]*ColumnType, error)

Obtain column information from the result in Step 7.

The following calls the ColumnTypes API provided by the result object in Step 7 to
obtain the list of queried column types ([]*ColumnType) and assign values to the
columnTypes variable.

columnTypes, err := rows.ColumnTypes()

By traversing the columnTypes list, the application code can determine the types
of returned columns.

The type ColumnType variable provides APIs to describe the column types
available in database tables.

Table 15-2 Common methods for using the APIs provided by type ColumnType

Method Description Return
Type

(ci
*ColumnType)Dat
abaseTypeName()

Returns a column-type database system
name. If an empty string is returned, that
type of name is not supported.

Error

(ci
*ColumnType)Deci
malSize()

Returns the scale and precision of the
decimal type. If the value of ok is false, the
specified type is unavailable or unsupported.

Precision
and scale:
int64; ok:
Boolean

(ci
*ColumnType)Len
gth()

Returns the length of a data column type. If
the value of ok is false, the specified type
does not have a variable length.

Length:
int64; ok:
Boolean

(ci
*ColumnType)Sca
nType()

Returns a Go type that can be used for
Rows.scan.

reflect.Type

(ci
*ColumnType)Na
me()

Returns the name of a data column. String

Step 10 Close the connection using the database connection object created in Step 2.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

The database connection object provides the Close API for closing the database
connection.

func (db *DB) Close() error

Execute the following statement to close the database connection object created
in Step 2:

db.Close()

----End

15.2.4.3 Complete Example
The following uses a DSN connection string as an example to explain how to
initialize the employee table, insert data in batches, and obtain column
information in the result set:
// main.go
package main

import (
 "database/sql"
 "fmt"
 _ "gitee.com/opengauss/openGauss-connector-go-pq"
 "log"
 "os"
)

func main() {
 // Create a database object.
 hostip := os.Getenv("GOHOSTIP") // GOHOSTIP: IP address written to environment variables.
 port := os.Getenv("GOPORT") // GOPORT: port number written to environment variables.
 usrname := os.Getenv("GOUSRNAME") // GOUSRNAME: username written to environment
variables.
 passwd := os.Getenv("GOPASSWD") // GOPASSWD: user password written to environment
variables.
 dbname := os.Getenv("GODBNAME") // GODBNAME: name of the target database written to
environment variables.
 connect_timeout := os.Getenv("GOCONNECT_TIMEOUT") // GOCONNECT_TIMEOUT: timeout interval for
connecting to the database written to environment variables.
 socket_timeout := os.Getenv("GOSOCKET_TIMEOUT") // GOSOCKET_TIMEOUT: maximum duration of
the SQL statement written to environment variables.
 rootcertPath := os.Getenv("GOROOTCERT") // GOROOTCERT: path to the root certificate written to
environment variables.
 sslkeyPath := os.Getenv("GOSSLKEY") // GOSSLKEY: path to the key of the client certificate
written to environment variables.
 sslcertPath := os.Getenv("GOSSLCERT") // GOSSLCERT: path to the client SSL certificate written to
environment variables.
 sslmode := os.Getenv("GOSSLMODE") // GOSSLMODE: SSL encryption written to environment
variables.

dsn := fmt.Sprintf("host=%s port=%s user=%s password=%s dbname=%s connect_timeout=%s
socketTimeout=%s " +
 "sslmode=%s sslrootcert=%s sslkey=%s sslcert=%s target_session_attrs=master",
 hostip,
 port,
 usrname,
 passwd,
 dbname,
 connect_timeout,
 socket_timeout,
 sslmode,
 rootcertPath,
 sslkeyPath,
 sslcertPath,
)

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

 db, err := sql.Open("gaussdb", dsn)
 if err != nil {
 panic(err)
 }
 defer db.Close()
 err = db.Ping()
 if err != nil {
 panic(err)
 }
 fmt.Println("connect success.")
 // Start a transaction.
 tx, err := db.Begin()
 if err != nil {
 log.Fatal(err)
 return
 }
 // Initialize a data table.
 _, err = tx.Exec("drop table if exists employee;")
 if err != nil {
 fmt.Println("drop table employee failed, err:", err)
 err = tx.Rollback() // On error, roll back the transaction.
 return
 }
 fmt.Println("drop table employee success.")
 _, err = tx.Exec("create table employee (id SERIAL PRIMARY KEY, name varchar(20), age int, created_at
TIMESTAMP DEFAULT CURRENT_TIMESTAMP);")
 if err != nil {
 fmt.Println("create table employee failed, err:", err)
 err = tx.Rollback()
 return
 }
 fmt.Println("create table employee success.")
 // Insert data in batches.
 employee := []struct {
 Name string
 Age uint8
 }{{Name: "zhangsan", Age: 21}, {Name: "lisi", Age: 22}, {Name: "zhaowu", Age: 23}}

 batchSql := "INSERT INTO employee (name, age) VALUES "
 vals := []interface{}{}

 placeholders := "(?, ?)"
 for _, u := range employee {
 vals = append(vals, u.Name, u.Age)
 }

 stmt := batchSql + placeholders
 _, err = tx.Exec(stmt, vals...)

 if err != nil {
 fmt.Println("batch insert into table employee failed, err:", err)
 err = tx.Rollback()
 return
 }
 fmt.Println("batch insert into table employee success.")
 // Commit the transaction.
 err = tx.Commit()
 if err != nil {
 fmt.Println("commit failed, err:", err)
 err = tx.Rollback()
 log.Fatal(err)
 return
 }
 fmt.Println("commit success.")
 // Obtain column information in the result set.
 rows, err := db.Query("SELECT id, name, created_at FROM employee;")
 if err != nil {
 fmt.Println("query table employee failed, err:", err)
 return

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

 }
 columns, err := rows.Columns()
 if err != nil {
 fmt.Println("get query rows columns failed, err:", err)
 return
 }
fmt.Println("Column count: ", len(columns))
 fmt.Println("Column name list: ", columns)
 fmt.Println("--------------------------")
 // Obtain column types.
 columnTypes, err := rows.ColumnTypes()
 if err != nil {
 fmt.Println("get query rows ColumnTypes failed, err:", err)
 return
 }

 for _, ct := range columnTypes {
 fmt.Println("Column name: ", ct.Name())
 fmt.Println("Database type: ", ct.DatabaseTypeName())
 length, ok := ct.Length()
 if ok {
 fmt.Println("Length: ", length)
 }
 precision, scale, ok := ct.DecimalSize()
 if ok {
 fmt.Printf("Precision/Scale: %d/%d\n", precision, scale)
 }
 nullable, ok := ct.Nullable()
 if ok {
 fmt.Println("Nullable: ", nullable)
 }
 fmt.Println("Go type: ", ct.ScanType())
 fmt.Println("-----")
 }
}

Result Verification

Below are the execution results for Complete Example:

connect success.
drop table employee success.
create table employee success.
batch insert into table employee success.
commit success.
Column count: 3
Column name list: [id name created_at]

Column name: id
Database type: INT4
Go type: int32

Column name: name
Database type: VARCHAR
Length: 20
Go type: string

Column name: created_at
Database type: TIMESTAMP
Go type: time.Time

The following tasks have been completed as expected:

1. Concatenate the database connection string, create a connection object using
sql.Open, and verify the connection status through the db.Ping() method.

2. Start a transaction and initialize the test table employee in the transaction.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

3. Construct employee test data in the transaction, generate an SQL statement
for batch insertion, bind parameters through the Exec API provided by the
transaction object, and send packets to the database to execute the SQL
statement.

4. After a successful batch insertion, call the Commit API to commit the
transaction. (If the insertion fails, call the Rollback API to roll back the
transaction.)

5. Call the Query API provided by the database connection object "db" to query
the batch insertion results. Call the Columns API provided by the result object
"rows" to obtain the list of all column names. Call the ColumnTypes API
provided by the result object "rows" to obtain metadata about columns in
the result set.

Rollback Method
To roll back operations within a specific transaction, call the Rollback API of the
transaction object.

15.2.5 Typical Issues
1. SQL injection risks during the construction of batch insertion statements

Placeholders and parameter binding are used rather than directly
concatenating user-specified values. When inserting data, multi-line VALUES
statements use placeholders (?) and a parameter list to prevent injection
attacks. All dynamic data must be passed as parameters. For example, the
Prepare or Exec API of the database object *DB can be used to pass variable
parameter forms.

2. Batch insertion failure
If a record fails to be inserted during batch insertion, the database returns
only general error information (such as primary key conflict, foreign key
constraint violated, or data type mismatch). However, it does not indicate
which specific record is causing the error. If an SQL statement contains
multiple records and one of them fails to be inserted, the entire transaction
may fail (unless the error ignoring mechanism is enabled). To pinpoint the
specific row causing the error, it is common practice to divide the batch into
smaller batches or insert data row by row for better error capture.

3. Increased memory usage
When large data sizes are involved, constructing SQL statements for batch
insertion can significantly increase memory usage. This is particularly
noticeable when you construct SQL statements through string concatenation,
as it can lead to a sharp rise in memory consumption. Large-size batch
processing may exceed the maximum SQL length limit of the database or Go
driver, or trigger other parameter restrictions, potentially leading to errors or
performance issues.

GaussDB
Best Practices 15 Best Practices for Go

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

16 Best Practices for Index Design

16.1 Best Practices for Index Design (Distributed
Instances)

16.1.1 Scenario Overview

Usage Scenarios
When you query large tables with over a million data records, not having indexes
or having overly simple indexes can lead to slow query performance. To enhance
efficiency, it is advisable to create appropriate indexes. This best practice primarily
compares the performance of querying such a large table with indexes to one
without indexes, as well as evaluates the effectiveness of single-column indexes
versus composite indexes.

Requirements and Objectives
Create appropriate indexes to prevent full table scans and enhance query
efficiency.

16.1.2 Preparations
Create a table in the current database and insert data at the million-row scale.

Machine configurations: 8-core CPU; 32 GB of memory

-- Create the test_table table.
gaussdb=# CREATE TABLE test_table (id SERIAL PRIMARY KEY,name VARCHAR(100),email
VARCHAR(100),created_at TIMESTAMP);
CREATE TABLE

-- Insert a million data records into the table.
gaussdb=# INSERT INTO test_table (name,email,created_at) select 'User_' || i,'User_' || i ||
'@example.com',NOW() - (i * INTERVAL '1 minute') FROM generate_series(1, 1000000) AS i;
INSERT 0 1000000

-- Create another table.
gaussdb=# CREATE TABLE sales_records (record_id BIGSERIAL PRIMARY KEY,region_id INT NOT

GaussDB
Best Practices 16 Best Practices for Index Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

NULL,store_id INT NOT NULL,product_id INT NOT NULL,sale_date DATE NOT NULL,amount DECIMAL(12,2)
NOT NULL,is_refund BOOLEAN DEFAULT false);

-- Insert 2 million data records.
gaussdb=# INSERT INTO sales_records (region_id, store_id, product_id, sale_date, amount) SELECT
(random()*9)::INT + 1,(random()*99)::INT + 1,(random()*499)::INT + 1,current_date - (random()*1095)::INT,
(random()*9900)::DECIMAL + 100 FROM generate_series(1,2000000);
INSERT 0 2000000

16.1.3 Procedure

Performance Comparison Between Tables with and Without Indexes

Step 1 Log in to the database as the root user.

Step 2 Check the execution plan of the test_table table.
gaussdb=# EXPLAIN ANALYZE SELECT * FROM test_table WHERE email = 'user_500000@example.com';
 id | operation | A-time | A-rows | E-rows | Peak Memory | A-width | E-width | E-cost
s
----+----------------------------+---------+--------+--------+-------------+---------+---------+-----------

 1 | -> Seq Scan on test_table | 382.457 | 0 | 1989 | 19KB | | 148 | 0.000..136
44.650
(1 row)

 Predicate Information (identified by plan id)

 1 --Seq Scan on test_table
 Filter: ((email)::text = 'user_500000@example.com'::text)
 Rows Removed by Filter: 1000000
(3 rows)

 ====== Query Summary =====
--
 Datanode executor start time: 0.037 ms
 Datanode executor run time: 382.544 ms
 Datanode executor end time: 0.017 ms
 Planner runtime: 0.391 ms
 Query Id: 1945836514001883020
 Total runtime: 382.624 ms
(6 rows)

The execution plan indicates that the query needs 382.624 ms (full table scan).

Step 3 Create an index.
gaussdb=# CREATE INDEX idx_test_table_email ON test_table(email);
CREATE INDEX

Step 4 Check the execution plan of the test_table table again.
gaussdb=# EXPLAIN ANALYZE SELECT * FROM test_table WHERE email = 'user_500000@example.com';
 id | operation | A-time | A-rows | E-rows | Peak Memory | A-
width | E-width | E-costs
----+---+--------+--------+--------+-------------+---
------+---------+--------------
 1 | -> Index Scan using idx_test_table_email on test_table | 0.163 | 0 | 1 | 75KB |
 | 46 | 0.000..8.268
(1 row)

 Predicate Information (identified by plan id)

 1 --Index Scan using idx_test_table_email on test_table
 Index Cond: ((email)::text = 'user_500000@example.com'::text)
(2 rows)

 ====== Query Summary =====
--

GaussDB
Best Practices 16 Best Practices for Index Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

 Datanode executor start time: 0.063 ms
 Datanode executor run time: 0.190 ms
 Datanode executor end time: 0.013 ms
 Planner runtime: 0.936 ms
 Query Id: 1945836514001885197
 Total runtime: 0.293 ms
(6 rows)

 ====== Query Others =====

 Bypass: Yes
(1 row)

The query time decreases from 382.624 ms (without indexes) to 0.293 ms (with an
index).

----End

Performance Comparison Between Single-Column Indexes and Composite
Indexes

Step 1 Log in to the database as the root user.

Step 2 Create single-column indexes.
gaussdb=# CREATE INDEX idx_region ON sales_records(region_id);
CREATE INDEX
gaussdb=# CREATE INDEX idx_store ON sales_records(store_id);
CREATE INDEX

Step 3 Check the execution plan.
gaussdb=# EXPLAIN ANALYZE SELECT * FROM sales_records WHERE region_id = 5 AND store_id = 42;
 QUERY PLAN

 Data Node Scan (cost=0.00..0.00 rows=0 width=0) (actual time=23.482..37.694 rows=2221 loops=1)
 Node/s: All datanodes
 Total runtime: 37.945 ms
(3 rows)

The execution plan indicates that the query needs 37.945 ms.

Step 4 Create a composite index.
gaussdb=# CREATE INDEX idx_region_store ON sales_records(region_id, store_id);
CREATE INDEX

Step 5 Check the execution plan again.
gaussdb=# EXPLAIN ANALYZE SELECT * FROM sales_records WHERE region_id = 5 AND store_id = 42;
 QUERY PLAN

 Data Node Scan (cost=0.00..0.00 rows=0 width=0) (actual time=4.266..6.390 rows=2221 loops=1)
 Node/s: All datanodes
 Total runtime: 6.616 ms
(3 rows)

The query time decreases from 37.945 ms (with single-column indexes) to 6.616
ms (with a composite index).

----End

16.2 Best Practices for Index Design (Centralized
Instances)

GaussDB
Best Practices 16 Best Practices for Index Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

16.2.1 Scenario Overview

Usage Scenarios
When you query large tables with over a million data records, not having indexes
or having overly simple indexes can lead to slow query performance. To enhance
efficiency, it is advisable to create appropriate indexes. This best practice primarily
compares the performance of querying such a large table with indexes to one
without indexes, as well as evaluates the effectiveness of single-column indexes
versus composite indexes.

Requirements and Objectives
Create appropriate indexes to prevent full table scans and enhance query
efficiency.

16.2.2 Preparations
Create a table in the current database and insert data at the million-row scale.

Machine configurations: 8-core CPU; 32 GB of memory

-- Create the test_table table.
gaussdb=# CREATE TABLE test_table (id SERIAL PRIMARY KEY,name VARCHAR(100),email
VARCHAR(100),created_at TIMESTAMP);
CREATE TABLE

-- Insert a million data records into the table.
gaussdb=# INSERT INTO test_table (name,email,created_at) select 'User_' || i,'User_' || i ||
'@example.com',NOW() - (i * INTERVAL '1 minute') FROM generate_series(1, 1000000) AS i;
INSERT 0 1000000

-- Create another table.
gaussdb=# CREATE TABLE sales_records (record_id BIGSERIAL PRIMARY KEY,region_id INT NOT
NULL,store_id INT NOT NULL,product_id INT NOT NULL,sale_date DATE NOT NULL,amount DECIMAL(12,2)
NOT NULL,is_refund BOOLEAN DEFAULT false);

-- Insert 2 million data records.
gaussdb=# INSERT INTO sales_records (region_id, store_id, product_id, sale_date, amount) SELECT
(random()*9)::INT + 1,(random()*99)::INT + 1,(random()*499)::INT + 1,current_date - (random()*1095)::INT,
(random()*9900)::DECIMAL + 100 FROM generate_series(1,2000000);
INSERT 0 2000000

16.2.3 Procedure

Performance Comparison Between Tables with and Without Indexes

Step 1 Log in to the database as the root user.

Step 2 Check the execution plan of the test_table table.
gaussdb=# EXPLAIN ANALYZE SELECT * FROM test_table WHERE email = 'user_500000@example.com';
 id | operation | A-time | A-rows | E-rows | Peak Memory | A-width | E-width | E-cost
s
----+----------------------------+---------+--------+--------+-------------+---------+---------+-----------

 1 | -> Seq Scan on test_table | 382.457 | 0 | 1989 | 19KB | | 148 | 0.000..136
44.650
(1 row)

 Predicate Information (identified by plan id)

GaussDB
Best Practices 16 Best Practices for Index Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

 1 --Seq Scan on test_table
 Filter: ((email)::text = 'user_500000@example.com'::text)
 Rows Removed by Filter: 1000000
(3 rows)

 ====== Query Summary =====
--
 Datanode executor start time: 0.037 ms
 Datanode executor run time: 382.544 ms
 Datanode executor end time: 0.017 ms
 Planner runtime: 0.391 ms
 Query Id: 1945836514001883020
 Total runtime: 382.624 ms
(6 rows)

The execution plan indicates that the query needs 382.624 ms (full table scan).

Step 3 Create an index.
gaussdb=# CREATE INDEX idx_test_table_email ON test_table(email);
CREATE INDEX

Step 4 Check the execution plan of the test_table table again.
gaussdb=# EXPLAIN ANALYZE SELECT * FROM test_table WHERE email = 'user_500000@example.com';
 id | operation | A-time | A-rows | E-rows | Peak Memory | A-
width | E-width | E-costs
----+---+--------+--------+--------+-------------+---
------+---------+--------------
 1 | -> Index Scan using idx_test_table_email on test_table | 0.163 | 0 | 1 | 75KB |
 | 46 | 0.000..8.268
(1 row)

 Predicate Information (identified by plan id)

 1 --Index Scan using idx_test_table_email on test_table
 Index Cond: ((email)::text = 'user_500000@example.com'::text)
(2 rows)

 ====== Query Summary =====
--
 Datanode executor start time: 0.063 ms
 Datanode executor run time: 0.190 ms
 Datanode executor end time: 0.013 ms
 Planner runtime: 0.936 ms
 Query Id: 1945836514001885197
 Total runtime: 0.293 ms
(6 rows)

 ====== Query Others =====

 Bypass: Yes
(1 row)

The query time decreases from 382.624 ms (without indexes) to 0.293 ms (with an
index).

----End

Performance Comparison Between Single-Column Indexes and Composite
Indexes

Step 1 Log in to the database as the root user.

Step 2 Create single-column indexes.
gaussdb=# CREATE INDEX idx_region ON sales_records(region_id);
CREATE INDEX

GaussDB
Best Practices 16 Best Practices for Index Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

gaussdb=# CREATE INDEX idx_store ON sales_records(store_id);
CREATE INDEX

Step 3 Check the execution plan.
gaussdb=# EXPLAIN ANALYZE SELECT * FROM sales_records WHERE region_id = 5 AND store_id = 42;
 QUERY PLAN

 Data Node Scan (cost=0.00..0.00 rows=0 width=0) (actual time=23.482..37.694 rows=2221 loops=1)
 Node/s: All datanodes
 Total runtime: 37.945 ms
(3 rows)

The execution plan indicates that the query needs 37.945 ms.

Step 4 Create a composite index.
gaussdb=# CREATE INDEX idx_region_store ON sales_records(region_id, store_id);
CREATE INDEX

Step 5 Check the execution plan again.
gaussdb=# EXPLAIN ANALYZE SELECT * FROM sales_records WHERE region_id = 5 AND store_id = 42;
 QUERY PLAN

 Data Node Scan (cost=0.00..0.00 rows=0 width=0) (actual time=4.266..6.390 rows=2221 loops=1)
 Node/s: All datanodes
 Total runtime: 6.616 ms
(3 rows)

The query time decreases from 37.945 ms (with single-column indexes) to 6.616
ms (with a composite index).

----End

GaussDB
Best Practices 16 Best Practices for Index Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

17 Best Practices for Table Design

17.1 Best Practices for Table Design (Distributed
Instances)

17.1.1 Scenario Overview

Usage Scenarios

The following scenarios need to be considered during table design:

● The query efficiency needs to be enhanced through table structure design.
● The maintenance efficiency needs to be enhanced in massive data cases.
● Table designs must be able to handle frequent data updates.
● The best trade-off must be found between storage costs and query

performance.

17.1.2 Architecture Principles

Core Principles
● Data type optimization: Integer > Floating-point number > Numeric (in order

of priority).
● Index balancing mechanism: trade-off between query acceleration and update

costs.
● Partition storage policy: logically unified + physically dispersed.
● Storage engine features: Ustore supports in-place update, and Astore supports

append-only.

Solution Advantages
● Improved query performance: Index design and partitioning policies help

reduce the scanned data size.

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

● Reduced storage costs: Selecting appropriate data types can save more than
30% of space.

● Enhanced maintenance efficiency: Independent partition maintenance
minimizes impact on services.

● Enhanced concurrent processing: Concurrent access to multiple partitions
improves the service throughput.

17.1.3 Preparations
● Confirm the service scenario characteristics.

– Data size estimation (consider using partitioned tables for large data
sizes)

– Read/write ratio analysis (design the storage engine and indexes based
on this ratio)

● Check the environment.
Check the track_counts and track_activities parameters.

● Prepare tools.
– Database client tool
– Performance monitoring tool

17.1.4 Procedure
Table design involves distribution mode and key design, data type design,
partitioning policies, constraint configuration, index design, and storage parameter
optimization.

Distribution Mode and Key Design
● Adhere to the following principles when selecting a table distribution mode.

Distribution
Mode

Description Applicable Scenario

Hash Table data is distributed across all
DNs in the cluster by hash.

Tables with a large
data size

Replication Each DN in the cluster holds a
complete set of table data.

Dimension tables and
tables with a small
data size

Range Table data is distributed to related
DNs by mapping the specified
columns based on a specific range.

Custom distribution
rules

List Table data is distributed to related
DNs by mapping the specified
columns based on specific values.

Custom distribution
rules

● Distribution key selection

When working with a hash table, selecting the right distribution key is
essential. An inappropriate distribution key can result in data skew, causing

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

heavy I/O loads on specific DNs and impacting overall query performance.
Therefore, after determining the distribution policy of a distributed table, you
need to check the table data skew to ensure that data is evenly distributed.
When selecting a distribution key, adhere to the following principles:

– Use a column with discrete data as the distribution key to evenly
distribute data across all DNs. If a column lacks sufficient discreteness,
consider using multiple columns as distribution keys. The primary key of
a table can also serve as a distribution key, such as the ID number
column in an employee information table.

– When the first principle is satisfied, avoid selecting a column with
constant filter conditions as the distribution key.

– When both the first and second principles are satisfied, use the join
conditions in queries as distribution keys. This will result in data from join
tasks being distributed on the local DN, significantly reducing data flow
costs among DNs.

Below is simple example that shows how to design a distribution mode and key
using syntax.

Step 1 Log in to the database as the root user.

Step 2 Create a table and select a distribution key and mode.
-- Replication distribution
gaussdb=#CREATE TABLE tb_t1(c1 int, c2 int)DISTRIBUTE BY REPLICATION;

-- Hash distribution
gaussdb=#CREATE TABLE tb_t2(c1 int,c2 int)DISTRIBUTE BY HASH(c1);

-- Range distribution
gaussdb=#CREATE TABLE tb_t3(c1 int,c2 int)
DISTRIBUTE BY RANGE(c1)(
 SLICE s1 VALUES LESS THAN (100),
 SLICE s2 VALUES LESS THAN (200),
 SLICE s3 VALUES LESS THAN (MAXVALUE)
);
gaussdb=#CREATE TABLE tb_t4(c1 int,c2 int)
DISTRIBUTE BY RANGE(c1)(
 SLICE s1 START (1) END (100),
 SLICE s2 START (100) END (200),
 SLICE s3 START (200) END (MAXVALUE)
);

-- List distribution
gaussdb=#CREATE TABLE tb_t5(id INT,name VARCHAR(20),country VARCHAR(30))
DISTRIBUTE BY LIST(country)(
 SLICE s1 VALUES ('China'),
 SLICE s2 VALUES ('USA'),
 SLICE s3 VALUES (DEFAULT)
);

-- Drop the created table objects.
gaussdb=#DROP TABLE tb_t1,tb_t2,tb_t3,tb_t4,tb_t5;

----End

Data Type Design

To improve query efficiency, adhere to the following principles when designing
data types:

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

● Select efficient data types in the following order of priority: Integer >
Floating-point number > Numeric, provided that they all meet the required
service precision.

● In tables that are logically related, columns with the same meaning should
use the same data type.

● When dealing with string data, it is essential to choose between fixed-length
or variable-length character types based on the specific situation. Data types
like varchar and char require specifying a maximum length. This length must
be sufficient to store all potential data while also considering storage space to
prevent resource wastage.

When designing a specific column, select a data type that matches its data
characteristics. For details about the data types supported by GaussDB, see "SQL
Reference > Data Types" in Developer Guide.

Partitioning Policies
● Overview

Partitioning is a database optimization technology that divides a large table
into multiple partitions based on specific rules to enhance query and
maintenance efficiency. The partitioned table functions as a logical table that
does not store data directly. Instead, data is stored within these partitions and
can be distributed across different storage devices. GaussDB currently
supports range partitioning, hash partitioning, and list partitioning. Here are
the advantages and disadvantages of using partitioned tables:

– Advantages:

▪ Improved query performance: Reducing the scanned data size
significantly enhances query performance.

▪ Optimized storage: Distributing partitions across various storage
media helps balance performance and costs.

▪ Improved maintainability: Maintenance operations such as data
cleanup and index rebuild for partitioned tables can be carried out at
the partition level, minimizing the impact on the overall system.

▪ Improved concurrency: Partitioned tables enable parallel processing
of multiple partitions, resulting in improved concurrency. For
instance, multiple queries can access different partitions
simultaneously without causing interference.

– Disadvantages:

▪ Memory usage: A partitioned table typically consumes around
(Number of partitions × 3/1,024) MB of memory. If there are too
many partitions causing memory shortages, performance may
decline significantly.

▪ Complexity of partitioning policies: Technical knowledge and
experience are required to develop and implement appropriate
partitioning policies. Selecting an inappropriate partitioning policy
can lead to uneven data distribution, thereby impacting performance.

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

▪ Complexity of backup and restoration: While it is possible to back up
and restore partitions individually, this also implies the need for more
detailed backup policies and management efforts.

● Usage scenarios
– High query performance: When a table contains a significant amount of

data and certain data features are frequently accessed in a particular
scenario, you can reduce the scanned data size during queries to enhance
query performance. This is particularly useful for tables that are regularly
analyzed on a monthly, quarterly, or yearly basis.

– Balance between performance and costs: When a table contains a
significant amount of data, it is advisable to store cold data (infrequently
accessed data) on low-cost storage, while keeping hot data (frequently
accessed data) on high-performance storage.

– Large table management: Tables containing a significant amount of data
may need to be stored across multiple storage media.

● Precautions about design
– Selection of partition keys:

Selecting partition keys for partitioned tables is a critical design decision
as it directly affects the performance, maintainability, and data
management efficiency of the database.

▪ Query optimization: Specify frequently queried columns as partition
keys. For instance, if a table is often queried by date, it is advisable
to select the date column as the partition key.

▪ Data distribution: Consider the distribution of data when selecting
partition keys. This helps prevent situations where some partitions
store an excessive amount of data while others store only a small
amount.

▪ Partition quantity and management: Limit the number of partitions.
Creating excessive partitions can lead to increased management
complexity and performance decline.

– Selection of partition types:

▪ Range partitioning: This type is ideal for partition keys with
consecutive values, such as time.

▪ List partitioning: This type is suitable for partition keys with discrete
values that fall into a limited number of categories, such as regions
or status codes.

▪ Hash partitioning: This type is designed for evenly distributed data,
such as user IDs.

Below is simple example that shows how to design a partitioning policy using
syntax.

Step 1 Log in to the database as the root user.

Step 2 Create partitioned tables.
-- Range partitioned table
gaussdb=#CREATE TABLE tb_t1(id INT,info VARCHAR(20))

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

PARTITION BY RANGE (id) (
 PARTITION p1 START(1) END(600) EVERY(200),
 PARTITION p2 START(600) END(800),
 PARTITION pmax START(800) END(MAXVALUE)
);
gaussdb=#CREATE TABLE tb_t2(
 id INT,
 info VARCHAR(20)
) PARTITION BY RANGE (id) (
 PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (200),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

-- List partitioned table
gaussdb=#CREATE TABLE tb_t3(NAME VARCHAR (50), area VARCHAR (50))
PARTITION BY LIST (area) (
 PARTITION p1 VALUES ('bj'),
 PARTITION p2 VALUES ('sh'),
 PARTITION pdefault VALUES (DEFAULT)
);

-- Hash partitioned table
gaussdb=#CREATE TABLE tb_t4(c1 int) PARTITION BY HASH(c1) PARTITIONS 3;
gaussdb=#CREATE TABLE tb_t5(c1 int) PARTITION BY HASH(C1)(
 PARTITION pa,
 PARTITION pb,
 PARTITION pc
);

-- Drop the created table objects.
gaussdb=#DROP TABLE tb_t1,tb_t2,tb_t3,tb_t4,tb_t5;

----End

Constraint Configuration
● When creating a constraint, clearly indicate the type of constraint and the

table name where the constraint is applied in the constraint name. For
example, name the PRIMARY KEY constraint with PK, the table name, and the
column names that make up the key.

● Exercise caution when selecting the DEFAULT constraint. If column values can
be completed at the service level, it is not recommended to use the DEFAULT
constraint.

● If the NOT NULL constraint is applied to columns that are meant to always
contain non-null values, the optimizer will conduct automatic optimization in
certain scenarios.

Below is a simple example that shows how to add constraints using syntax.

Step 1 Log in to the database as the root user.

Step 2 Create a table and add constraints to it.
-- NOT NULL constraint
gaussdb=#CREATE TABLE tb_t1(id int not null,name varchar(50));

-- UNIQUE constraint
gaussdb=#CREATE TABLE tb_t2(id int UNIQUE,name varchar(50));
gaussdb=#CREATE TABLE tb_t3(id int, name varchar(50),CONSTRAINT unq_t3_id UNIQUE(id));

-- PRIMARY KEY constraint
gaussdb=#CREATE TABLE tb_t4(id int PRIMARY KEY, name varchar(50));
gaussdb=#CREATE TABLE tb_t5(

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

 id int,
 name varchar(50),
 CONSTRAINT pk_person5_id PRIMARY KEY(id)
);

-- CHECK constraint
gaussdb=#CREATE TABLE tb_t6(name varchar(50),age int CHECK(age > 0 AND age < 200));
gaussdb=#CREATE TABLE tb_t7(
 name varchar(50),
 age int,
 CONSTRAINT chk_t6_age CHECK (age > 0 AND age < 200)
);

-- Drop the created table objects.
gaussdb=#DROP TABLE tb_t1,tb_t2,tb_t3,tb_t4,tb_t5,tb_t6,tb_t7;

----End

Index Design

Using indexes helps accelerate data access but can also prolong the time needed
to insert, update, or delete data. Therefore, it is crucial to carefully evaluate
whether to add indexes to a table and which specific columns to index. It is
advisable to adhere to the following principles when setting up indexes:

● Creating indexes for frequently joined columns can enhance join speed.

● Creating indexes for frequently sorted columns can enhance sorting and query
speed since indexes are already sorted.

● Creating indexes for columns frequently used in the WHERE clause can
enhance the speed of condition judgment.

● A composite index consists of multiple columns. However, including more
columns will result in a larger index size and higher maintenance costs.

● Do not apply indexes to frequently updated columns as they can increase the
maintenance costs of data updates.

● All functions and operators used in an index definition must be "immutable",
that is, their results must depend only on their input parameters and never on
any outside influence (such as the contents of another table or the current
time). This restriction ensures that the behavior of the index is well-defined.
To use a user-defined function in an index or WHERE clause, remember to
mark the function immutable when you create it.

● There are two types of indexes for partitioned tables: local index and global
index. A local index is specific to a partition within a partitioned table, while a
global index spans the entire partitioned table.

● It is crucial to regularly maintain indexes, and there are several scenarios in
which to use REINDEX:

– An index has become corrupted, and no longer contains valid data.

– An index has become "bloated", that is, it contains many empty or
nearly-empty pages.

– You have altered a storage parameter (such as fill factor) for an index,
and wish to ensure that the change has taken full effect.

– An index build with the CONCURRENTLY option failed, leaving an
"invalid" index.

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

● When naming an index, make sure to include the table name and the key
columns involved. For example, idx_test_c1 indicates that the index is created
on the c1 column of the test table.

Below is a simple example that shows how to add an index to a table using
syntax.

Step 1 Log in to the database as the root user.

Step 2 Create a table and add an index to it.
gaussdb=#CREATE TABLE tb_t1(id int not null,name varchar(50));

-- Add an index to the table.
gaussdb=#CREATE INDEX idx_t1_id ON tb_t1(id);

-- Drop the created table object.
gaussdb=#DROP TABLE tb_t1;

----End

Storage Parameter Optimization
● Fill factor

The fill factor for a table is a percentage between 10 and 100. If Ustore is in
use, the default value is 92. If Astore is in use, the default value is 100
(complete packing). When you specify a smaller fillfactor, INSERT operations
pack table pages only to the indicated percentage. The remaining space on
each page is reserved for updating rows on that page. This gives UPDATE a
chance to place the updated copy of a row on the same page as the original,
which is more efficient than placing it on a different page. For tables that are
never updated, it is best to use a fill factor of 100. However, for heavily
updated tables, smaller fill factors are appropriate. Below is an example:
CREATE TABLE test(c1 int,c2 int) WITH (FILLFACTOR = 80);

● Storage engine
Specifies the storage engine type. Once set, this parameter cannot be
modified. Below is an example:
CREATE TABLE test(c1 int,c2 int) WITH (STORAGE_TYPE = USTORE);

– USTORE: The table uses an in-place update storage engine. To prevent
space expansion, be sure to enable the track_counts and track_activities
parameters.

– ASTORE: The table uses an append-only storage engine.

17.2 Best Practices for Table Design (Centralized
Instances)

17.2.1 Scenario Overview

Usage Scenarios

The following scenarios need to be considered during table design:

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

● The query efficiency needs to be enhanced through table structure design.

● The maintenance efficiency needs to be enhanced in massive data cases.

● Table designs must be able to handle frequent data updates.

● The best trade-off must be found between storage costs and query
performance.

17.2.2 Architecture Principles

Core Principles
● Data type optimization: Integer > Floating-point number > Numeric (in order

of priority).

● Index balancing mechanism: trade-off between query acceleration and update
costs.

● Partition storage policy: logically unified + physically dispersed.

● Storage engine features: Ustore supports in-place update, and Astore supports
append-only.

Solution Advantages
● Improved query performance: Index design and partitioning policies help

reduce the scanned data size.

● Reduced storage costs: Selecting appropriate data types can save more than
30% of space.

● Enhanced maintenance efficiency: Independent partition maintenance
minimizes impact on services.

● Enhanced concurrent processing: Concurrent access to multiple partitions
improves the throughput.

17.2.3 Preparations
● Confirm the service scenario characteristics.

– Data size estimation (consider using partitioned tables for large data
sizes)

– Read/write ratio analysis (design the storage engine and indexes based
on this ratio)

● Check the environment.

Check the track_counts and track_activities parameters.

● Prepare tools.

– Database client tool

– Performance monitoring tool

17.2.4 Procedure
Table design involves data type design, partitioning policies, constraint
configuration, index design, and storage parameter optimization.

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

Data Type Design

To improve query efficiency, adhere to the following principles when designing
data types:

● Select efficient data types in the following order of priority: Integer >
Floating-point number > Numeric, provided that they all meet the required
service precision.

● In tables that are logically related, columns with the same meaning should
use the same data type.

● When dealing with string data, it is essential to choose between fixed-length
or variable-length character types based on the specific situation. Data types
like varchar and char require specifying a maximum length. This length must
be sufficient to store all potential data while also considering storage space to
prevent resource wastage.

When designing a specific column, select a data type that matches its data
characteristics. For details about the data types supported by GaussDB, see "SQL
Reference > Data Types" in Developer Guide.

Partitioning Policies
● Overview

Partitioning is a database optimization technology that divides a large table
into multiple partitions based on specific rules to enhance query and
maintenance efficiency. The partitioned table functions as a logical table that
does not store data directly. Instead, data is stored within these partitions and
can be distributed across different storage devices. GaussDB currently
supports range partitioning, interval partitioning, list partitioning, and hash
partitioning. Here are the advantages and disadvantages of using partitioned
tables:
– Advantages:

▪ Improved query performance: Reducing the scanned data size
significantly enhances query performance.

▪ Optimized storage: Distributing partitions across various storage
media helps balance performance and costs.

▪ Improved maintainability: Maintenance operations such as data
cleanup and index rebuild for partitioned tables can be carried out at
the partition level, minimizing the impact on the overall system.

▪ Improved concurrency: Partitioned tables enable parallel processing
of multiple partitions, resulting in improved concurrency. For
instance, multiple queries can access different partitions
simultaneously without causing interference.

– Disadvantages:

▪ Memory usage: A partitioned table typically consumes around
(Number of partitions × 3/1,024) MB of memory. If there are too
many partitions causing memory shortages, performance may
decline significantly.

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

▪ Complexity of partitioning policies: Technical knowledge and
experience are required to develop and implement appropriate
partitioning policies. Selecting an inappropriate partitioning policy
can lead to uneven data distribution, thereby impacting performance.

▪ Complexity of backup and restoration: While it is possible to back up
and restore partitions individually, this also implies the need for more
detailed backup policies and management efforts.

● Usage scenarios
– High query performance: When a table contains a significant amount of

data and certain data features are frequently accessed in a particular
scenario, you can reduce the scanned data size during queries to enhance
query performance. This is particularly useful for tables that are regularly
analyzed on a monthly, quarterly, or yearly basis.

– Balance between performance and costs: When a table contains a
significant amount of data, it is advisable to store cold data (infrequently
accessed data) on low-cost storage, while keeping hot data (frequently
accessed data) on high-performance storage.

– Large table management: Tables containing a significant amount of data
may need to be stored across multiple storage media.

● Precautions about design
– Selection of partition keys:

Selecting partition keys for partitioned tables is a critical design decision
as it directly affects the performance, maintainability, and data
management efficiency of the database.

▪ Query optimization: Specify frequently queried columns as partition
keys. For instance, if a table is often queried by date, it is advisable
to select the date column as the partition key.

▪ Data distribution: Consider the distribution of data when selecting
partition keys. This helps prevent situations where some partitions
store an excessive amount of data while others store only a small
amount.

▪ Partition quantity and management: Limit the number of partitions.
Creating excessive partitions can lead to increased management
complexity and performance decline.

– Selection of partition types:

▪ Range partitioning: This type is ideal for partition keys with
consecutive values, such as time.

▪ Interval partitioning: This is a unique variation of range partitioned
tables. In contrast to regular range partitioned tables, interval
partitioned tables introduce an additional element—the interval
value. If a newly inserted record does not match any existing
partition, a new partition will be automatically created based on the
interval value.

▪ List partitioning: This type is suitable for partition keys with discrete
values that fall into a limited number of categories, such as regions
or status codes.

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

▪ Hash partitioning: This type is designed for evenly distributed data,
such as user IDs.

Below is simple example that shows how to design a partitioning policy using
syntax.

Step 1 Log in to the database as the root user.

Step 2 Create partitioned tables.
-- Range partitioned table
gaussdb=#CREATE TABLE tb_t1(id INT,info VARCHAR(20))
PARTITION BY RANGE (id) (
 PARTITION p1 START(1) END(600) EVERY(200),
 PARTITION p2 START(600) END(800),
 PARTITION pmax START(800) END(MAXVALUE)
);
gaussdb=#CREATE TABLE tb_t2(
 id INT,
 info VARCHAR(20)
) PARTITION BY RANGE (id) (
 PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (200),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

-- List partitioned table
gaussdb=#CREATE TABLE tb_t3(NAME VARCHAR (50), area VARCHAR (50))
PARTITION BY LIST (area) (
 PARTITION p1 VALUES ('bj'),
 PARTITION p2 VALUES ('sh'),
 PARTITION pdefault VALUES (DEFAULT)
);

-- Hash partitioned table
gaussdb=#CREATE TABLE tb_t4(c1 int) PARTITION BY HASH(c1) PARTITIONS 3;
gaussdb=#CREATE TABLE tb_t5(c1 int) PARTITION BY HASH(C1)(
 PARTITION pa,
 PARTITION pb,
 PARTITION pc
);

-- Drop the created table objects.
gaussdb=#DROP TABLE tb_t1,tb_t2,tb_t3,tb_t4,tb_t5;

----End

Constraint Configuration
● When creating a constraint, clearly indicate the type of constraint and the

table name where the constraint is applied in the constraint name. For
example, name the PRIMARY KEY constraint with PK, the table name, and the
column names that make up the key.

● Exercise caution when selecting the DEFAULT constraint. If column values can
be completed at the service level, it is not recommended to use the DEFAULT
constraint.

● If the NOT NULL constraint is applied to columns that are meant to always
contain non-null values, the optimizer will conduct automatic optimization in
certain scenarios.

Below is a simple example that shows how to add constraints using syntax.

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

Step 1 Log in to the database as the root user.

Step 2 Create a table and add constraints to it.
-- NOT NULL constraint
gaussdb=#CREATE TABLE tb_t1(id int not null,name varchar(50));

-- UNIQUE constraint
gaussdb=#CREATE TABLE tb_t2(id int UNIQUE,name varchar(50));
gaussdb=#CREATE TABLE tb_t3(id int, name varchar(50),CONSTRAINT unq_t3_id UNIQUE(id));

-- PRIMARY KEY constraint
gaussdb=#CREATE TABLE tb_t4(id int PRIMARY KEY, name varchar(50));
gaussdb=#CREATE TABLE tb_t5(
 id int,
 name varchar(50),
 CONSTRAINT pk_person5_id PRIMARY KEY(id)
);

-- CHECK constraint
gaussdb=#CREATE TABLE tb_t6(name varchar(50),age int CHECK(age > 0 AND age < 200));
gaussdb=#CREATE TABLE tb_t7(
 name varchar(50),
 age int,
 CONSTRAINT chk_t6_age CHECK (age > 0 AND age < 200)
);

-- Drop the created table objects.
gaussdb=#DROP TABLE tb_t1,tb_t2,tb_t3,tb_t4,tb_t5,tb_t6,tb_t7;

----End

Index Design
Using indexes helps accelerate data access but can also prolong the time needed
to insert, update, or delete data. Therefore, it is crucial to carefully evaluate
whether to add indexes to a table and which specific columns to index. It is
advisable to adhere to the following principles when setting up indexes:

● Creating indexes for frequently joined columns can enhance join speed.
● Creating indexes for frequently sorted columns can enhance sorting and query

speed since indexes are already sorted.
● Creating indexes for columns frequently used in the WHERE clause can

enhance the speed of condition judgment.
● A composite index consists of multiple columns. However, including more

columns will result in a larger index size and higher maintenance costs.
● Do not apply indexes to frequently updated columns as they can increase the

maintenance costs of data updates.
● All functions and operators used in an index definition must be "immutable",

that is, their results must depend only on their input parameters and never on
any outside influence (such as the contents of another table or the current
time). This restriction ensures that the behavior of the index is well-defined.
To use a user-defined function in an index or WHERE clause, remember to
mark the function immutable when you create it.

● There are two types of indexes for partitioned tables: local index and global
index. A local index is specific to a partition within a partitioned table, while a
global index spans the entire partitioned table.

● It is crucial to regularly maintain indexes, and there are several scenarios in
which to use REINDEX:

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

– An index has become corrupted, and no longer contains valid data.
– An index has become "bloated", that is, it contains many empty or

nearly-empty pages.
– You have altered a storage parameter (such as fill factor) for an index,

and wish to ensure that the change has taken full effect.
– An index build with the CONCURRENTLY option failed, leaving an

"invalid" index.
● When naming an index, make sure to include the table name and the key

columns involved. For example, idx_test_c1 indicates that the index is created
on the c1 column of the test table.

Below is a simple example that shows how to add an index to a table using
syntax.

Step 1 Log in to the database as the root user.

Step 2 Create a table and add an index to it.
gaussdb=#CREATE TABLE tb_t1(id int not null,name varchar(50));

-- Add an index to the table.
gaussdb=#CREATE INDEX idx_t1_id ON tb_t1(id);

-- Drop the created table object.
gaussdb=#DROP TABLE tb_t1;

----End

Storage Parameter Optimization
● Fill factor

The fill factor for a table is a percentage between 10 and 100. If Ustore is in
use, the default value is 92. If Astore is in use, the default value is 100
(complete packing). When you specify a smaller fillfactor, INSERT operations
pack table pages only to the indicated percentage. The remaining space on
each page is reserved for updating rows on that page. This gives UPDATE a
chance to place the updated copy of a row on the same page as the original,
which is more efficient than placing it on a different page. For tables that are
never updated, it is best to use a fill factor of 100. However, for heavily
updated tables, smaller fill factors are appropriate. Below is an example:
CREATE TABLE test(c1 int,c2 int) WITH (FILLFACTOR = 80);

● Storage engine
Specifies the storage engine type. Once set, this parameter cannot be
modified. Below is an example:
CREATE TABLE test(c1 int,c2 int) WITH (STORAGE_TYPE = USTORE);

– USTORE: The table uses an in-place update storage engine. To prevent
space expansion, be sure to enable the track_counts and track_activities
parameters.

– ASTORE: The table uses an append-only storage engine.

GaussDB
Best Practices 17 Best Practices for Table Design

Issue 01 (2025-09-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

	Contents
	1 Best Practices Overview
	2 Suggestions on GaussDB Security Configuration
	3 Best Practices for Scaling
	4 Best Practices for Backup and Restoration
	4.1 Overview
	4.2 Instance Restoration
	4.2.1 Restoring an Instance from the Recycle Bin
	4.2.2 Restoring an Instance from a Backup

	4.3 Database and Table Restoration
	4.3.1 Restoring Databases or Tables to a Specific Point in Time
	4.3.2 Restoring Databases or Tables Using a Backup

	5 Suggestions on GaussDB Metric Alarm Configuration
	6 Best Practices for Row Compression
	6.1 Scenario Overview
	6.2 Manual Scheduling
	6.3 Automatic Scheduling

	7 Best Practices for SQL Queries
	7.1 Best Practices for SQL Queries (Distributed Instances)
	7.2 Best Practices for SQL Queries (Centralized Instances)

	8 Best Practices for Permission Configuration
	8.1 Best Practices for Permission Configuration (Distributed Instances)
	8.2 Best Practices for Permission Configuration (Centralized Instances)

	9 Best Practices for Data Skew Query (Distributed Instances)
	9.1 Quickly Locating Tables That Cause Data Skew

	10 Best Practices for Stored Procedures
	10.1 Best Practices for Stored Procedures (Distributed Instances)
	10.1.1 Permission Management
	10.1.2 Naming Convention
	10.1.3 Access Object
	10.1.4 Statement Functions
	10.1.4.1 Package Variables
	10.1.4.2 Cursors
	10.1.4.3 Compatibility
	10.1.4.4 Exception Handling
	10.1.4.5 User-defined Types

	10.1.5 Transaction Management
	10.1.5.1 Transactions
	10.1.5.2 Autonomous Transactions

	10.1.6 Others
	10.1.6.1 DDL
	10.1.6.2 Complex Dependencies
	10.1.6.3 IMMUTABLE and SHIPPABLE

	10.2 Best Practices for Stored Procedures (Centralized Instances)
	10.2.1 Permission Management
	10.2.2 Naming Convention
	10.2.3 Access Object
	10.2.4 Statement Functions
	10.2.4.1 Package Variables
	10.2.4.2 Cursors
	10.2.4.3 Compatibility
	10.2.4.4 Exception Handling

	10.2.5 Transaction Management
	10.2.5.1 Transactions
	10.2.5.2 Autonomous Transactions

	10.2.6 Others
	10.2.6.1 DDL
	10.2.6.2 Complex Dependencies
	10.2.6.3 IMMUTABLE

	11 Best Practices for Import and Export Using COPY
	11.1 Best Practices for Import and Export Using COPY (Distributed Instances)
	11.1.1 Typical Scenarios
	11.1.1.1 Using the Recommended CSV Format
	11.1.1.2 Importing and Exporting Data with Extreme Performance
	11.1.1.3 Exporting Data Files for Manual Parsing
	11.1.1.4 Importing and Exporting Data When Only the TEXT Format Is Available
	11.1.1.5 Importing and Exporting Data Files on a GSQL Client
	11.1.1.6 Importing and Exporting Data Through the JDBC Driver
	11.1.1.7 Importing Erroneous Data Through Error Tolerance

	11.1.2 Guide to Exporting Erroneous Data
	11.1.3 Guide to Importing Erroneous Data

	11.2 Best Practices for Import and Export Using COPY (Centralized Instances)
	11.2.1 Typical Scenarios
	11.2.1.1 Using the Recommended CSV Format
	11.2.1.2 Importing and Exporting Data with Extreme Performance
	11.2.1.3 Exporting Data Files for Manual Parsing
	11.2.1.4 Importing and Exporting Data When Only the TEXT Format Is Available
	11.2.1.5 Importing and Exporting Data Files on a GSQL Client
	11.2.1.6 Importing and Exporting Data Through the JDBC Driver
	11.2.1.7 Importing Erroneous Data Through Error Tolerance

	11.2.2 Guide to Exporting Erroneous Data
	11.2.3 Guide to Importing Erroneous Data

	12 Best Practices for Import and Export Using Tools
	12.1 Best Practices for Import and Export Using Tools (Distributed Instances)
	12.1.1 Database-Level Import and Export
	12.1.2 Schema-Level Import and Export
	12.1.3 Table-Level Import and Export

	12.2 Best Practices for Import and Export Using Tools (Centralized Instances)
	12.2.1 Database-Level Import and Export
	12.2.2 Schema-Level Import and Export
	12.2.3 Table-Level Import and Export

	13 Best Practices for JDBC
	13.1 Best Practices for JDBC (Distributed Instances)
	13.1.1 Batch Insertion
	13.1.1.1 Scenario Overview
	13.1.1.1.1 Usage Scenarios
	13.1.1.1.2 Requirements and Objectives

	13.1.1.2 Architecture Principles
	13.1.1.3 Preparations
	13.1.1.4 Procedure
	13.1.1.4.1 Process Overview
	13.1.1.4.2 Detailed Procedure
	13.1.1.4.3 Complete Example

	13.1.1.5 Typical Issues

	13.1.2 Streaming Query
	13.1.2.1 Scenario Overview
	13.1.2.1.1 Usage Scenarios
	13.1.2.1.2 Requirements and Objectives

	13.1.2.2 Architecture Principles
	13.1.2.3 Preparations
	13.1.2.4 Procedure
	13.1.2.4.1 Process Overview
	13.1.2.4.2 Detailed Procedure
	13.1.2.4.3 Complete Example

	13.1.2.5 Typical Issues

	13.1.3 User-defined Type
	13.1.3.1 Scenario Overview
	13.1.3.1.1 Usage Scenarios
	13.1.3.1.2 Requirements and Objectives

	13.1.3.2 Architecture Principles
	13.1.3.3 Preparations
	13.1.3.4 Procedure
	13.1.3.4.1 Process Overview
	13.1.3.4.2 Detailed Procedure
	13.1.3.4.3 Complete Example

	13.1.3.5 Typical Issues

	13.1.4 Batch Query
	13.1.4.1 Scenario Overview
	13.1.4.1.1 Usage Scenarios
	13.1.4.1.2 Requirements and Objectives

	13.1.4.2 Architecture Principles
	13.1.4.3 Preparations
	13.1.4.4 Procedure
	13.1.4.4.1 Process Overview
	13.1.4.4.2 Detailed Procedure
	13.1.4.4.3 Complete Example

	13.1.4.5 Typical Issues

	13.2 Best Practices for JDBC (Centralized Instances)
	13.2.1 Batch Insertion
	13.2.1.1 Scenario Overview
	13.2.1.1.1 Usage Scenarios
	13.2.1.1.2 Requirements and Objectives

	13.2.1.2 Architecture Principles
	13.2.1.3 Preparations
	13.2.1.4 Procedure
	13.2.1.4.1 Process Overview
	13.2.1.4.2 Detailed Procedure
	13.2.1.4.3 Complete Example

	13.2.1.5 Typical Issues

	13.2.2 Streaming Query
	13.2.2.1 Scenario Overview
	13.2.2.1.1 Usage Scenarios
	13.2.2.1.2 Requirements and Objectives

	13.2.2.2 Architecture Principles
	13.2.2.3 Preparations
	13.2.2.4 Procedure
	13.2.2.4.1 Process Overview
	13.2.2.4.2 Detailed Procedure
	13.2.2.4.3 Complete Example

	13.2.2.5 Typical Issues

	13.2.3 User-defined Type
	13.2.3.1 Scenario Overview
	13.2.3.1.1 Usage Scenarios
	13.2.3.1.2 Requirements and Objectives

	13.2.3.2 Architecture Principles
	13.2.3.3 Preparations
	13.2.3.4 Procedure
	13.2.3.4.1 Process Overview
	13.2.3.4.2 Detailed Procedure
	13.2.3.4.3 Complete Example

	13.2.3.5 Typical Issues

	13.2.4 Batch Query
	13.2.4.1 Scenario Overview
	13.2.4.1.1 Usage Scenarios
	13.2.4.1.2 Requirements and Objectives

	13.2.4.2 Architecture Principles
	13.2.4.3 Preparations
	13.2.4.4 Procedure
	13.2.4.4.1 Process Overview
	13.2.4.4.2 Detailed Procedure
	13.2.4.4.3 Complete Example

	13.2.4.5 Typical Issues

	14 Best Practices for ODBC
	14.1 Best Practices for ODBC (Distributed Instances)
	14.1.1 Scenario Overview
	14.1.1.1 Usage Scenarios
	14.1.1.2 Requirements and Objectives

	14.1.2 Architecture Principles
	14.1.3 Preparations
	14.1.4 Procedure
	14.1.4.1 Process Overview
	14.1.4.2 Detailed Procedure
	14.1.4.3 Complete Example

	14.1.5 Typical Issues

	14.2 Best Practices for ODBC (Centralized Instances)
	14.2.1 Scenario Overview
	14.2.1.1 Usage Scenarios
	14.2.1.2 Requirements and Objectives

	14.2.2 Architecture Principles
	14.2.3 Preparations
	14.2.4 Procedure
	14.2.4.1 Process Overview
	14.2.4.2 Detailed Procedure
	14.2.4.3 Complete Example

	14.2.5 Typical Issues

	15 Best Practices for Go
	15.1 Best Practices for Go (Distributed Instances)
	15.1.1 Scenario Overview
	15.1.1.1 Usage Scenarios
	15.1.1.2 Requirements and Objectives

	15.1.2 Architecture Principles
	15.1.3 Preparations
	15.1.4 Procedure
	15.1.4.1 Process Overview
	15.1.4.2 Detailed Procedure
	15.1.4.3 Complete Example

	15.1.5 Typical Issues

	15.2 Best Practices for Go (Centralized Instances)
	15.2.1 Scenario Overview
	15.2.1.1 Usage Scenarios
	15.2.1.2 Requirements and Objectives

	15.2.2 Architecture Principles
	15.2.3 Preparations
	15.2.4 Procedure
	15.2.4.1 Process Overview
	15.2.4.2 Detailed Procedure
	15.2.4.3 Complete Example

	15.2.5 Typical Issues

	16 Best Practices for Index Design
	16.1 Best Practices for Index Design (Distributed Instances)
	16.1.1 Scenario Overview
	16.1.2 Preparations
	16.1.3 Procedure

	16.2 Best Practices for Index Design (Centralized Instances)
	16.2.1 Scenario Overview
	16.2.2 Preparations
	16.2.3 Procedure

	17 Best Practices for Table Design
	17.1 Best Practices for Table Design (Distributed Instances)
	17.1.1 Scenario Overview
	17.1.2 Architecture Principles
	17.1.3 Preparations
	17.1.4 Procedure

	17.2 Best Practices for Table Design (Centralized Instances)
	17.2.1 Scenario Overview
	17.2.2 Architecture Principles
	17.2.3 Preparations
	17.2.4 Procedure

