
IoT Device Management

Development Guide

Issue 02

Date 2019-08-28

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2019. All rights reserved.
No part of this document may be reproduced or transmitted in any form or by any means without prior written
consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and the
customer. All or part of the products, services and features described in this document may not be within the
purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information,
and recommendations in this document are provided "AS IS" without warranties, guarantees or
representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Product Development... 1
1.1 Obtaining Development Resources.. 1
1.2 Creating a Project and Product... 4
1.3 Developing a Product Model..9
1.3.1 Development Guide...9
1.3.2 Offline Development... 14
1.3.2.1 Profile Writing Guide... 14
1.3.2.2 Profile Providing Method... 17
1.3.2.3 Profile Field Description.. 18
1.3.3 Reference... 29
1.3.3.1 Product Model Sample... 29
1.3.3.2 Fields in the Profile Sample..38
1.4 Developing a Codec..49
1.4.1 Development Guide...49
1.4.2 Offline Development... 64
1.4.2.1 Preparing the Development Environment.. 65
1.4.2.2 Importing the DEMO Project of the Codec..67
1.4.2.3 Developing a Codec..69
1.4.2.4 Packaging the Codec.. 69
1.4.2.5 Inspecting the Quality of the Codec... 72
1.4.2.6 Signing the Codec Package with an Offline Signature...76
1.4.3 Codec Development Examples..78
1.4.3.1 Codec for Data Reporting and Command Delivery... 78
1.4.3.2 Codec for Multiple Data Reporting Messages... 86
1.4.3.3 Codec for Strings and Variable-Length Strings..99
1.4.3.4 Codec for Arrays and Variable-Length Arrays... 117
1.4.3.5 Codec for Containing Command Execution Results..135
1.4.4 Reference... 150
1.4.4.1 Message Processing Flow...151
1.4.4.2 decode API Description..152
1.4.4.3 Description of encode API... 156
1.4.4.4 getManufacturerId Interface Description... 159
1.4.4.5 getModel Interface Description.. 160

IoT Device Management
Development Guide Contents

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. ii

1.4.4.6 Precautions on Interface Implementation... 160
1.4.4.7 Input/Output Format of the Codec Plug-In...163
1.4.4.8 Implementation Sample Interpretation... 165
1.4.4.9 Appendix: Encryption Algorithms Supported by the JDK...173
1.5 Developing an Application...174
1.5.1 Application Connection to the IoT Platform... 175
1.5.2 Data Subscription.. 176
1.5.3 Device Registration... 178
1.5.4 Device Access to the IoT Platform..179
1.5.5 Data Reporting...180
1.5.6 Command Delivery..182
1.5.7 Development of Other APIs.. 183
1.5.8 Reference... 183
1.5.8.1 Preparing the Java Development Environment.. 183
1.5.8.1.1 Installing JDK 1.8..183
1.5.8.1.2 Configuring Java Environment Variables (Windows OS)...183
1.5.8.1.3 Installing Eclipse... 187
1.5.8.1.4 Creating a Project.. 187
1.5.8.1.5 Importing Code Example...189
1.5.8.2 Using Postman to Test IoT Platform APIs... 191
1.5.8.3 CA Certificate...195
1.5.8.4 Performing Single-Step Debugging..204
1.6 Developing a Device.. 207
1.6.1 LWM2M/CoAP Device Integration.. 207
1.6.1.1 Device Integration.. 207
1.6.1.2 Device Testing.. 212
1.7 Self-Service Testing..217
1.7.1 Self-Service Testing Guide.. 217
1.7.2 Device Registration and Access Test...218
1.7.3 Data Reporting Test... 219
1.7.4 Radio Parameter Reporting Test..220
1.7.5 Command Delivery Test.. 221
1.7.6 Command Response Test...222
1.7.7 Firmware Upgrade Test... 223
1.7.8 Software Upgrade Test.. 224
1.7.9 Application Subscription Event Test... 226
1.7.10 Application Data Push Test... 227
1.8 Product Release.. 227

2 Device Interconnection...229
2.1 Creating an Application..229
2.2 Importing a Product Model...231
2.3 Registering a Device...232

IoT Device Management
Development Guide Contents

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. iii

2.4 Connecting a Device...233

3 Application Interconnection... 235
3.1 Connecting an NA.. 235
3.2 Subscribing to Data.. 236
3.3 Commissioning an NA... 237

4 SDK Usage Guide on the Device Side.. 239
4.1 LiteOS SDK Integration Development Guide..239
4.1.1 Overview... 239
4.1.1.1 Background Introduction..239
4.1.1.2 System Plan.. 240
4.1.1.3 Integration Strategies..242
4.1.1.3.1 Integrability... 242
4.1.1.3.2 Portability.. 242
4.1.1.3.3 Integration Restrictions..244
4.1.1.4 Security...244
4.1.1.5 Upgrade.. 245
4.1.2 Process for Connecting Devices to OceanConnect on the Device Side... 245
4.1.2.1 Preparations.. 246
4.1.2.2 Entrypoint Function for LiteOS SDK Device-Cloud Interconnect Components... 248
4.1.2.3 Initializing LiteOS SDK Device-Cloud Interconnect Components..249
4.1.2.4 Creating a Data Reporting Task..251
4.1.2.5 Command Processing Function for LiteOS SDK Device-Cloud Interconnect Components............................... 252
4.1.2.6 Main Function Body for LiteOS SDK Device-Cloud Interconnect Components.. 254
4.1.2.7 Data Structure... 255
4.1.3 Appendix 1 LWM2M.. 257
4.1.3.1 Definition..257
4.1.3.2 Features...257
4.1.3.3 System Architecture... 258
4.1.3.4 Object Defined by LWM2M...258
4.1.3.5 Resource Defined by LWM2M.. 260
4.1.3.6 API Defined by LWM2M...261
4.1.3.7 Firmware Upgrade..265

5 SDK Usage Guide on the Application Side... 271
5.1 Huawei IoT Platform Java SDK Usage Guide... 271
5.1.1 Before You Start.. 271
5.1.2 Requirements for the Development Environment... 271
5.1.3 Downloading Related Development Resources.. 271
5.1.4 Importing the Java SDK Demo... 272
5.1.5 Initializing and Configuring Certificates...274
5.1.6 Calling Service APIs... 275
5.1.7 Implementing Callback APIs and Making, Exporting, and Uploading a Callback Certificate...............................277

IoT Device Management
Development Guide Contents

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. iv

5.1.8 Service API Calling Process and Precautions... 285
5.1.9 Testing the SDK...286

IoT Device Management
Development Guide Contents

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. v

1 Product Development

Obtaining Development Resources

Creating a Project and Product

Developing a Product Model

Developing a Codec

Developing an Application

Developing a Device

Self-Service Testing

Product Release

1.1 Obtaining Development Resources

Application Development Resources
The IoT platform provides a wealth of RESTful APIs and SDKs to ease application
development. Application development is the process in which an application calls APIs of
the IoT platform to implement service scenarios such as secure access, device management,
data collection, and command delivery. Download the corresponding resource files as
required.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 1

Resource Package Description Download Link

Application Development
Java API Demo

The IoT platform provides
the RESTful API for
application developers to
quickly experience open
API capabilities, service
functions, and service
processes.
For details, see Northbound
API Reference and
Application Development
Guide.

Application Development
Java API Demo

Application Development
Java SDK

The Java SDK provides Java
methods to call RESTful
APIs to communicate with
the IoT platform. The Java
SDK Demo provides the
code sample for calling the
SDK APIs.
For details, see Northbound
Java SDK API Reference
and Java SDK Usage
Guide.

l JAVA SDK
l JAVA SDK Demo

Device Development Resources
The IoT platform allows device access using MQTT or LWM2M/CoAP. Devices can connect
to the IoT platform by calling device APIs or integrating with SDKs.

Resource Package Description Download Link

LiteOS SDK Devices can connect to the
IoT platform through the
integrated LiteOS SDK. The
LiteOS Demo provides the
code sample for calling the
SDK APIs. For details, see
LiteOS SDK Integration
Development Guide.

LiteOS SDK

Profile Templates Profile templates of typical
scenarios are provided.
Developers can customize
their profile files based on
the templates.
For details, see Offline
Profile Definition.

Profile Example

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 2

https://support-intl.huaweicloud.com/en-us/api-IoT/iot_06_0002.html
https://support-intl.huaweicloud.com/en-us/api-IoT/iot_06_0002.html
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/LiteNAdemointl.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/LiteNAdemointl.zip
https://support-intl.huaweicloud.com/en-us/api-IoT/iot_06_2001.html
https://support-intl.huaweicloud.com/en-us/api-IoT/iot_06_2001.html
https://support-intl.huaweicloud.com/en-us/devg-IoT/iot_02_6002.html
https://support-intl.huaweicloud.com/en-us/devg-IoT/iot_02_6002.html
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/OceanConnectJava.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/OceanConJavaDemo.zip
https://github.com/LiteOS/LiteOS
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/ProfileTemplate.zip

Resource Package Description Download Link

Codec Example Demo codec projects are
provided for developers to
perform secondary
development.
For details, see Offline
Codec Development.

Codec Example

Codec Test Tool This tool is used to check
whether the codec
developed offline is normal.

Codec Test Tool

NB-IoT Device Simulator This tool is used to simulate
the access of NB-IoT
devices to the IoT platform
using CoAP for data
reporting and command
delivery.

NB-IoT Device Simulator

Certificates

In some scenarios where a device and NA connect to the IoT platform, the corresponding
certificate must be loaded to the device and NA. Click here to obtain the certificate files.

NOTE

This certificate package is used only for interconnection with the IoT platform deployed on HUAWEI
CLOUD.

For details about the directory structure of the certificate package and the usage of each
certificate, see Table 1-1.

Table 1-1 Certificate information

Certifica
te
Package
Name

Level-1
Director
y

Level-
2
Direct
ory

Level-
3
Direct
ory

Description

certificate Northbo
und API

code Java The certificates in this directory are used
when the NA calls IoT platform APIs using
HTTPS. Select the certificate in the
corresponding directory based on the
programming language of the NA, and load
the certificate to the NA.

PHP

Python

postma
n

- The certificate in this directory is used when
Postman tests the IoT platform APIs using
HTTPS.

Agent
Lite

Androi
d

- The certificates in this directory are used
when the device or gateway connects to the

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 3

https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/devicecodec.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/Encodingintl.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/DeviceSimulator.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/certificateintl.zip

Certifica
te
Package
Name

Level-1
Director
y

Level-
2
Direct
ory

Level-
3
Direct
ory

Description

C-
Linux

IoT platform through the integrated AgentLite
SDK. Select the certificate in the
corresponding directory based on the
programming language of the device or
gateway, and load the certificate to the device
or gateway.

-

Java -

1.2 Creating a Project and Product

Concept
l Project: an independent space where you can develop IoT products and applications.
l Product: a collection of devices with the same capabilities or features. In addition to

physical devices, a product includes product information, product models (profile files),
codecs, and test reports generated during IoT capability building.

Procedure

Step 1 Access the home page of IoT Device Management, and click Developer Center.

NOTE

Currently, the Developer Center is available only in Hong Kong. You need to complete product
development on the Developer Center in the Hong Kong region and then select your region to connect
devices and applications.

Step 2 (Optional) If you are using the Developer Center for the first time, click Manufacturer in the
upper right corner, complete the manufacturer information, and click Save.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 4

Step 3 On the home page of the Developer Center, click Create Project. In the dialog box displayed,
enter a project name, select the industry to which the project belongs, and click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 5

Step 4 When a dialog box indicating that the project is created is displayed, click Download Secret
to download the application ID and secret to your local PC, and click View Project to open
the project.

NOTE

The application ID and secret are required when a network application (NA) accesses the IoT platform.
Keep them securely. If you forget the secret, reset it by clicking Reset Secret under Applications >
Interconnection > Application Security.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 6

Step 5 On the home page of the project, choose Products > Product Development, and click
Create Product.

Step 6 You can create a product based on a preset template or customize a product. The following
uses customization as an example.

Step 7 Click the Customization tab, and click Customization.

Step 8 In the Set Product Information dialog box, enter the information such as Product Name,
Model, and Industry, and click Create.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 7

Step 9 On the Product Development page, click the product to enter its development space.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 8

----End

1.3 Developing a Product Model

1.3.1 Development Guide

Overview

A product model (or profile file) describes the capabilities and features of a device. You can
construct an abstract model of a device type by defining a profile file on the IoT platform,
allowing it to understand the services, properties, and commands supported by the device.

l Device Capability

For a water meter, the device capabilities include the type, manufacturer, model,
protocol, and services to be provided.

For example, for a water meter, the manufacturer is HZYB, the manufacturer ID is
TestUtf8ManuId, the model is NBIoTDevice, and the protocol is CoAP.

The water meter provides the following services: WaterMeterBasic, WaterMeterAlarm,
Battery, DeliverySchedule, and Connectivity. The Battery service is optional and the
other services are mandatory.

l Service

Service defines service capabilities of a device. Each service contains properties,
commands, and parameters.

For example, the preceding five services of the water meter contain corresponding
properties or commands.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 9

Procedure

If you have used a default template when creating a project and product, the corresponding
profile file template is selected automatically. You can directly use or modify the template. If
a customized product is created, you must define your profile file.

Step 1 On the Product Development page, click a product to enter its development space.

Step 2 In the development space, click Profile Definition and click Add Service.

Step 3 In the Add Service area, define the service name, properties, and commands. A service can
contain properties and/or commands. Configure the properties and commands based on your
requirements.

1. Enter Service Name using the camelcase naming method, such as waterMeter or battery.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 10

2. Click Add under Property List, set the parameters in the dialog box displayed, and click
OK. For Name, the first letter of the first word must be lowercase, and the first letters of
subsequent words must be capitalized, for example, batteryLevel or internalTemperature.
For other parameters, set them based on your requirements.
The rules for configuring Data Type are as follows:
– int: Select this value if the reported data is an integer or Boolean values.
– decimal: Select this value if the reported data is a decimal.
– string: Select this value if the reported data is a string, enumerated values, or

Boolean values. If enumerated or Boolean values are reported, use commas (,) to
separate the values.

– DateTime: Select this value if the reported data is a date.
– jsonObject: Select this value if the reported data is in JSON structure.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 11

3. Click Add under Command List. In the dialog box displayed, set Command Name and
click OK. It is recommended that the value of Command Name consist of only
uppercase letters and underscores (_), for example, DISCOVERY or
CHANGE_STATUS.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 12

4. Click Add under Command Fields. In the dialog box displayed, set the parameters and
click OK. For Name of the command field, the first letter of the first word must be
lowercase, and the first letters of the subsequent words must be capitalized, for example,
statusValue. For other parameters, set them based on your requirements.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 13

5. Click Add under Command Response Fields. In the dialog box displayed, set the
parameters and click OK. For Name of the command response field, the first letter of the
first word must be lowercase, and the first letters of the subsequent words must be
capitalized, for example, commandResult. For other parameters, set them based on your
requirements.

The command response field is optional. It must be defined only if the device is required
to return a command execution result.

----End

1.3.2 Offline Development

1.3.2.1 Profile Writing Guide

A profile is in JSON format.

Identification attributes: include device type, manufacturer, model, and protocol type.

Service list: provides detailed services.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 14

Naming Rules

The profile file must comply with the following naming rules:

l Capitalize device types, service types, and service IDs. Example: WaterMeter and
Battery.

l For the attribute name, uncapitalize the first character in the first world and capitalize the
first characters in subsequent words. Example: batteryLevel and internalTemperature.

l For the order, capitalize all characters, with words separated by underscores. For
example: DISCOVERY and CHANGE_COLOR.

l A device capability profile file (.json file) must be named devicetype-capability.json.
l A service capability profile file (.json file) must be named servicetype-capability.json.
l The manufacturer ID, manufacturer name, and device model uniquely identify a device.

Therefore, their combinations must be unique in different profile files and only English
is supported.

l You must ensure that names are universal and concise and service capability descriptions
clearly indicate corresponding functions. For example, you can name a multi-sensor
device MultiSensor and name a service that displays the battery level Battery.

NOTE

In some profile file samples, files named devicetype-display.json or servicetype-display.json may
exist. These files are used in some SmartHome scenarios. If they are not involved in the solution
communication between you and the IoT platform service provider, these files may not be included in
your profile file.

If you need to create a profile file for the SmartHome scenarios, contact the IoT platform support
personnel.

Device Profile File

To connect a new device to the IoT platform, you need to define a profile file for the device.
The IoT platform provides some profile file templates. If the types and functions of devices
newly connected to the IoT platform are included in these templates, directly use the
templates. If the types and functions are not included in the device profile file templates,
define your profile file.

For example, if a water meter is connected to the IoT platform, you can directly select the
corresponding profile file template on the IoT platform and modify the device model
identifier attribute and device service list.

NOTE

The profile file template provided by the IoT platform is updated continuously. The following table
provides some examples of device types and service types, which are for reference only.

Device identification attributes

Item Profile Key Value

Device type deviceType WaterMeter

Manufacturer ID manufacturerId TestUtf8ManuId

Manufacturer name manufacturerName HZYB

Device model model NBIoTDevic

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 15

Item Profile Key Value

Protocol type protocolType CoAP

Service list

Service Service ID Service Type Value

Basic water meter
function

WaterMeterBasic Water Mandatory

Alarm service WaterMeterAlarm Battery Mandatory

Battery service Battery Battery Optional

Data reporting rule DeliverySchedule DeliverySchedule Mandatory

Connectivity Connectivity Connectivity Mandatory

For details about a complete sample, see Appendix I: Water Meter Profile Sample. The
service definition can be modified as required. For example, the value ranges or enumerated
values of attributes can be modified.

NOTE

Developers can consult IoT platform support personnel to determine whether the IoT platform supports
their own device types. If the device types or service types are supported, developers can obtain the
profile file references from the IoT platform support personnel.

A device model is composed of a product type ID and a product ID. For example, if the values of
ProducTypeId and ProductId are 0x0168 and 0x0188, respectively, the device model is 0168-0188.

Profile Packaging
After the profile file is completed, package it in the format shown in Figure 1-1.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 16

Figure 1-1 Profile file hierarchy

The following requirements must be met for profile packaging:

l The profile file hierarchy must be the same as that shown in Figure 1-1 and cannot be
added or deleted. For example, the second level can contain only the profile and service
folders, and each service must contain the profile folder.

l The names in orange in Figure 1-1 cannot be changed.
l The profile file must be compressed in ZIP format.
l The profile file must be named in the format of deviceType_manufacturerId_model. The

values of deviceType, manufacturerId, and model must be the same as those in the
devicetype-capability.json file. For example, the following provides the main fields of
the devicetype-capability.json file.

{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",
 "model": "NBIoTDevice",
 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "serviceTypeCapabilities": ****
 }
]
}

l WaterMeterBasic, WaterMeterAlarm, and Battery in Figure 1-1 are services defined in
the devicetype-capability.json file.

l The profile file is in JSON format. After the file is edited, you can search for some
format verification websites on the Internet to check the validity of the JSON file.

1.3.2.2 Profile Providing Method

You must send the prepared the profile file to the Huawei IoT administrator for review. After
the approval, the Huawei IoT administrator imports the file to the Huawei IoT lab.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 17

1.3.2.3 Profile Field Description

Device Capabilities
The devicetype-capability.json file records basic information about a device.

{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",
 "model": "NBIoTDevice",
 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "omCapability":{
 "upgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"PCP"
 },
 "fwUpgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"LWM2M"
 },
 "configCapability" : {
 "supportConfig":true,
 "configMethod":"file",
 "defaultConfigFile": {
 "waterMeterInfo" : {
 "waterMeterPirTime" : "300"
 }
 }
 }
 },
 "serviceTypeCapabilities": [
 {
 "serviceId": "WaterMeterBasic",
 "serviceType": "WaterMeterBasic",
 "option": "Mandatory"
 },
 {
 "serviceId": "WaterMeterAlarm",
 "serviceType": "WaterMeterAlarm",
 "option": "Mandatory"
 },
 {
 "serviceId": "Battery",
 "serviceType": "Battery",
 "option": "Optional"
 },
 {
 "serviceId": "DeliverySchedule",
 "serviceType": "DeliverySchedule",
 "option": "Mandatory"
 },
 {
 "serviceId": "Connectivity",
 "serviceType": "Connectivity",
 "option": "Mandatory"
 }
]
 }
]
}

The fields are described as follows:

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 18

Fiel
d

Sub-field Mandatory
or Optional

Description

devi
ces

Mandatory Contains complete capability information
about a device. (The root node cannot be
modified.)

manufacturer
Id

Mandatory Identifies the manufacturer of the device.

manufacturer
Name

Mandatory Specifies the manufacturer name of the
device. (The value must be in English.)

model Mandatory Specifies the device model. As a type of
device may have multiple models, it is
recommended that the value contain
letters or digits to ensure scalability.

protocolType Mandatory Specifies the protocol used by the device
to connect to the IoT platform. For
example, the value is CoAP for NB-IoT
devices.

deviceType Mandatory Specifies the device type.

omCapabilit
y

Optional Defines the software upgrade, firmware
upgrade, and configuration update
capabilities of the device. For details, see
the description of the omCapability
structure in the following.
If software or firmware upgrades of the
device are not involved, this field can be
deleted.

serviceType
Capabilities

Mandatory Describes service capabilities of the
device.

servic
eId

Mandatory Identifies a service. If a service type
includes only one service, the value of
serviceId is the same as that of
serviceType. If the service type includes
multiple services, the services are
numbered correspondingly, such as
Switch01, Switch02, and Switch03.

servic
eType

Mandatory Specifies the service type. The value of
this field must be the same as that of
serviceType in the servicetype-
capability.json file.

option Mandatory Specifies the service type. The value can
be Master, Mandatory, or Optional.
This field is not a functional field but a
descriptive one.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 19

Description of the omCapability structure

Field Sub-field Mand
atory
or
Optio
nal

Description

upgradeCap
ability

Optio
nal

Specifies software upgrade capabilities of a device.

supportUpgr
ade

Optio
nal

true: The device supports software upgrades.
false: The device does not support software
upgrades.

upgradeProto
colType

Optio
nal

Specifies the protocol type used by the device for
upgrades. It is different from protocolType of the
device. For example, the software upgrade
protocol of CoAP devices is PCP.

fwUpgrade
Capability

Optio
nal

Specifies firmware upgrade capabilities of the
device.

supportUpgr
ade

Optio
nal

true: The device supports firmware upgrades.
false: The device does not support firmware
upgrades.

upgradeProto
colType

Optio
nal

Specifies the protocol type used by the device for
upgrades. It is different from protocolType of the
device. Currently, the IoT platform supports only
firmware upgrade of LWM2M devices.

configCapa
bility

Optio
nal

Specifies configuration update capabilities of the
device.

supportConfi
g

Optio
nal

true: The device supports configuration updates.
false: The device does not support configuration
updates.

configMetho
d

Optio
nal

file: Configuration updates are delivered in the
form of files.

defaultConfi
gFile

Optio
nal

Specifies the default device configuration
information (in JSON format). The specific
configuration information is defined by the
manufacturers. The IoT platform only stores the
information for delivery and does not parse the
meaning of the configuration fields.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 20

Service Capabilities

The servicetype-capability.json file records service information about a device.

{
 "services": [
 {
 "serviceType": "WaterMeterBasic",
 "description": "WaterMeterBasic",
 "commands": [
 {
 "commandName": "SET_PRESSURE_READ_PERIOD",
 "paras": [
 {
 "paraName": "value",
 "dataType": "int",
 "required": true,
 "min": 1,
 "max": 24,
 "step": 1,
 "maxLength": 10,
 "unit": "hour",
 "enumList": null
 }
],
 "responses": [
 {
 "responseName": "SET_PRESSURE_READ_PERIOD_RSP",
 "paras": [
 {
 "paraName": "result",
 "dataType": "int",
 "required": true,
 "min": -1000000,
 "max": 1000000,
 "step": 1,
 "maxLength": 10,
 "unit": null,
 "enumList": null
 }
]
 }
]
 }
],
 "properties": [
 {
 "propertyName": "registerFlow",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "R",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "currentReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": "L",
 "enumList": null

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 21

 },
 {
 "propertyName": "timeOfReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "internalTemperature",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": "0.01°C",
 "enumList": null
 },
 {
 "propertyName": "dailyFlow",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "dailyReverseFlow",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "peakFlowRate",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": "L/H",
 "enumList": null
 },
 {
 "propertyName": "peakFlowRateTime",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 22

 "method": "M",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "intervalFlow",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "pressure",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "O",
 "unit": "kPa",
 "enumList": null
 },
 {
 "propertyName": "temperature",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": "0.01°C",
 "enumList": null
 },
 {
 "propertyName": "vibration",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "M",
 "unit": "0.01g",
 "enumList": null
 }
]
 }
]
}

The fields are described as follows:

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 23

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

servi
ces

Mand
atory

Contains complete information about a
service. (The root node cannot be
modified.)

ser
vic
eTy
pe

Mand
atory

Specifies the service type. The value of
this field must be the same as that of
serviceType in the devicetype-
capability.json file.

des
crip
tion

Mand
atory

Provides description about the service.
This field is not a functional field but a
descriptive one. It can be set to null.

co
mm
and
s

Mand
atory

Specifies a parameter that a device can
run. If the service has no commands, set
the value to null.

comman
dName

Mand
atory

Specifies the name of a command. The
command name and parameters together
form a complete command.

paras Mand
atory

Specifies parameters contained in a
command.

paraNa
me

Mand
atory

Specifies the name of a parameter in the
command.

dataTy
pe

Mand
atory

Specifies the data type of a command
parameter.
Value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
l string list: ["str1","str2","str3"]
l DateTime: The value is in the

format of yyyyMMddTHHmmssZ,
for example, 20151212T121212Z.

l jsonObject: The value is in
customized JSON structure, which is
not parsed by the IoT platform and is
transparently transmitted only.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 24

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

require
d

Mand
atory

Specifies whether the command is
mandatory. The value can be true or
false. The default value is false
(optional).
This field is not a functional field but a
descriptive one.

min Mand
atory

Specifies the minimum value.
This parameter is valid only when
dataType is set to int or decimal.

max Mand
atory

Specifies the maximum value.
This parameter is valid only when
dataType is set to int or decimal.

step Mand
atory

Specifies the step.
This field is not used. Set it to 0.

maxLe
ngth

Mand
atory

Specifies the character string length.
This field is valid only when dataType
is string, string list, or DateTime.

unit Mand
atory

Specifies the unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

enumLi
st

Mand
atory

Specifies a list of enumerated values.
For example, the status of a switch can
be set as follows:
"enumList": ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

response
s

Mand
atory

Specifies responses to command
execution.

respons
eName

Mand
atory

You can add _RSP to the end of
commandName in the command
corresponding to responses.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 25

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

paras Mand
atory

Specifies parameters contained in a
response.

pa
ra
Na
me

Mand
atory

Specifies the name of a parameter in the
command.

dat
aT
yp
e

Mand
atory

Specifies the data type.
Value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
l string list: ["str1","str2","str3"]
l DateTime: The value is in the

format of yyyyMMddTHHmmssZ,
for example, 20151212T121212Z.

l jsonObject: The value is in
customized JSON structure, which is
not parsed by the IoT platform and is
transparently transmitted only.

re
qu
ire
d

Mand
atory

Specifies whether the command
response is mandatory. The value can be
true or false. The default value is false
(optional).
This field is not a functional field but a
descriptive one.

mi
n

Mand
atory

Specifies the minimum value.
This field is valid only when dataType
is int or decimal. The value of a field of
the int or decimal type must be greater
than or equal to the value of min.

ma
x

Mand
atory

Specifies the maximum value.
This field is valid only when dataType
is int or decimal. The value of a field of
the int or decimal type must be less
than or equal to the value of max.

ste
p

Mand
atory

Specifies the step.
This field is not used. Set it to 0.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 26

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

ma
xL
en
gt
h

Mand
atory

Specifies the character string length.
This field is valid only when dataType
is string, string list, or DateTime.

un
it

Mand
atory

Specifies the unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

en
u
m
Li
st

Mand
atory

Specifies a list of enumerated values.
For example, the status of a switch can
be set as follows:
"enumList": ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

pro
pert
ies

Mand
atory

Describes reported data. Each sub-node
indicates an attribute.

property
Name

Mand
atory

Specifies the attribute name.

dataTyp
e

Mand
atory

Specifies the data type.
Value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
l string list: ["str1","str2","str3"]
l DateTime: The value is in the

format of yyyyMMddTHHmmssZ,
for example, 20151212T121212Z.

l jsonObject: The value is in
customized JSON structure, which is
not parsed by the IoT platform and is
transparently transmitted only.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 27

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

required Mand
atory

Specifies whether an attribute is
mandatory. The value can be true or
false. The default value is false, which
indicates that the attribute is optional.
This field is not a functional field but a
descriptive one.

min Mand
atory

Specifies the minimum value.
This field is valid only when dataType
is int or decimal. The value of a field of
the int or decimal type must be greater
than or equal to the value of min.

max Mand
atory

Specifies the maximum value.
This field is valid only when dataType
is int or decimal. The value of a field of
the int or decimal type must be less
than or equal to the value of max.

step Mand
atory

Specifies the step.
This field is not used. Set it to 0.

method Mand
atory

Specifies the access mode.
l R: readable
l W: writable
l E: subscription
Value: R, RW, RE, RWE, or null

unit Mand
atory

Specifies the unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

maxLen
gth

Mand
atory

Specifies the character string length.
This field is valid only when dataType
is string, string list, or DateTime.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 28

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

enumLis
t

Mand
atory

Specifies a list of enumerated values.
For example, batteryStatus can be set as
follows:
"enumList" : [0, 1, 2, 3, 4, 5, 6]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

1.3.3 Reference

1.3.3.1 Product Model Sample

Appendix I: Water Meter Profile Sample
A water meter profile sample contains six files, whose names and content are described as
follows:

1. devicetype-capability.json
{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",
 "model": "NBIoTDevice",
 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "serviceTypeCapabilities": [
 {
 "serviceId": "WaterMeterBasic",
 "serviceType": "WaterMeterBasic",
 "option": "Mandatory"
 },
 {
 "serviceId": "WaterMeterAlarm",
 "serviceType": "WaterMeterAlarm",
 "option": "Mandatory"
 },
 {
 "serviceId": "Battery",
 "serviceType": "Battery",
 "option": "Optional"
 },
 {
 "serviceId": "DeliverySchedule",
 "serviceType": "DeliverySchedule",
 "option": "Mandatory"
 },
 {
 "serviceId": "Connectivity",
 "serviceType": "Connectivity",
 "option": "Mandatory"

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 29

 }
]
 }
]
}

2. servicetype-capability.json (Battery)
{
 "services": [
 {
 "serviceType": "Battery",
 "description": "Battery",
 "commands": null,
 "properties": [
 {
 "propertyName": "batteryLevel",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 100,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": "%",
 "enumList": null
 },
 {
 "propertyName": "batteryThreshold",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 100,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": "%",
 "enumList": null
 },
 {
 "propertyName": "batteryStatus",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": [
 0,
 1,
 2,
 3,
 4,
 5,
 6
]
 }
]
 }
]
}

3. servicetype-capability.json (ConnectivityMonitoring)
{
 "services": [
 {
 "serviceType": "Connectivity",
 "description": "Connectivity",
 "commands": null,

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 30

 "properties": [
 {
 "propertyName": "signalStrength",
 "dataType": "int",
 "required": true,
 "min": -110,
 "max": -48,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": "dbm",
 "enumList": null
 },
 {
 "propertyName": "linkQuality",
 "dataType": "int",
 "required": false,
 "min": -110,
 "max": -48,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": "dbm",
 "enumList": null
 },
 {
 "propertyName": "cellId",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 268435455,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 }
]
 }
]
}

4. servicetype-capability.json (DeliverySchedule)
{
 "services": [
 {
 "serviceType": "DeliverySchedule",
 "description": "DeliverySchedule",
 "commands": null,
 "properties": [
 {
 "propertyName": "startTime",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RW",
 "unit": "sec",
 "enumList": null
 },
 {
 "propertyName": "UTCOffset",
 "dataType": "string",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 31

 "method": "RW",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "frequency",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RW",
 "unit": "sec",
 "enumList": null
 },
 {
 "propertyName": "randomisedDeliveryWindow",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RW",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "retries",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RW",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "retryPeriod",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RW",
 "unit": null,
 "enumList": null
 }
]
 }
]
}

5. servicetype-capability.json (WaterMeterAlarm)
{
 "services": [
 {
 "serviceType": "WaterMeterAlarm",
 "description": "WaterMeterAlarm",
 "commands": null,
 "properties": [
 {
 "propertyName": "lowFlowAlarm",
 "dataType": "int",
 "required": true,
 "min": 0,

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 32

 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "highFlowAlarm",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "tamperAlarm",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "lowBatteryAlarm",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "batteryRunOutAlarm",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "highInternalTemperature",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "reverseFlowAlarm",

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 33

 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "highPressureAlarm",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "lowPressureAlarm",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "highTemperatureAlarm",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "lowTemperatureAlarm",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "innerErrorAlarm",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 34

 },
 {
 "propertyName": "storageFault",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "waterTempratureSensorFault",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "innerTempratureSensorFault",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "pressureSensorFault",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "vibrationSensorFault",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "RE",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "strayCurrent",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 35

 "method": "RE",
 "unit": null,
 "enumList": null
 }
]
 }
]
}

6. servicetype-capability.json (WaterMeterBasic)
{
 "services": [
 {
 "serviceType": "WaterMeterBasic",
 "description": "WaterMeterBasic",
 "commands": null,
 "properties": [
 {
 "propertyName": "registerFlow",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "R",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "currentReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "timeOfReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "internalTemperature",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "0.01°C",
 "enumList": null
 },
 {
 "propertyName": "dailyFlow",
 "dataType": "int",
 "required": false,
 "min": 0,

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 36

 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "dailyReverseFlow",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "peakFlowRate",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L/H",
 "enumList": null
 },
 {
 "propertyName": "peakFlowRateTime",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "intervalFlow",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "pressure",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "kPa",
 "enumList": null
 },
 {
 "propertyName": "temperature",

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 37

 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "0.01°C",
 "enumList": null
 },
 {
 "propertyName": "vibration",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "0.01g",
 "enumList": null
 }
]
 }
]
}

1.3.3.2 Fields in the Profile Sample

Device Capabilities
The devicetype-capability.json file records basic information about a device.
{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",
 "model": "NBIoTDevice",
 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "omCapability":{
 "upgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"PCP"
 },
 "fwUpgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"LWM2M"
 },
 "configCapability" : {
 "supportConfig":true,
 "configMethod":"file",
 "defaultConfigFile": {
 "waterMeterInfo" : {
 "waterMeterPirTime" : "300"
 }
 }
 }
 },
 "serviceTypeCapabilities": [
 {
 "serviceId": "WaterMeterBasic",
 "serviceType": "WaterMeterBasic",
 "option": "Mandatory"
 },
 {
 "serviceId": "WaterMeterAlarm",

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 38

 "serviceType": "WaterMeterAlarm",
 "option": "Mandatory"
 },
 {
 "serviceId": "Battery",
 "serviceType": "Battery",
 "option": "Optional"
 },
 {
 "serviceId": "DeliverySchedule",
 "serviceType": "DeliverySchedule",
 "option": "Mandatory"
 },
 {
 "serviceId": "Connectivity",
 "serviceType": "Connectivity",
 "option": "Mandatory"
 }
]
 }
]
}

The fields are described as follows:

Fiel
d

Sub-field Mandatory
or Optional

Description

devi
ces

Mandatory Complete capability information about a
device. (The root node cannot be
modified.)

manufacturer
Id

Mandatory Manufacturer ID of the device.

manufacturer
Name

Mandatory Manufacturer name of the device. (The
value must be in English.)

model Mandatory Device model. As a type of device may
have multiple models, it is recommended
that the value contain letters or digits to
ensure scalability.

protocolType Mandatory Protocol used by the device to connect to
the IoT platform. For example, the value
is CoAP for NB-IoT devices.

deviceType Mandatory Type of the device.

omCapabilit
y

Optional Software upgrade, firmware upgrade, and
configuration update capabilities of the
device. For details, see the description of
the omCapability structure below.
If software or firmware upgrade is not
involved, this field can be deleted.

serviceType
Capabilities

Mandatory Service capabilities of the device.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 39

Fiel
d

Sub-field Mandatory
or Optional

Description

servic
eId

Mandatory Service ID. If a service type includes only
one service, the value of serviceId is the
same as that of serviceType. If the service
type includes multiple services, the
services are numbered correspondingly,
such as Switch01, Switch02, and
Switch03.

servic
eType

Mandatory Type of the service. The value of this field
must be the same as that of serviceType
in the servicetype-capability.json file.

option Mandatory Type of the service field. The value can be
Master, Mandatory, or Optional.
This field is not a functional field but a
descriptive one.

Description of the omCapability structure

Field Sub-field Mand
atory
or
Optio
nal

Description

upgradeCap
ability

Optio
nal

Software upgrade capabilities of the device.

supportUpgr
ade

Optio
nal

true: The device supports software upgrades.
false: The device does not support software
upgrades.

upgradeProto
colType

Optio
nal

Protocol type used by the device for software
upgrades. It is different from protocolType of the
device. For example, the software upgrade
protocol of CoAP devices is PCP.

fwUpgrade
Capability

Optio
nal

Firmware upgrade capabilities of the device.

supportUpgr
ade

Optio
nal

true: The device supports firmware upgrades.
false: The device does not support firmware
upgrades.

upgradeProto
colType

Optio
nal

Protocol type used by the device for firmware
upgrades. It is different from protocolType of the
device. Currently, the IoT platform supports only
firmware upgrades of LWM2M devices.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 40

Field Sub-field Mand
atory
or
Optio
nal

Description

configCapa
bility

Optio
nal

Configuration update capabilities of the device.

supportConfi
g

Optio
nal

true: The device supports configuration updates.
false: The device does not support configuration
updates.

configMetho
d

Optio
nal

file: Configuration updates are delivered in the
form of files.

defaultConfi
gFile

Optio
nal

Default device configuration information (in JSON
format). The specific configuration information is
defined by the manufacturer. The IoT platform
stores the information for delivery but does not
parse the configuration fields.

Service Capabilities
The servicetype-capability.json file records service information about a device.

{
 "services": [
 {
 "serviceType": "WaterMeterBasic",
 "description": "WaterMeterBasic",
 "commands": [
 {
 "commandName": "SET_PRESSURE_READ_PERIOD",
 "paras": [
 {
 "paraName": "value",
 "dataType": "int",
 "required": true,
 "min": 1,
 "max": 24,
 "step": 1,
 "maxLength": 10,
 "unit": "hour",
 "enumList": null
 }
],
 "responses": [
 {
 "responseName": "SET_PRESSURE_READ_PERIOD_RSP",
 "paras": [
 {
 "paraName": "result",
 "dataType": "int",
 "required": true,
 "min": -1000000,
 "max": 1000000,
 "step": 1,
 "maxLength": 10,
 "unit": null,
 "enumList": null

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 41

 }
]
 }
]
 }
],
 "properties": [
 {
 "propertyName": "registerFlow",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "R",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "currentReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "timeOfReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "internalTemperature",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "0.01°C",
 "enumList": null
 },
 {
 "propertyName": "dailyFlow",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "dailyReverseFlow",

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 42

 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "peakFlowRate",
 "dataType": "int",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L/H",
 "enumList": null
 },
 {
 "propertyName": "peakFlowRateTime",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "intervalFlow",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "pressure",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "kPa",
 "enumList": null
 },
 {
 "propertyName": "temperature",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "0.01°C",
 "enumList": null

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 43

 },
 {
 "propertyName": "vibration",
 "dataType": "array",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "0.01g",
 "enumList": null
 }
]
 }
]
}

The fields are described as follows:

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

servi
ces

Mand
atory

Complete information about a service.
(The root node cannot be modified.)

ser
vic
eTy
pe

Mand
atory

Type of the service. The value of this
field must be the same as that of
serviceType in the devicetype-
capability.json file.

des
crip
tion

Mand
atory

Description of the service.
This field is not a functional field but a
descriptive one. It can be set to null.

co
mm
and
s

Mand
atory

Command supported by the device. If
the service has no commands, set the
value to null.

comman
dName

Mand
atory

Name of the command. The command
name and parameters together form a
complete command.

paras Mand
atory

Parameters contained in the command.

paraNa
me

Mand
atory

Name of a parameter in the command.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 44

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

dataTy
pe

Mand
atory

Data type of the parameter in the
command.
Value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
l string list: ["str1","str2","str3"]
l DateTime: The value is in the

format of yyyyMMdd'T'HHmmss'Z',
for example, 20151212T121212Z.

l jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform but is
transparently transmitted only.

require
d

Mand
atory

Whether the command is mandatory.
The value can be true or false. The
default value is false, indicating that the
command is optional.
This field is not a functional field but a
descriptive one.

min Mand
atory

Minimum value.
This field is valid only when dataType
is set to int or decimal.

max Mand
atory

Maximum value.
This field is valid only when dataType
is set to int or decimal.

step Mand
atory

Step.
This field is not used. Set it to 0.

maxLe
ngth

Mand
atory

Character string length.
This field is valid only when dataType
is set to string, string list, or
DateTime.

unit Mand
atory

Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 45

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

enumLi
st

Mand
atory

List of enumerated values.
For example, the status of a switch can
be set as follows:
"enumList": ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

response
s

Mand
atory

Responses to command execution.

respons
eName

Mand
atory

You can add _RSP to the end of
commandName in the command
corresponding to responses.

paras Mand
atory

Parameters contained in a response.

pa
ra
Na
me

Mand
atory

Name of a parameter in the command.

dat
aT
yp
e

Mand
atory

Data type.
Value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
l string list: ["str1","str2","str3"]
l DateTime: The value is in the

format of yyyyMMdd'T'HHmmss'Z',
for example, 20151212T121212Z.

l jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform but is
transparently transmitted only.

re
qu
ire
d

Mand
atory

Whether the command response is
mandatory. The value can be true or
false. The default value is false,
indicating that the command response is
optional.
This field is not a functional field but a
descriptive one.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 46

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

mi
n

Mand
atory

Minimum value.
This field is valid only when dataType
is set to int or decimal. The value of a
field of the int or decimal type must be
greater than or equal to the value of
min.

ma
x

Mand
atory

Maximum value.
This field is valid only when dataType
is set to int or decimal. The value of a
field of the int or decimal type must be
less than or equal to the value of max.

ste
p

Mand
atory

Step.
This field is not used. Set it to 0.

ma
xL
en
gt
h

Mand
atory

Character string length.
This field is valid only when dataType
is set to string, string list, or
DateTime.

un
it

Mand
atory

Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

en
u
m
Li
st

Mand
atory

List of enumerated values.
For example, the status of a switch can
be set as follows:
"enumList": ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

pro
pert
ies

Mand
atory

Reported data. Each sub-node indicates
a property.

property
Name

Mand
atory

Name of the property.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 47

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

dataTyp
e

Mand
atory

Data type.
Value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
l string list: ["str1","str2","str3"]
l DateTime: The value is in the

format of yyyyMMdd'T'HHmmss'Z',
for example, 20151212T121212Z.

l jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform but is
transparently transmitted only.

required Mand
atory

Whether the property is mandatory. The
value can be true or false. The default
value is false, indicating that the
property is optional.
This field is not a functional field but a
descriptive one.

min Mand
atory

Minimum value.
This field is valid only when dataType
is set to int or decimal. The value of a
field of the int or decimal type must be
greater than or equal to the value of
min.

max Mand
atory

Maximum value.
This field is valid only when dataType
is set to int or decimal. The value of a
field of the int or decimal type must be
less than or equal to the value of max.

step Mand
atory

Step.
This field is not used. Set it to 0.

method Mand
atory

Access mode.
l R: readable
l W: writable
l E: subscription
Value: R, RW, RE, RWE, or null

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 48

Fiel
d

Sub-field Mand
atory
or
Optio
nal

Description

unit Mand
atory

Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

maxLen
gth

Mand
atory

Character string length.
This field is valid only when dataType
is set to string, string list, or
DateTime.

enumLis
t

Mand
atory

List of enumerated values.
For example, batteryStatus can be set as
follows:
"enumList" : [0, 1, 2, 3, 4, 5, 6]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

1.4 Developing a Codec

1.4.1 Development Guide

Overview
If a device reports binary data, a codec must be developed for data format conversion. If a
device reports JSON data, codec development is not required.

For example, in the NB-IoT scenario where devices communicate with the IoT platform using
CoAP, the payload of the CoAP message is data at the application layer and the data type is
defined by the device. As NB-IoT devices require low power consumption, data at the
application layer is in binary format instead of JSON. However, the IoT platform
communicates with NAs by sending data in JSON format. Therefore, codec development is
required for the IoT platform to convert data in binary and JSON formats.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 49

Figure 1-2 Codec conversion

Procedure
If you have used a preset template when creating a project and product, you can directly
use or modify the codecs contained in the template. If a customized product is created, you
must develop your codec.

Step 1 In the product development space, click Codec Development.

Step 2 In the Online Codec Editor area, click Add Message.

Step 3 In the Add Message dialog box, specify Message Name, set Message Type to Data
Reporting, and click OK.
l If the IoT platform is required to return an ACK message after receiving data reported by

the device, select Add Response Field. The data carried in the ACK message is the
value of Response. The default value is AAAA0000.

l Message Name can contain only letters, digits, underscores (_), and dollar signs ($) and
cannot start with a digit.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 50

Step 4 Click + next to Data Reporting Fields.

Step 5 In the Add Field dialog box, select Tagged as address field. Other parameters are set
automatically. Click OK.

When messages of the same type are created, such as two data reporting messages, Tagged as
address field must be selected and this field in every such message must be in the same place
on the field list. A command response can be regarded as a type of data reporting message.
Therefore, if a command response exists, messageId must be added to the data reporting
message.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 51

Step 6 Click + next to Data Reporting Fields.

Step 7 In the Add Field dialog box, set the parameters and click OK.
l Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot

start with a digit.
l Data Type is configured based on the data reported by the device and must match the

type defined in the profile file.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 52

Step 8 In the Online Codec Editor area, click Add Message.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 53

Step 9 In the Add Message dialog box, specify Message Name, set Message Type to Command
Delivery, and click OK.
l If the device is required to return the command execution result, select Add Response

Field. After the check box is selected:
– The address field must be defined in both the data reporting message and the

command response, and this field in the two messages must be in the same place on
the field list, so that the codec can distinguish the data reporting message from the
command response.

– The response ID field must be defined in the command delivery message and the
command response, and this field in the two messages must be in the same place on
the field list, so that the codec can associate the command delivery message with
the corresponding command response.

l Message Name can contain only letters, digits, underscores (_), and dollar signs ($) and
cannot start with a digit.

Step 10 Click + next to Command Delivery Fields.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 54

Step 11 In the Add Field dialog box, select Tagged as address field. Other parameters are set
automatically. Click OK.

When messages of the same type are created, such as two command delivery messages,
Tagged as address field must be selected and this field in every such message must be in the
same place on the field list. A data reporting response can be regarded as a type of command
delivery message. Therefore, if a data reporting response exists, messageId must be added to
the command delivery message.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 55

Step 12 Click + next to Command Delivery Fields.

Step 13 In the Add Field dialog box, select Tagged as response ID field. Other parameters are set
automatically. Click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 56

Step 14 Click + next to Command Delivery Fields.

Step 15 In the Add Field dialog box, set the parameters and click OK.
l Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot

start with a digit.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 57

l Data Type is configured based on the data reported by the device and must match the
type defined in the profile file.

Step 16 Click + next to Response Fields.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 58

Step 17 In the Add Field dialog box, select Tagged as address field. Other parameters are set
automatically. Click OK.

Step 18 Click + next to Response Fields.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 59

Step 19 In the Add Field dialog box, select Tagged as response ID field. Other parameters are set
automatically. Click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 60

Step 20 Click + next to Response Fields.

Step 21 In the Add Field dialog box, select Tagged as command execution state field, set the other
parameters, and click OK.
l The value of Name is automatically populated.
l Data Type is configured based on the actual command response and must match the type

of the corresponding field defined in the profile file.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 61

Step 22 Click + next to Response Fields.

Step 23 In the Add Field dialog box, set the parameters and click OK.

l Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot
start with a digit.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 62

l Data Type is configured based on the data reported by the device and must match the
type defined in the profile file.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 63

Step 24 Map the property fields, command fields, and response fields in Device Model on the right
with the fields in the data reporting message, command delivery message, and command
response.

Step 25 Click Save and then Deploy to deploy the codec on the IoT platform.

----End

1.4.2 Offline Development

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 64

1.4.2.1 Preparing the Development Environment

Downloading Eclipse

Download the Eclipse installation package and decompress it to a local directory. You can use
the software without installation.

Eclipse is available on the official website at http://www.eclipse.org/downloads.

Downloading the Maven Plug-in

Download the Maven plug-in package (in .zip format) and decompress it to a local directory.

Maven is available on the official website at http://maven.apache.org/download.cgi.

Configuring the Maven Plug-in

Maven configuration involves setting environment variables on Windows and setting Maven
on Eclipse. For details on setting environment variables on Windows, see other online
resources. Maven can be configured on Eclipse as follows:

Step 1 Start Eclipse and choose Windows > Preferences. In the Preferences window, choose
Maven > Installations. On the right pane, click Add.

Figure 1-3 Configuring Maven plug-in 1

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 65

http://www.eclipse.org/downloads
http://maven.apache.org/download.cgi

Step 2 Select the path where the Maven plug-in package is stored and click Finish to import the
Maven plug-in.

Figure 1-4 Configuring Maven plug-in 2

Step 3 Select the imported Maven plug-in and click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 66

Figure 1-5 Configuring Maven plug-in 3

NOTE

For details about how to install JDK and configure Java environment variables, see Installing JDK 1.8
and Configuring Java Environment Variables (Windows OS).

----End

1.4.2.2 Importing the DEMO Project of the Codec

Step 1 Download the DEMO project, obtain the codecDemo.zip file from the source_code folder,
and decompress the file to a local directory.

Figure 1-6 Position of the DEMO project of the codec

Step 2 Open Eclipse, right-click the blank area in Project Explorer on the left of Eclipse, and
choose Import > Import....

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 67

https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/devicecodec.zip

Figure 1-7 Importing DEMO project 1

Step 3 Expand Maven, select Existing Maven Projects, and click Next.

Figure 1-8 Importing DEMO project 2

Step 4 Click Browse, select the codecDemo folder obtained in Step 1, select /pom.xml, and click
Finish.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 68

Figure 1-9 Importing DEMO project 3

----End

1.4.2.3 Developing a Codec

The Maven project architecture in the DEMO project does not need to be modified. To
develop a codec, modify the DEMO project by following the instructions provided in decode
API Description.

1.4.2.4 Packaging the Codec

This topic describes how to package the codec and prepare the package.

Packaging the Codec Using Maven

After the codec is programmed, use Maven to package the codec. On the Windows OS,
perform the following steps:

Step 1 Open the DOS window and access the directory where the pom.xml file is located.

Step 2 Run mvn package.

Step 3 After BUILD SUCCESS is displayed in the DOS window, open the target folder in the same
directory as the pom.xml file to obtain the .jar package.

The naming rule of the .jar package is as follows: device type-manufacturer ID-device
model-version.jar, for example: WaterMeter-Huawei-NBIoTDevice-version.jar.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 69

Figure 1-10 Structure of the .jar file

l The com directory stores class files.
l The META-INF directory stores description files of .jar packages under the OSGi

framework, which are generated based on configurations in the pom.xml file.
l The OSGI-INF directory stores service configuration files and is used to register the

codec as a service for the platform to call. (Only one .xml file can be called.)
l Other .jar packages are .jar packages referenced by codecs.

----End

Preparing a Codec Package

Step 1 Create a folder named package, which contains the preload/ sub-folder.

Step 2 Place the packaged .jar package in the preload/ folder.

Figure 1-11 Structure of the codec package

Step 3 In the package folder, create the package-info.json file. The fields and templates in this file
are described as follows:

NOTE

The package-info.json file is encoded using UTF-8 without BOM. Only English characters are
supported.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 70

Table 1-2 Description of fields in the package-info.json file

Field Description Mandatory
or
Optional

specVersion Specifies the version of the description file. The
value is fixed at 1.0.

Mandatory

fileName Specifies the name of the software package. The
value is fixed at codec-demo.

Mandatory

version Specifies the version number of the software
package. The version of the package.zip file must
be the same as the value of bundleVersion.

Mandatory

deviceType Specifies the device type, which must be the same
as that defined in the profile file.

Mandatory

manufacturerName Specifies the manufacturer name, which must be
the same as that defined in the profile file.
Otherwise, the package-info.json file cannot be
uploaded to the IoT platform.

Mandatory

model Specifies the product model, which must be the
same as that defined in the profile file.

Mandatory

platform Specifies the platform type, which is the operating
system of the IoT platform on which the codec
package runs. The value is fixed at linux.

Mandatory

packageType Specifies the software package type. This field is
used to describe the IoT platform module where
the codec is deployed. The value is fixed at
CIGPlugin.

Mandatory

date Specifies the time when a packet is sent. The
format is as follows: yyyy-MM-dd HH-mm-ss.
For example, 2017-05-06 20:48:59.

Optional

description Specifies the self-defined description about the
software package.

Optional

ignoreList Specifies the list of bundles to be ignored. The
default value is null.

Mandatory

bundles Specifies the description of a bundle.
NOTE

A bundle is a .jar package in a compressed package.
Only one bundle needs to be described.

Mandatory

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 71

Table 1-3 Description of the bundles field

Field Description Mandatory
or
Optional

bundleName Specifies the bundle name, which is consistent
with the value of Bundle-SymbolicName in the
pom.xml file.

Mandatory

bundleVersion Specifies the bundle version, which must be the
same as the value of version.

Mandatory

priority Specifies the bundle priority. This parameter can
be set to the default value 5.

Mandatory

fileName Specifies the codec file name. Mandatory

bundleDesc Describes the bundle function. Mandatory

versionDesc Describes the functions and features of different
versions.

Mandatory

Template of the package-info.json file

{
 "specVersion":"1.0",
 "fileName":"codec-demo",
 "version":"1.0.0",
 "deviceType":"WaterMeter",
 "manufacturerName":"Huawei",
 "model":"NBIoTDevice",
 "description":"codec",
 "platform":"linux",
 "packageType":"CIGPlugin",
 "date":"2017-02-06 12:16:59",
 "ignoreList":[],
 "bundles":[
 {
 "bundleName": "WaterMeter-Huawei-NBIoTDevice",
 "bundleVersion": "1.0.0",
 "priority":5,
 "fileName": "WaterMeter-Huawei-NBIoTDevice-1.0.0.jar",
 "bundleDesc":"",
 "versionDesc":""
 }]
}

Step 4 Select all files in the package folder and compress them into a package.zip file.

NOTE

The package.zip file cannot contain the package directory.

----End

1.4.2.5 Inspecting the Quality of the Codec

After the codec is packaged, quality inspection is performed to check whether the codec is
functioning properly.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 72

Step 1 Obtain the codec detection tool from the IoT platform service provider.

Step 2 Save the pluginDetector.jar file, the devicetype-capability.json file in the profile file, and
the package.zip and tool folders to be checked to the same directory.

Figure 1-12 Placing the files in the same directory

Step 3 Obtain a stream of reported device data, and enter the stream in hexadecimal format on the
data report tab page of the detection tool, for example, AA72000032088D0320623399.

Step 4 Click start detect to view the decoded JSON data.

The log text box displays the decoded data. If report data is success is displayed, the
decoding is successful. If ERROR is displayed, an error occurs during decoding.

Figure 1-13 Successful decoding of reported data

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 73

https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/Encodingintl.zip

Figure 1-14 Failed decoding of reported data

Step 5 After the decoding is successful, the detection tool continues to call the encode method of the
codec package to encode a response.

If encode ack result success is displayed, the response is encoded successfully.

Step 6 Obtain a command delivered by the application server. (The application server calls the API
for creating device commands on the IoT platform to deliver the command.) Then, enter the
command on the data report tab page of the detection tool.

Step 7 Click start detect of the detection tool. Then, the detection tool calls the encode API to
encode a control command.

If encode cmd result success is displayed, the command is successfully encoded. If ERROR
is displayed, an error occurs during the command encoding.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 74

Figure 1-15 Successful encoding control command delivery

Order example:

{
 "identifier": "123",
 "msgType": "cloudReq",
 "serviceId": "NBWaterMeterCommon",
 "cmd": "SET_DEVICE_LEVEL",
 "mid": 2016,
 "paras": {
 "value": "10"
 },
 "hasMore": 0
}

Step 8 Obtain a stream of reported device command execution results, and enter the stream in
hexadecimal format on the data report tab page of the detection tool, for example,
AA7201000107E0.

Step 9 Click start detect to view the decoded JSON data.

The log text box displays the decoded data. If report command result success is displayed,
the decoding is successful. If ERROR is displayed, an error occurs during decoding.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 75

Figure 1-16 Successful decoding of the command execution result

----End

1.4.2.6 Signing the Codec Package with an Offline Signature
After the codec is developed, sign the codec package before installing it on the IoT platform.
To sign the package, download Huawei Offline Signtool.

Step 1 Log in to the Management Portal.

Step 2 Choose System Management > Tools, and click Offline signature tool to obtain the tool.

Figure 1-17 Downloading the offline signature tool

Step 3 Decompress the signtool.zip file and double-click signtool.exe to run Huawei Offline
Signtool.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 76

Figure 1-18 Running Huawei Offline Signtool

Step 4 In the Generate Public and Private Key area, select a value for Signature algorithm, set
Password of Private key, and click Generate Key. In the dialog box displayed, select the
directory to save the key files and click OK.

Set Signature Algorithm as required. Currently, two signature algorithms are available:
l ECDSA_256K1+SHA256
l RSA2048+SHA256

When setting Password of Private Key, ensure that the password complexity meets the
following conditions:

l The password must contain at least six characters.
l The password must contain at least two types of the following characters:

– A-Z
– a-z
– 0-9
– :~`@#$%^&*()-_=+|?/<>[]{},.;'!"

The public and private key files are generated in the storage directory.

l Public key file: public.pem
l Private key file: private.pem

Step 5 In the Software Package Sign area, import the private key file, enter the password, and click
OK. The password is the value of Password of Private Key set in Step 4.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 77

Step 6 Select the software package to be signed and click Do Signature.

If the digital signature is successful, the software package named xxx_signed.xxx with a
digital signature is generated in the directory where the original software package is located.

NOTE

The offline signature tool can sign only the packages in .zip format with a digital signature.

Step 7 In the Software Package Verify area, import the public key file and click OK.

Step 8 Select the software package (generated in Step 6) that requires signature verification and click
Do Verify.
l If Verify Success! is displayed, the signature verification is successful.
l If Verify Error! is displayed, the signature verification fails.

NOTE

During software package verification, the path for storing the signed software package must not
contain Chinese characters.

----End

1.4.3 Codec Development Examples

1.4.3.1 Codec for Data Reporting and Command Delivery

Scenarios
A smoke detector provides the following functions:

l Reporting smoke alarms (fire severity) and temperature
l Remote command, which can enable the alarm function remotely

For example, the smoke detector can report the temperature on the fire scene and
remotely trigger the smoke alarm for evacuation.

Defining the Profile File
Define the profile file in the development space of the smoke sensor.
l level: indicates the fire severity.
l temperature: indicates the temperature at the fire scene.
l SET_ALARM: indicates whether to enable or disable the alarm function. The value 0

indicates that the alarm is disabled, and the value 1 indicates that the alarm is enabled.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 78

Developing a Codec

Step 1 In the development space of the smoke sensor, click Codec Development.

Step 2 Configure a data reporting message.

Add a level field to indicate the fire severity.
l Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot

start with a digit.
l Data Type is configured based on the data reported by the device and must match the

type defined in the profile file.
l The values of Length and Offset are automatically filled based on Data Type.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 79

Add the temperature field to indicate the temperature at the fire scene. In the profile file, the
maximum value of temperature is 1000. Therefore, set the data type of the temperature
field to int16u in the codec to meet the value range requirement of temperature.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 80

Step 3 Configure a command delivery message.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 81

Add the value field to indicate the parameter value of the delivered command.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 82

Step 4 Map the property fields and command fields in Device Model on the right with the fields in
the data reporting message and command delivery message.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 83

Step 5 Click Save and then Deploy to deploy the codec on the IoT platform.

----End

Testing the Codec

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device
to test the codec.

Select No for Is Physical Device Available and click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 84

Step 2 Use the device simulator to report data. For example, a hexadecimal code stream (02013A) is
reported. In this code stream, 02 indicates the fire severity and its length is one byte. 013A
indicates the temperature and its length is two bytes.

View the data reporting result ({level=2, temperature=314}) in Application Simulator. 2 is
the decimal number converted from the hexadecimal number 02 and 314 from the
hexadecimal number 013A.

Step 3 Use the application simulator to deliver a command ({ "serviceId": "Smoke", "method":
"SET_ALARM", "paras": "{\"value\":1}" }).

View the command receiving result in Device Simulator, which is 01. 01 is the hexadecimal
number converted from the decimal number 1.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 85

----End

1.4.3.2 Codec for Multiple Data Reporting Messages

Scenarios
A smoke detector provides the following functions:

l Smoke alarms (fire severity) and temperature reporting
l Remote command, which can enable the alarm function remotely

For example, the smoke detector can report the temperature on the fire scene and
remotely trigger the smoke alarm for evacuation.

l Reporting smoke alarms (fire severity) and temperature simultaneously, or reporting the
temperature separately.

Defining the Profile File
Define the profile file in the development space of the smoke sensor.
l level: indicates the fire severity.
l temperature: indicates the temperature at the fire scene.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 86

l SET_ALARM: indicates whether to enable or disable the alarm function. The value 0
indicates that the alarm is disabled, and the value 1 indicates that the alarm is enabled.

Developing a Codec

Step 1 In the development space of the smoke sensor, click Codec Development.

Step 2 Configure a data reporting message to report the fire severity and temperature.

Add the messageId field to indicate the message type.

l In this scenario, there are two types of data reporting messages. Therefore, the
messageId field must be defined to identify the message type.

l Data Type is configured based on the number of data reporting message types. In this
scenario, only two types of data reporting messages are available. Therefore, the value
int8u will suffice.

l Default Value can be changed but must be in hexadecimal format. In addition, the
corresponding field in data reporting messages must be the same as the default value. In
this scenario, the value 0x0 is used to identify the message that reports the fire severity
and temperature.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 87

Add a level field to indicate the fire severity.
l Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot

start with a digit.
l Data Type is configured based on the data reported by the device and must match the

type defined in the profile file.
l The values of Length and Offset are automatically filled based on Data Type.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 88

Add the temperature field to indicate the temperature at the fire scene. In the profile file, the
maximum value of temperature is 1000. Therefore, set the data type of the temperature
field to int16u in the codec to meet the value range requirement of temperature.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 89

Step 3 Configure a data reporting message to report only the temperature.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 90

Add the messageId field to indicate the message type. In this scenario, the value 0x1 is used
to identify the message that reports only the temperature.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 91

Add the temperature field to indicate the temperature at the fire scene.

Step 4 Configure a command delivery message.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 92

Add the value field to indicate the parameter value of the delivered command.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 93

Step 5 Drag the property fields and command fields in Device Model on the right to set up a
mapping with the fields in the data reporting message and command delivery message.

The level and temperature fields are mapped to the corresponding properties in the profile
file. The messageId field is used to identify message types and does not need to be mapped.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 94

Step 6 Click Save and then Deploy to deploy the codec on the IoT platform.

----End

Testing the Codec

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device
to test the codec.

Select No for Is Physical Device Available and click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 95

Step 2 Use the device simulator to report data.

For example, a hexadecimal code stream (000100F1) is reported. In this code stream, 00
indicates the messageId field and specifies that this message reports the fire severity and
temperature. 01 indicates the fire severity and its length is one byte. 00F1 indicates the
temperature and its length is two bytes.

View the data reporting result ({level=1, temperature=241}) in Application Simulator. 1 is
the decimal number converted from the hexadecimal number 01 and 241 from the
hexadecimal number 00F1.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 96

Take another hexadecimal code stream (0100F1) as an example. 01 indicates the messageId
field and specifies that this message reports only the temperature. 00F1 indicates the
temperature and its length is two bytes.

View the data reporting result ({temperature=241}) in Application Simulator. 241 is the
decimal number converted from the hexadecimal number 00F1.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 97

Step 3 Use the application simulator to deliver a command ({ "serviceId": "Smoke", "method":
"SET_ALARM", "paras": "{\"value\":1}" }).

View the command receiving result in Device Simulator, which is 01. 01 is the hexadecimal
number converted from the decimal number 1.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 98

----End

1.4.3.3 Codec for Strings and Variable-Length Strings

Scenarios

A smoke detector provides the following functions:

l Reporting smoke alarms (fire severity) and temperature simultaneously, or reporting the
temperature separately.

l Reporting description. The data type of description can be string (string type) or
varstring (variable-length string type).

NOTE

This scenario describes how to develop a codec for data in strings and data in variable-length
strings. The data reporting and command delivery codecs are developed in the same way.
Therefore, data reporting is used as an example and command delivery is not described.

Defining the Profile File

Define the profile file in the development space of the smoke sensor.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 99

Developing a Codec
This section describes only the procedure for developing the codec for reporting the
description (other_info). For details on how to develop the codec for reporting the smoke
alarms (level) and temperature (temperature), see Codec for Multiple Data Reporting
Messages.

Step 1 In the development space of the smoke sensor, click Codec Development.

Step 2 Configure a data reporting message to report the fire severity and temperature. For details, see
Step 2.

Step 3 Configure a data reporting message to report only the temperature. For details, see Step 3.

Step 4 Configure a data reporting message to report the description of the string type.

Add the messageId field to indicate the message type. In this scenario, the value 0x0 is used
to identify the message that reports the fire severity and temperature, 0x1 is used to identify
the message that reports only the temperature, and 0x2 is used to identify the message that
reports the description (of the string type).

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 100

Add the other_info field to indicate the description of the string type. In this scenario, set
Length to 6.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 101

Step 5 Configure a data reporting message to report the description of the variable-length string type.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 102

Add the messageId field to indicate the message type. In this scenario, the value 0x0 is used
to identify the message that reports the fire severity and temperature, 0x1 is used to identify
the message that reports only the temperature, and 0x3 is used to identify the message that
reports the description (of the variable-length string type).

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 103

Add the length field to indicate the length of a string. Data Type is configured based on the
length of the variable-length string. If the string contains 255 or fewer characters, set this
parameter to int8u.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 104

Add the other_info field to indicate the description of the variable-length string type. Set
Length Correlation Field to length. The values of Length Correlation Field Difference
and Length are automatically filled.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 105

Step 6 Drag the property fields in Device Model on the right to set up a mapping with the fields in
the data reporting messages.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 106

Step 7 Click Save and then Deploy to deploy the codec on the IoT platform.

----End

Testing the Codec

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device
to test the codec.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 107

Select No for Is Physical Device Available and click OK.

Step 2 Use the device simulator to report the description of the string type.

For example, a hexadecimal code stream (0231) is reported. 02 indicates the messageId field
and specifies that this message reports the description of the string type. 31 indicates the
description and its length is one byte.

View the data reporting result ({other_info=null}) in Application Simulator. The length of
the description is less than six bytes. Therefore, the codec cannot parse the description.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 108

In the second hexadecimal code stream example (02313233343536), 02 indicates the
messageId field and specifies that this message reports the description of the string type.
313233343536 indicates the description and its length is six bytes.

View the data reporting result ({other_info=123456}) in Application Simulator. The length
of the description is six bytes. The description is parsed successfully by the codec.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 109

In the third hexadecimal code stream example (023132333435363738), 02 indicates the
messageId field and specifies that this message reports the description of the string type.
3132333435363738 indicates the description and its length is eight bytes.

View the data reporting result ({other_info=123456}) in Application Simulator. The length
of the description exceeds six bytes. Therefore, the first six bytes are intercepted and parsed
by the codec.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 110

In the fourth hexadecimal code stream example (02013132333435), 02 indicates the
messageId field and specifies that this message reports the description of the string type.
013132333435 indicates the description and its length is six bytes.

View the data reporting result ({other_info=\u000112345}) in Application Simulator. In the
ASCII code table, 01 indicates start of headline which cannot be represented by specific
characters. Therefore, 01 is parsed to \u0001.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 111

Step 3 Use the device simulator to report the description of the variable-length string type.

For example, a hexadecimal code stream (030141) is reported. In this code stream, 03
indicates the messageId field and specifies that this message reports the description of the
variable-length string type. 01 indicates the length of the description (one byte) and its length
is one byte. 41 indicates the description and its length is one byte.

View the data reporting result ({other_info=A}) in Application Simulator. A corresponds to
41 in the ASCII code table.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 112

In the second hexadecimal code stream example (03024142), 03 indicates the messageId field
and specifies that this message reports the description of the variable-length string type. 02
indicates the length of the description (two bytes) and its length is one byte. 4142 indicates
the description and its length is two bytes.

View the data reporting result ({other_info=AB}) in Application Simulator. A corresponds
to 41 and B corresponds to 42 in the ASCII code table.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 113

In the third hexadecimal code stream example (030341424344), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length string type.
The second 03 indicates the length of the description (three bytes) and its length is one byte.
41424344 indicates the description and its length is four bytes.

View the data reporting result ({other_info=ABC}) in Application Simulator. The length of
the description exceeds three bytes. Therefore, the first three bytes are intercepted and parsed.
In the ASCII code table, A corresponds to 41, B to 42, and C to 43.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 114

In the fourth hexadecimal code stream example (0304414243), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length string type.
04 indicates the string length (four bytes) and its length is one byte. 414243 indicates the
description and its length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The length of
the description is less than four bytes. The codec fails to parse the description.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 115

----End

Summary
l When data is a string or a variable-length string, the codec processes the data based on

the ASCII code. When data is reported, the hexadecimal code stream is decoded to a
string. For example, 21 is parsed to an exclamation mark (!), 31 to 1, and 41 to A. When
a command is delivered, the string is encoded into a hexadecimal code stream. For
example, an exclamation mark (!) is encoded into 21, 1 into 31, and A into 41.

l When the data type of a field is varstring(variable-length string type), the field must
be associated with the length field. The data type of the length field must be int.

l For variable-length strings, the codecs for command delivery and data reporting are
developed in the same way.

l Online developed codecs encode and decode strings and variable-length strings using the
ASCII hexadecimal standard table. During decoding (data reporting), if the parsing
results cannot be represented by specific characters such as start of headline, start of text,
and end of text, the \u+2 byte code stream values are used to indicate the results. For
example, 01 is parsed to \u0001 and 02 to \u0002. If the parsing results can be
represented by specific characters, specific characters are used.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 116

1.4.3.4 Codec for Arrays and Variable-Length Arrays

Scenarios
A smoke detector provides the following functions:

l Reporting smoke alarms (fire severity) and temperature simultaneously, or reporting the
temperature separately.

l Reporting description. The data type of description can be array (array type) or variant
(variable-length array type).

NOTE

This scenario describes how to develop a codec for data in arrays and data in variable-length
arrays. The data reporting and command delivery codecs are developed in the same way.
Therefore, data reporting is used as an example and command delivery is not described.

Defining the Profile File
Define the profile file in the development space of the smoke sensor.

Developing a Codec
This section describes only the procedure for developing the codec for reporting the
description (other_info). For details on how to develop the codec for reporting the smoke
alarms (level) and temperature (temperature), see Codec for Multiple Data Reporting
Messages.

Step 1 In the development space of the smoke sensor, click Codec Development.

Step 2 Configure a data reporting message to report the fire severity and temperature. For details, see
Step 2.

Step 3 Configure a data reporting message to report only the temperature. For details, see Step 3.

Step 4 Configure a data reporting message to report the description of the array type.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 117

Add the messageId field to indicate the message type. In this scenario, the value 0x0 is used
to identify the message that reports the fire severity and temperature, 0x1 is used to identify
the message that reports only the temperature, and 0x2 is used to identify the message that
reports the description (of the array type).

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 118

Add the other_info field to indicate the description of the array type. In this scenario, set
Length to 5.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 119

Step 5 Configure a data reporting message to report the description of the variable-length array type.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 120

Add the messageId field to indicate the message type. In this scenario, the value 0x0 is used
to identify the message that reports the fire severity and temperature, 0x1 is used to identify
the message that reports only the temperature, and 0x3 is used to identify the message that
reports the description (of the variable-length array type).

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 121

Add the length field to indicate the length of an array. Data Type is configured based on the
length of the variable-length array. If the array contains 255 or fewer characters, set this
parameter to int8u.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 122

Add the other_info field to indicate the description of the variable-length array type. Set
Length Correlation Field to length. The values of Length Correlation Field Difference
and Length are automatically filled.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 123

Step 6 Drag the property fields in Device Model on the right to set up a mapping with the
corresponding fields in the data reporting messages.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 124

Step 7 Click Save and then Deploy to deploy the codec on the IoT platform.

----End

Testing the Codec

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device
to test the codec.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 125

Select No for Is Physical Device Available and click OK.

Step 2 Use the device simulator to report the description of the array type.

For example, a hexadecimal code stream (0211223344) is reported. In this code stream, 02
indicates the messageId field and specifies that this message reports the description of the
array type. 11223344 indicates the description and its length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The length of
the description is less than five bytes. Therefore, the codec cannot parse the description.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 126

In the second hexadecimal code stream example (021122334455), 02 indicates the messageId
field and specifies that this message reports the description of the array type. 1122334455
indicates the description and its length is five bytes.

View the data reporting result ({other_info=ESIzRF=}) in Application Simulator. The
length of the description is five bytes. The description is parsed successfully by the codec.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 127

In the third hexadecimal code stream example (02112233445566), 02 indicates the messageId
field and specifies that this message reports the description of the array type. 112233445566
indicates the description and its length is six bytes.

View the data reporting result ({other_info=ESIzRF=}) in Application Simulator. The
length of the description exceeds six bytes. Therefore, the first five bytes are intercepted and
parsed by the codec.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 128

Step 3 Use the device simulator to report the description of the variable-length array type.

For example, a hexadecimal code stream (030101) is reported. In this code stream, 03
indicates the messageId field and specifies that this message reports the description of the
variable-length array type. The first 01 indicates the length of the description (one byte) and
its length is one byte. The second 01 indicates the description and its length is one byte.

View the data reporting result ({other_info=AQ==}) in Application Simulator. AQ== is the
encoded value of 01 using the Base64 encoding mode.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 129

In the second hexadecimal code stream example (03020102), 03 indicates the messageId field
and specifies that this message reports the description of the variable-length array type. 02
indicates the length of the description (two bytes) and its length is one byte. 0102 indicates
the description and its length is two bytes.

View the data reporting result ({other_info=AQI=}) in Application Simulator. AQI= is the
encoded value of 01 using the Base64 encoding mode.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 130

In the third hexadecimal code stream example (03030102), 03 indicates the messageId field
and specifies that this message reports the description of the variable-length array type. 03
indicates the length of the description (three bytes) and its length is one byte. 0102 indicates
the description and its length is two bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The length of
the description is less than three bytes. The codec fails to parse the description.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 131

In the fourth hexadecimal code stream example (0303010203), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length array type.
The second 03 indicates the length of the description (three bytes) and its length is one byte.
010203 indicates the description and its length is three bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. AQID is the
encoded value of 010203 using the Base64 encoding mode.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 132

In the fifth hexadecimal code stream example (030301020304), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length array type.
The second 03 indicates the length of the description (three bytes) and its length is one byte.
01020304 indicates the description and its length is four bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. The length of
the description exceeds three bytes. Therefore, the first three bytes are intercepted and parsed.
AQID is the encoded value of 010203 using the Base64 encoding mode.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 133

----End

Description of Base64 Encoding Modes

In the Base64 encoding modes, three 8-bit bytes (3 x 8 = 24) are converted into four 6-bit
bytes (4 x 6 = 24), and 00 are added before each 6-bit byte to form four 8-bit bytes. If the
code stream to be encoded contains less than three bytes, fill the code stream with 0. The byte
that is filled with 0 is displayed as an equal sign (=) after it is encoded.

Developers can encode hexadecimal code streams as characters or values using the Base64
encoding modes. The encoding results obtained in the two modes are different. The following
uses the hexadecimal code stream 01 as an example:

l Use 01 as characters. It contains fewer than three characters. Therefore, add one 0 to
obtain 010. Query the ASCII code table to convert the characters into an 8-bit binary
number, that is, 0 is converted into 00110000 and 1 into 00110001. Therefore, 010 can
be converted into 001100000011000100110000 (3 x 8 = 24). The binary number can be
split into four 6-bit numbers: 001100, 000011, 000100, and 110000. Then, pad each 6-bit
number with 00 to obtain the following numbers: 00001100, 00000011, 00000100, and
00110000. The decimal numbers corresponding to the four 8-bit numbers are 12, 3, 4,
and 48, respectively. You can obtain M (12), D (3), and E (4) by querying the Base64
coding table. As the last character of 010 is obtained by adding 0, the fourth 8-bit

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 134

number is represented by an equal mark (=). Finally, MDE= is obtained by using 01 as
characters.

l Use 01 as a value (that is, 1). It contains fewer than three characters. Therefore, add 00 to
obtain 100. Convert 100 into an 8-bit binary number, that is, 0 is converted into
00000000 and 1 is converted to 00000001. Therefore, 100 can be converted to
000000010000000000000000 (3 x 8 = 24). Then, convert the binary number into four 6-
bit numbers: 000000, 010000, 000000, and 000000. Pad each 6-bit number with 00 to
obtain 00000000, 00010000, 00000000, and 00000000. The decimal numbers
corresponding to the four 8-bit numbers are 0, 16, 0, and 0, respectively. You can obtain
A (0) and Q (16) by querying the Base64 coding table. As the last two characters of 100
are obtained by adding 0, the third and fourth 8-bit numbers are represented by two equal
marks (==). Finally, AQ== is obtained by using 01 as a value.

Summary
l When the data is an array or a variable-length array, the codec encodes and decodes the

data using Base64. For data reporting messages, the hexadecimal code streams are
encoded using Base64. For example, 01 is encoded into AQ==. For command delivery
messages, characters are decoded using Base64. For example, AQ== is decoded to 01.

l When the data type of a field is variant(variable-length array type), the field must be
associated with the length field. The data type of the length field must be int.

l For variable-length arrays, the codecs for command delivery and data reporting are
developed in the same way.

l When the codecs that are developed online encode data using Base64, hexadecimal code
streams are encoded as values.

1.4.3.5 Codec for Containing Command Execution Results

Scenarios
A smoke detector provides the following functions:

l Reporting smoke alarms (fire severity) and temperature
l Remote command, which can enable the alarm function remotely

For example, the smoke detector can report the temperature on the fire scene and
remotely trigger the smoke alarm for evacuation.

l Reporting command execution results

Defining the Profile File
Define the profile file in the development space of the smoke sensor.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 135

Developing a Codec

Step 1 In the development space of the smoke sensor, click Codec Development.

Step 2 Configure a data reporting message to report the fire severity and temperature.

Add the messageId field to indicate the message type.

l In this scenario, there are two types of data reporting messages. Therefore, the
messageId field must be defined to identify the message type.

l Data Type is configured based on the number of data reporting message types. In this
scenario, only two types of data reporting messages are available. Therefore, the value
int8u will suffice.

l Default Value can be changed but must be in hexadecimal format. In addition, the
corresponding field in data reporting messages must be the same as the default value. In
this scenario, the value 0x0 is used to identify the message that reports the fire severity
and temperature.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 136

Add a level field to indicate the fire severity.
l Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot

start with a digit.
l Data Type is configured based on the data reported by the device and must match the

type defined in the profile file.
l The values of Length and Offset are automatically filled based on Data Type.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 137

Add the temperature field to indicate the temperature at the fire scene. In the profile file, the
maximum value of temperature is 1000. Therefore, set the data type of the temperature
field to int16u in the codec to meet the value range requirement of temperature.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 138

Step 3 Configure a command delivery message.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 139

Add the messageId field to indicate the message type. If there is only one type of command
delivery message, this parameter does not need to be set.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 140

Add the mid field to associate the delivered command with the command execution result.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 141

Add the value field to indicate the parameter value of the delivered command.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 142

Step 4 Configure a command response.

Add the messageId field to indicate the message type. The command execution result is an
upstream message, which is differentiated from the data reporting message by the messageId
field.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 143

Add the mid field to associate the delivered command with the command execution result.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 144

Add the errcode field to indicate the command execution status. 00 indicates success and 01
indicates failure. If this field is not carried, the command is executed successfully by default.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 145

Add the result field to indicate the command execution result.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 146

Step 5 Drag the property fields and command fields in Device Model on the right to set up a
mapping with the fields in the data reporting message and command delivery message.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 147

Step 6 Click Save and then Deploy to deploy the codec on the IoT platform.

----End

Testing the Codec

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device
to test the codec.

Select No for Is Physical Device Available and click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 148

Step 2 Use the application simulator to deliver a command ({ "serviceId": "Smoke", "method":
"SET_ALARM", "paras": "{\"value\":0}" }).

View the command receiving result in Device Simulator, which is 01000100. 01 indicates the
messageId field, 0001 indicates the mid field, and 00 indicates the value field.

Step 3 Use the device simulator to report data.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 149

For example, a hexadecimal code stream (0200010000) is reported. In this code stream, 02
indicates the messageId field and specifies that this message reports the command execution
result. 0001 indicates the mid field and its length is two bytes. 00 indicates the command
execution status and its length is one byte. The second 00 indicates the command execution
result and its length is one byte.

Choose Device Management and select the device that reports the command execution result.
On the page displayed, click the Historical Commands tab to view the command execution
status. In this case, the status is SUCCESSFUL.

----End

Summary
l If the codec needs to parse the command execution result, the mid field must be defined

in the command and the command response.
l The length of the mid field in a command is two bytes. For each device, mid increases

from 1 to 65535, and the corresponding code stream ranges from 0001 to FFFF.
l After a command is executed, the mid field in the reported command execution result

must be the same as that in the delivered command. In this way, the IoT platform can
update the command status.

1.4.4 Reference

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 150

1.4.4.1 Message Processing Flow

Data Reporting

Figure 1-19 Data reporting flow

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 151

Order Delivery

Figure 1-20 Order delivery flow

1.4.4.2 decode API Description
The input parameter binaryData over the decode API is the payload in the CoAP message
sent by a device.

Upstream packets of a device can be classified into the following types: data reported by
device and responses of the device to the IoT platform (corresponding to messages 1 and 5 in
the following figure). Message 4 is the protocol ACK message returned by the module. No
plug-in processing is required. The decoding output fields vary depending on the upstream
packet.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 152

Figure 1-21 Upstream packet

Table 1-4 Data reported by the device

Field Type Description Mandato
ry or
Optional

identifier String Specifies the identifier of the device in the
application protocol. The IoT platform obtains
the parameter over the decode interface,
encodes the parameter over the encode
interface, and places the parameter in a stream.

Optional

msgType String This field has a fixed value of deviceReq,
which indicates that the device reports data to
the IoT platform.

Mandator
y

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 153

Field Type Description Mandato
ry or
Optional

hasMore Int Specifies whether the device has subsequent
data to report.
l 0: The device has subsequent data to report.
l 1: The device has no subsequent data to

report.
Subsequent data indicates that a piece of data
reported by a device may be reported in
multiple times. After the data is reported in the
current time, the IoT platform determines
whether there are subsequent messages using
the hasMore field. The hasMore field is valid
only in PSM mode. When the hasMore field
of reported data is set to 1, the IoT platform
does not deliver cached commands until it
receives reported data whose hasMore field is
set to 0. If the reported data does not contain
the hasMore field, the IoT platform processes
the data assuming that the hasMore field is set
to 0.

Optional

data ArrayNode Specifies content of data reported by the
device. For details, see Table 1-5.

Mandator
y

Table 1-5 Definition of ArrayNode

Field Type Description Mandato
ry or
Optional

serviceId String Identifies a service. Mandator
y

serviceData ObjectNode Specifies the data of a service. Detailed fields
are defined in the profile file.

Mandator
y

eventTime String Specifies the data collection time, which is in
the format of yyyyMMddTHHmmssZ, for
example, 20161219T114920Z.

Optional

Example:

{
"identifier":"123",
"msgType":"deviceReq",
"hasMore":0,
"data": [{"serviceId":"NBWaterMeterCommon",
 "serviceData":{
 "meterId":"xxxx",

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 154

 "dailyActivityTime":120,
 "flow": "565656",
 "cellId":"5656",
 "signalStrength":"99",
 "batteryVoltage":"3.5"
 }
 "eventTime":"20160503T121540Z"} ,
 {"serviceId":"waterMeter",
 "serviceData":{"internalTemperature":256},
 "eventTime":"20160503T121540Z"}
]
}
}

Table 1-6 Response sent by the device to the IoT platform

Field Type Description Mandato
ry or
Optional

identifier String Specifies the identifier of the device in the
application protocol. The IoT platform obtains
the parameter over the decode API, encodes
the parameter over the encode API, and places
the parameter in a stream.

Optional

msgType String This field has a fixed value of deviceRsp,
which indicates that the IoT platform sends a
response to the device.

Mandator
y

mid Int Specifies a 2-byte unsigned command ID. If
the device must return the command execution
result (deviceRsp), this field is used to
associate the command execution result
(deviceRsp) with the corresponding command.
When the IoT platform delivers a command
over the encode API, the IoT platform places
the MID allocated by the IoT platform into a
stream and delivers the stream to the device
together with the command. When the device
reports the command execution result
(deviceRsp), the device returns the MID to the
IoT platform. Otherwise, the IoT platform
cannot associate the delivered command with
the command execution result (deviceRsp). As
a result, the IoT platform cannot update the
command delivery status (success or failure)
based on the command execution result
(deviceRsp).

Mandator
y

errcode Int Specifies the request processing result code.
The IoT platform determines the command
delivery status based on this field.
l 0: success
l 1: failure

Mandator
y

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 155

Field Type Description Mandato
ry or
Optional

body ObjectNode Specifies the response to the command sent by
the IoT platform. Detailed fields are defined in
the profile file.
NOTE

The body is not an array.

Optional

Example:

{
 "identifier": "123",
 "msgType": "deviceRsp",
 "mid": 2016,
 "errcode": 0,
 "body": {
 "result": 0
 }
}

1.4.4.3 Description of encode API

Input parameters of the encode API are commands or responses in JSON format delivered by
the IoT platform.

Downstream packets of the IoT platform are classified into commands sent by the IoT
platform and responses sent by the IoT platform for data reported by devices (corresponding
to messages 2 and 3 in the following figure). The encoding output fields vary depending on
the downstream packet.

Figure 1-22 Downstream packet

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 156

Table 1-7 Definition of input parameters of the encode API over which the IoT platform
delivers commands

Field Type Description Mandato
ry or
Optional

identifier String Identifier of the device in the application
protocol. The IoT platform obtains the
parameter over the decode API, encodes the
parameter over the encode API, and places the
parameter in a stream.

Optional

msgType String This field has a fixed value of cloudReq,
which indicates that the IoT platform delivers a
request.

Mandator
y

serviceId String Identifier of a service. Mandator
y

cmd String Name of a service command. For details about
the service command definition, see the profile
file.

Mandator
y

paras ObjectNode Command parameters. Detailed fields are
defined in the profile file.

Mandator
y

hasMore Int Whether the IoT platform has subsequent
commands to deliver.
l 0: The IoT platform does not have

subsequent commands to deliver.
l 1: The IoT platform has subsequent

commands to deliver.
Subsequent commands indicate that the IoT
platform still needs to deliver commands, and
the hasMore field is used to tell the device not
to sleep. The hasMore field is valid only in
PSM mode with the downstream message
indication function enabled.

Mandator
y

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 157

Field Type Description Mandato
ry or
Optional

mid Int A 2-byte unsigned command ID that is
allocated by the IoT platform. (The value
ranges from 1 to 65535.)
When the IoT platform delivers a command
over the encode API, the IoT platform places
the MID allocated by the IoT platform into a
stream and delivers the stream to the device
together with the command. When the device
reports the command execution result
(deviceRsp), the device returns the MID to the
IoT platform. In this way, the IoT platform
associates the delivered command with the
command execution result (deviceRsp) and
updates the command delivery status
accordingly.

Mandator
y

Example:

{
 "identifier": "123",
 "msgType": "cloudReq",
 "serviceId": "NBWaterMeterCommon",
 "mid": 2016,
 "cmd": "SET_TEMPERATURE_READ_PERIOD",
 "paras": {
 "value": 4
 },
 "hasMore": 0}
}

Table 1-8 Definition of input parameters of the encode API over which the IoT platform
responds to data reported by a device

Field Type Description Mandato
ry or
Optional

identifier String Identifier of the device in the application
protocol. The IoT platform obtains the
parameter over the decode API, encodes the
parameter over the encode API, and places the
parameter in a stream.

Optional

msgType String This field has a fixed value of cloudRsp,
which indicates that the IoT platform sends a
response for data reported by a device.

Mandator
y

request byte[] Data reported by the device. Mandator
y

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 158

Field Type Description Mandato
ry or
Optional

errcode int Request processing result code. The IoT
platform determines the command delivery
status based on this field.
l 0: success
l 1: failure

Mandator
y

hasMore int Whether the IoT platform has subsequent
messages to deliver.
l 0: The IoT platform does not have

subsequent messages to deliver.
l 1: The IoT platform has subsequent

messages to deliver.
Subsequent messages indicate that the IoT
platform still needs to deliver commands, and
the hasMore field is used to tell the device not
to sleep. The hasMore field is valid only in
PSM mode with the downstream message
indication function enabled.

Mandator
y

NOTE

If msgType is set to cloudRsp and null is returned by the codec detection tool, the codec does not
define the response to the reported data and the IoT platform does not need to respond.

Example:

{
 "identifier": "123",
 "msgType": "cloudRsp",
 "request": [
 1,
 2
],
 "errcode": 0,
 "hasMore": 0
}

1.4.4.4 getManufacturerId Interface Description

This interface is used to return the vendor ID in the format of a character string. The IoT
platform calls this interface to obtain the vendor ID to associate the codec plug-in with the
profile file. The association is successful only when the vendor ID and device model are
consistent.

Example:

@Override
public String getManufacturerId() {
return "TestUtf8ManuId";
}

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 159

1.4.4.5 getModel Interface Description
This interface is used to return the device model in the format of a character string. The IoT
platform calls this interface to obtain the device model to associate the codec plug-in with the
profile file. The association is successful only when the vendor ID and device model are
consistent.

Example:

@Override
public String getModel() {
return "TestUtf8Model";
}

1.4.4.6 Precautions on Interface Implementation

Support for Thread Security Required
The decode and encode functions must ensure thread security. Therefore, member or static
variables cannot be added to cache intermediate data.

Incorrect example: When multiple threads are started at the same time, the status of thread A
is set to Failed while the status of thread B is set to Success. As a result, the status is
incorrect, and the program running is abnormal.

public class ProtocolAdapter {
private String status;

@Override
public ObjectNode decode(finalbyte[] binaryData) throws Exception {
if (binaryData == null) {
status = "Failed";
return null;
}
ObjectNode node;
 ...;
status = "Success";
return node;
}

@Override
public byte[] encode(finalObjectNode input) throws Exception {
if ("Failed".equals(status)) {
status = null;
return null;
}
byte[] output;
 ...;
status = null;
return output;
}
}

Correct example: Encoding and decoding are performed based on the input parameters, and
the encoding and decoding library does not process services.

public class ProtocolAdapter {
@Override
public ObjectNode decode(finalbyte[] binaryData) throws Exception {
ObjectNode node;
 ...;
return node;
}

@Override

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 160

public byte[] encode(finalObjectNode input) throws Exception {
byte[] output;
 ...;
return output;
}
}

Explanation of the mid Field
The IoT platform delivers orders in sequence. However, the IoT platform does not respond to
the order execution results in the same sequence as the delivered orders. The MID is used to
associate the order execution result response with the delivered order. On the IoT platform,
whether the MID is implemented affects the message flow.

When the MID is implemented:

Figure 1-23 Message flow with the MID implemented

If the MID is implemented and the order execution result is reported successfully:

1. The status (SUCCESSFUL/FAILED) in the order execution result is updated to the
record of the order in the IoT platform database.

2. The order execution result notification sent by the IoT platform to the NA server
contains commandId.

3. The query result of the NA server indicates that the status of the order is
SUCCESSFUL/FAILED.

When the MID is not implemented:

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 161

Figure 1-24 Message flow with the MID unimplemented

If the MID is not implemented and the order execution result is reported successfully:

1. The status (SUCCESSFUL/FAILED) in the order execution result is not updated to the
record of the order in the IoT platform database.

2. The order execution result notification sent by the IoT platform to the NA server does
not contain commandId.

3. The query result of the NA server indicates that the final status of the order is
DELIVERED.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 162

NOTE

l The preceding two message flows are used to explain the function of the mid field. Some message
flows are simplified in the figures.

l In scenarios where whether orders are sent to the device is concerned but the order execution is not
concerned, the device and codec plug-in do not need to process the MID.

l If the MID is not implemented after the vendor evaluation, the NA server cannot obtain the order
execution result from the IoT platform. Therefore, the NA server needs to implement the solution by
itself. For example, after receiving the order execution result response (without commandId), the
NA server can do as follows:

l Match the response with the order according to the sequence in which orders are delivered. In
this way, when the IoT platform delivers multiple orders to the same device at the same time,
the order execution result is matched with the delivered order incorrectly if packet loss occurs.
Therefore, it is recommended that the NA server deliver only one order to the same device
each time. After receiving the order execution result response, the NA server delivers the next
order.

l Identify the mapping between the order execution result response and the delivered order
according to the information in the resultDetail field. The codec plug-in can add order-related
information, such as an order code, to the resultDetail field of the order response to help
identify the order.

Do Not Use DirectMemory

The DirectMemory field directly calls the OS interface to apply for memory and is not
controlled by the JVM. Improper use of the DirectMemory field may cause insufficient
memory of the OS. Therefore, the DirectMemory cannot be used in codec plug-in code.

Example of improper use: Use UNSAFE.allocateMemory to apply for direct memory.

if ((maybeDirectBufferConstructor instanceof Constructor))
{
 address = UNSAFE.allocateMemory(1L);
 Constructor<?> directBufferConstructor;
 ...
}
else
{
 ...
}

1.4.4.7 Input/Output Format of the Codec Plug-In

Table 1-9 Definition of services supported by a type of water meter

Service
Type

Attribute Name Attribute
Description

Attribute Type (Data Type)

Battery - - -

- batteryLevel Specifies the battery
level in the unit of
percent. The value
ranges from 0 to
100.

int

Meter - - -

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 163

Service
Type

Attribute Name Attribute
Description

Attribute Type (Data Type)

- signalStrength Specifies the signal
strength.

int

- currentReading Specifies the current
read value.

int

- dailyActivityTim
e

Specifies the daily
activated
communication
duration.

string

The following shows the decode interface output for data reported by a device to the IoT
platform.

{
 "identifier": "12345678",
 "msgType": "deviceReq",
 "data": [
 {
 "serviceId": "Meter",
 "serviceData": {
 "currentReading": "46.3",
 "signalStrength": 16,
 "dailyActivityTime": 5706
 },
 "eventTime": "20160503T121540Z"
 },
 {
 "serviceId": "Battery",
 "serviceData": {
 "batteryLevel": 10
 },
 "eventTime": "20160503T121540Z"
 }
]
}

The following shows the encode interface input when the IoT platform receives data reported
by the device and sends a response to the device.

{
 "identifier": "123",
 "msgType": "cloudRsp",
 'request': [
 1,
 2
],
 "errcode": 0,
 "hasMore": 0
}

NOTE

The value of request can be [1,2], which is simulated data. The actual value prevails.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 164

Table 1-10 Order definition

Basic
Function

Type Name Command
Parameter

Data Type Enumerate
d Value

WaterMeter Water meter - - - -

- CMD SET_TEMP
ERATURE_
READ_PER
IOD

- - -

- - - value int -

- RSP SET_TEMP
ERATURE_
READ_PER
IOD_RSP

- - -

- - - result int l 0:
success

l 1:
invalid
input

l 2:
executio
n failed

The following shows the input parameters of the encode interface when the IoT platform
sends an order to the device.

{
 "identifier": "12345678",
 "msgType": "cloudReq",
 "serviceId": "WaterMeter",
 "cmd": "SET_TEMPERATURE_READ_PERIOD",
 "paras": {
 "value": 4
 },
 "hasMore": 0
}

After the IoT platform receives a response from the device, the IoT platform invokes the
decode interface for decoding. The decode interface output is as follows:

{
 "identifier": "123",
 "msgType": "deviceRsp",
 "errcode": 0,
 "body": {
 "result": 0
 }
}

1.4.4.8 Implementation Sample Interpretation

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 165

In the DEMO project of the codec (click here to obtain), an example codec is provided. The
following figure shows the sample project structure.

Figure 1-25 Sample project structure

This project is a Maven project. You can modify the following content based on this sample
project to obtain the required codec.

NOTE

Use the encryption algorithms supported by the JDK. For details about these encryption algorithms, see
Appendix: Encryption Algorithms Supported by the JDK.

l Maven configuration file
In the pom.xml file, modify the name of the codec according to the naming rule.
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.thrid.party</groupId>
<!-- Change it to the name of your codec. The naming rule is as follows:
device type-manufacturer ID-device model, for example: WaterMeter-Huawei-
NBIoTDevice.-->
<artifactId>WaterMeter-Huawei-NBIoTDevice</artifactId>
<version>1.0.0</version>
<!-- Check that the value is bundle. The value cannot be jar. -->
<packaging>bundle</packaging>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<junit.version>4.11</junit.version>
<fasterxml.jackson.version>2.7.4</fasterxml.jackson.version>
<felix.maven.plugin.version>2.5.4.fixed2</felix.maven.plugin.version>

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 166

https://devcenter.huawei.com/ict/rescenter/resource/download/eresource/CMDA_FIELD_OCEAN_CONNECT/%E5%8D%8E%E4%B8%BANB-IoT%E8%AE%BE%E5%A4%87%E7%BC%96%E8%A7%A3%E7%A0%81%E6%8F%92%E4%BB%B6%E6%A0%B7%E4%BE%8B.zip

<json.lib.version>2.4</json.lib.version>
<m2m.cig.version>1.3.1</m2m.cig.version>
<slf4j.api.version>1.7.6</slf4j.api.version>
</properties>

<dependencies>
<!-- Used by unit test -->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
</dependency>
<!-- Used by logs -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j.api.version}</version>
</dependency>
<!-- Used for converting JSON; mandatory -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>${fasterxml.jackson.version}</version>
</dependency>
<!-- Codec API provided by Huawei; mandatory -->
<!-- Replace systemPath with your local \codecDemo\lib
\com.huawei.m2m.cig.tup-1.3.1.jar -->
<dependency>
<groupId>com.huawei</groupId>
<artifactId>protocal-jar</artifactId>
<version>1.3.1</version>
<scope>system</scope>
<systemPath>${basedir}/lib/com.huawei.m2m.cig.tup-1.3.1.jar</systemPath>
</dependency>

<!-- In this example, the JAR file used for data conversion is written here.
Enter artifactId in the Embed-Dependency. -->
<dependency>
<groupId>net.sf.json-lib</groupId>
<artifactId>json-lib</artifactId>
<version>2.4</version>
<classifier>jdk15</classifier>
</dependency>

</dependencies>
<build>
<plugins>
<!-- The JDK1.8 version must be used. -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<!-- OSGi packaging configuration -->
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>${felix.maven.plugin.version}</version>
<extensions>true</extensions>
<configuration>
<buildDirectory>./target</buildDirectory>
<archive>
<addMavenDescriptor>false</addMavenDescriptor>
</archive>
<instructions>
<Bundle-RequiredExecutionEnvironment>J2SE-1.5</Bundle-

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 167

RequiredExecutionEnvironment>
<Bundle-Activator></Bundle-Activator>
<Service-Component>OSGI-INF/*</Service-Component>
<!-- Change it to the name of your codec. The naming rule is as follows:
device type-manufacturer ID-device model, for example: WaterMeter-Huawei-
NBIoTDevice. -->
<Bundle-SymbolicName>WaterMeter-Huawei-NBIoTDevice</Bundle-SymbolicName>
<Export-Package></Export-Package>
<!-- Import packages in the code and use commas (,) to separate them. [JAR
packages that start with java.** and that are referenced in Embed-Dependency
do not need to be imported in Import-Package. Otherwise, the codec cannot be
started.] -->
<Import-Package>
org.slf4j,
org.slf4j.spi,
org.apache.log4j.spi,
com.huawei.m2m.cig.tup.modules.protocol_adapter,
com.fasterxml.jackson.databind,
com.fasterxml.jackson.databind.node
</Import-Package>
<!-- For all dependency packages except junit, slf4j-api, jackson-databind,
and protocol-jar, set artifactId of each package to Embed-Dependency.
Separate artifactId values by commas (,). During Maven packaging, pack your
dependency packages into your JAR package. -->
<Embed-Dependency>
json-lib
</Embed-Dependency>
</instructions>
</configuration>
<executions>
<execution>
<id>generate-resource</id>
<goals>
<goal>manifest</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

l Codec code implementation
– In the ProtocolAdapterImpl.java file, change the values of

MANU_FACTURERID and MODEL. The IoT platform associates the codec with
the profile file using the manufacturer ID and device model.
private static final Logger logger =
LoggerFactory.getLogger(ProtocolAdapterImpl.class);
//Manufacturer name
private static final String MANU_FACTURERID = "Huawei";
//Model
private static final String MODEL = "NBIoTDevice";

– Modify the code in the CmdProcess.java file so that the codec can encode
delivered commands and responses to reported data.
package com.Huawei.NBIoTDevice.WaterMeter;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

public class CmdProcess {

 //private String identifier = "123";
 private String msgType = "deviceReq";
 private String serviceId = "Brightness";
 private String cmd = "SET_DEVICE_LEVEL";
 private int hasMore = 0;
 private int errcode = 0;
 private int mid = 0;

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 168

 private JsonNode paras;

 public CmdProcess() {
 }

 public CmdProcess(ObjectNode input) {

 try {
 // this.identifier = input.get("identifier").asText();
 this.msgType = input.get("msgType").asText();
 /*
 The IoT platform receives messages reported by the device
and encodes the ACK message.
 {
 "identifier":"0",
 "msgType":"cloudRsp",
 "request": ***,//Stream reported by the device
 "errcode":0,
 "hasMore":0
 }
 * */
 if (msgType.equals("cloudRsp")) {
 //Assemble the values of fields in the ACK message.
 this.errcode = input.get("errcode").asInt();
 this.hasMore = input.get("hasMore").asInt();
 } else {
 /*
 The IoT platform delivers a command to the device with
parameters specified as follows:
 {
 "identifier":0,
 "msgType":"cloudReq",
 "serviceId":"WaterMeter",
 "cmd":"SET_DEVICE_LEVEL",
 "paras":{"value":"20"},
 "hasMore":0

 }
 * */
 //Compatibility must be considered. If the MID is not
transferred, it is not encoded.
 if (input.get("mid") != null) {
 this.mid = input.get("mid").intValue();
 }
 this.cmd = input.get("cmd").asText();
 this.paras = input.get("paras");
 this.hasMore = input.get("hasMore").asInt();
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 public byte[] toByte() {
 try {
 if (this.msgType.equals("cloudReq")) {
 /*
 The NA delivers a control command. In this example,
there is only one command: SET_DEVICE_LEVEL.
 If there are other commands, determine them.
 * */
 if (this.cmd.equals("SET_DEVICE_LEVEL")) {
 int brightlevel = paras.get("value").asInt();
 byte[] byteRead = new byte[5];
 ByteBufUtils buf = new ByteBufUtils(byteRead);
 buf.writeByte((byte) 0xAA);

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 169

 buf.writeByte((byte) 0x72);
 buf.writeByte((byte) brightlevel);

 //Compatibility must be considered. If the MID is not
transferred, it is not encoded.
 if (Utilty.getInstance().isValidofMid(mid)) {
 byte[] byteMid = new byte[2];
 byteMid = Utilty.getInstance().int2Bytes(mid, 2);
 buf.writeByte(byteMid[0]);
 buf.writeByte(byteMid[1]);
 }

 return byteRead;
 }
 }

 /*
 After receiving the data reported by the device, the IoT
platform encodes the ACK message as required and responds to the device.
If null is returned, the IoT platform does not need to respond.
 * */
 else if (this.msgType.equals("cloudRsp")) {
 byte[] ack = new byte[4];
 ByteBufUtils buf = new ByteBufUtils(ack);
 buf.writeByte((byte) 0xAA);
 buf.writeByte((byte) 0xAA);
 buf.writeByte((byte) this.errcode);
 buf.writeByte((byte) this.hasMore)
 return ack;
 }
 return null;
 } catch (Exception e) {
 // TODO: handle exception
 e.printStackTrace();
 return null;
 }
 }

}
– Modify the code in the ReportProcess.java file so that the codec can decode data

reported by devices and command execution results.
package com.Huawei.NBIoTDevice.WaterMeter;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.node.ArrayNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

public class ReportProcess {
 //private String identifier;

 private String msgType = "deviceReq";
 private int hasMore = 0;
 private int errcode = 0;
 private byte bDeviceReq = 0x00;
 private byte bDeviceRsp = 0x01;

 //serviceId = Brightness
 private int brightness = 0;

 //serviceId = Electricity
 private double voltage = 0.0;
 private int current = 0;
 private double frequency = 0.0;
 private double powerfactor = 0.0;

 //serviceId = Temperature
 private int temperature = 0;

 private byte noMid = 0x00;

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 170

 private byte hasMid = 0x01;
 private boolean isContainMid = false;
 private int mid = 0;

 /**
 * @param binaryData: Payload of the CoAP packet sent by the device
to the IoT platform
 * Input parameters in this example: AA 72 00 00
32 08 8D 03 20 62 33 99
 * byte[0]--byte[1]: AA 72 command header
 * byte[2]: 00 mstType: 00 represents deviceReq,
which indicates that data is reported by the device.
 * byte[3]: 00 hasMore: 0 indicates that there
is no subsequent data and 1 indicates that there is subsequent data. If
the hasMore field is not contained, the value 0 is used.
 * byte[4]--byte[11]: indicates service data,
which is parsed as required.//If the service data is deviceRsp, byte[4]
indicates whether the MID is carried and byte[5] to byte[6] indicate the
short command ID.
 * @return
 */
 public ReportProcess(byte[] binaryData) {
 //The identifier parameter can be obtained based on the input
parameter stream. In this example, the default value is 123.
 // identifier = "123";

 /*
 If the data is reported by the device, the return value is in
the following format:
 {
 "identifier":"123",
 "msgType":"deviceReq",
 "hasMore":0,
 "data":[{"serviceId":"Brightness",
 "serviceData":{"brightness":50},
 {
 "serviceId":"Electricity",
 "serviceData":{"voltage":218.9,"current":
800,"frequency":50.1,"powerfactor":0.98},
 {
 "serviceId":"Temperature",
 "serviceData":{"temperature":25},
]
 }
 */
 if (binaryData[2] == bDeviceReq) {
 msgType = "deviceReq";
 hasMore = binaryData[3];

 //serviceId = Brightness
 brightness = binaryData[4];

 //serviceId = Electricity
 voltage = (double) (((binaryData[5] << 8) + (binaryData[6] &
0xFF)) * 0.1f);
 current = (binaryData[7] << 8) + binaryData[8];
 powerfactor = (double) (binaryData[9] * 0.01);
 frequency = (double) binaryData[10] * 0.1f + 45;

 //serviceId = Temperature
 temperature = (int) binaryData[11] & 0xFF - 128;
 }
 /*
 If the data is a response sent by the device to a command of the
IoT platform, the return value is in the following format:
 {
 "identifier":"123",
 "msgType":"deviceRsp",
 "errcode":0,

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 171

 "body" :{****} Note that the body is a JSON structure.
 }
 */
 else if (binaryData[2] == bDeviceRsp) {
 msgType = "deviceRsp";
 errcode = binaryData[3];
 //Compatibility must be considered. If the MID is not
transferred, it is not encoded.
 if (binaryData[4] == hasMid) {
 mid = Utilty.getInstance().bytes2Int(binaryData, 5, 2);
 if (Utilty.getInstance().isValidofMid(mid)) {
 isContainMid = true;
 }

 }
 } else {
 return;
 }

 }

 public ObjectNode toJsonNode() {
 try {
 //Assemble the body.
 ObjectMapper mapper = new ObjectMapper();
 ObjectNode root = mapper.createObjectNode();

 // root.put("identifier", this.identifier);
 root.put("msgType", this.msgType);

 //Assemble the message body based on the msgType field.
 if (this.msgType.equals("deviceReq")) {
 root.put("hasMore", this.hasMore);
 ArrayNode arrynode = mapper.createArrayNode();

 //serviceId = Brightness
 ObjectNode brightNode = mapper.createObjectNode();
 brightNode.put("serviceId", "Brightness");
 ObjectNode brightData = mapper.createObjectNode();
 brightData.put("brightness", this.brightness);
 brightNode.put("serviceData", brightData);
 arrynode.add(brightNode);
 //serviceId = Electricity
 ObjectNode electricityNode = mapper.createObjectNode();
 electricityNode.put("serviceId", "Electricity");
 ObjectNode electricityData = mapper.createObjectNode();
 electricityData.put("voltage", this.voltage);
 electricityData.put("current", this.current);
 electricityData.put("frequency", this.frequency);
 electricityData.put("powerfactor", this.powerfactor);
 electricityNode.put("serviceData", electricityData);
 arrynode.add(electricityNode);
 //serviceId = Temperature
 ObjectNode temperatureNode = mapper.createObjectNode();
 temperatureNode.put("serviceId", "Temperature");
 ObjectNode temperatureData = mapper.createObjectNode();
 temperatureData.put("temperature", this.temperature);
 temperatureNode.put("serviceData", temperatureData);
 arrynode.add(temperatureNode);

 //serviceId = Connectivity
 ObjectNode ConnectivityNode = mapper.createObjectNode();
 ConnectivityNode.put("serviceId", "Connectivity");
 ObjectNode ConnectivityData = mapper.createObjectNode();
 ConnectivityData.put("signalStrength", 5);
 ConnectivityData.put("linkQuality", 10);
 ConnectivityData.put("cellId", 9);
 ConnectivityNode.put("serviceData", ConnectivityData);

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 172

 arrynode.add(ConnectivityNode);

 //serviceId = Battery
 ObjectNode batteryNode = mapper.createObjectNode();
 batteryNode.put("serviceId", "battery");
 ObjectNode batteryData = mapper.createObjectNode();
 batteryData.put("batteryVoltage", 25);
 batteryData.put("battervLevel", 12);
 batteryNode.put("serviceData", batteryData);
 arrynode.add(batteryNode);

 root.put("data", arrynode);

 } else {
 root.put("errcode", this.errcode);
 //Compatibility must be considered. If the MID is not
transferred, it is not encoded.
 if (isContainMid) {
 root.put("mid", this.mid);//mid
 }
 //Assemble the body. The body must be an ObjectNode
object.
 ObjectNode body = mapper.createObjectNode();
 body.put("result", 0);
 root.put("body", body);
 }
 return root;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }
}

1.4.4.9 Appendix: Encryption Algorithms Supported by the JDK

Digest Algorithm

Algorith
m Name

Algorithm Hash Length Remarks

MD MD2 128 -

MD5 128 -

SHA SHA-1 160 -

SHA-256 256 -

SHA-384 384 -

SHA-512 512 -

HMAC HmacMD5 128 -

HmacSHA1 160 -

HmacSHA256 256 -

HmacSHA384 384 -

HmacSHA512 512 -

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 173

Symmetric Encryption Algorithm
Alg
orit
hm
Na
me

Key
Length

D
ef
a
ul
t
L
e
n
gt
h

Work Mode Padding Mode Remarks

DES 56 56 ECB, CBC, PCBC, CTR,
CTS, CFB, CFB8 to 128,
OFB, and OFB8 to 128

NoPadding,
PKCS5Padding,
and
ISO10126Padding

-

3DE
S

112 or
168

16
8

ECB, CBC, PCBC, CTR,
CTS, CFB, CFB8 to 128,
OFB, and OFB8 to 128

NoPadding,
PKCS5Padding,
and
ISO10126Padding

-

AES 128, 192,
or 256

12
8

ECB, CBC, PCBC, CTR,
CTS, CFB, CFB8 to 128,
OFB, and OFB8 to 128

NoPadding,
PKCS5Padding,
and
ISO10126Padding

The 256-
bit key
needs to
obtain the
permission
file without
policy
restriction.

Asymmetric Encryption Algorithm
Algorith
m Name

Key
Length

Defau
lt
Lengt
h

Work Mode Padding Mode Remarks

DH 512-1024 (a
multiple of
64)

1024 N/A N/A -

Base64 is also supported by the JDK.

1.5 Developing an Application

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 174

1.5.1 Application Connection to the IoT Platform

Overview

An NA needs to call the authentication API to connect to the IoT platform. For details about
the authentication API, see the API reference document.

This topic describes how to call the authentication API based on the Java code sample of the
API.

Prerequisites
l The codec has been deployed on the IoT platform. If Data Type of the device is JSON,

codec development is not required.

l If HTTPS is used for API calling, related certificates have been uploaded to the IoT
platform. For details, see Resources.

l You have obtained the Java code sample for calling the APIs. You have also
configured the development environment and imported the code sample by following the
instructions provided in Preparing the Java Development Environment.

Procedure

Step 1 Prepare the Java development environment by following the instructions provided in
Preparing the Java Development Environment.

This document uses the operations in Java development environment as an example.

Step 2 In the Eclipse, choose src > com.huawei.utils > Constant.java, and modify the values of
BASE_URL, APPID, and SECRET.

Parameters are described as follows:

l BASE_URL: Set this parameter to the application address and port number.

l APPID: Set this parameter to the application ID obtained after the application (or
project) is created.

l SECRET: Set this parameter to the secret obtained after the application (or project) is
created.

Step 3 In the Eclipse, choose src > com.huawei.service.appAccessSecurity, right-click
Authentication.java, and choose Run As > Java Application.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 175

https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/LiteNAdemo.zip

Step 4 View the response log on the console. If an access token is obtained, the authentication is
successful.

Keep the access token securely. It will be used when other APIs are called.

NOTE

l If no correct response is obtained, check whether the global constants are modified incorrectly or a
network fault occurs. You can locate the fault by following the instructions provided in Performing
Single-Step Debugging.

l An access token expires after the period specified by expiresIn elapses. The unit of expiresIn is
seconds.

l If an access token expires, you must obtain a new one. You can use the authentication API or the
refresh token obtained during the previous authentication to obtain another access token. For details
about the refresh token, see RefreshToken.java in the code sample and the API reference document.

l Northbound JAVA API Demo provides examples of messages for calling each API. For details, see
src > resource > demo_TCP_message.json.

----End

1.5.2 Data Subscription

Overview
An NA calls the Subscribing to Service Data of the IoT Platform API to notify the IoT
platform of message push addresses and notification types, such as device service data and
device alarms. For details about the subscription API, see the API reference document.

In the subscription scenario, the IoT platform is the client, and the NA is the server. The IoT
platform calls the API of the NA and pushes messages to the NA. If the subscription callback
URL is an HTTPS address, a CA certificate must be uploaded to the IoT platform. The CA
certificate is provided by the NA. (For details on how to obtain the certificate, see Exporting
a CA Certificate.) To load a CA certificate, choose Applications > Interconnection, and
click Certificate Management and Add in the Push Certificate area. For details, see
Uploading a CA Certificate.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 176

This topic describes how to call the subscription API based on the Java code sample of the
API.

Procedure

Step 1 In the Eclipse, choose src > com.huawei.utils > Constant.java, modify
CALLBACK_BASE_URL, and enter the callback URL and port number.

In the same application, the callback URL and port number of all subscription types must be
the same. Subscription Test of the Developer Center checks the validity and connectivity of
callback URLs.

Step 2 In the Eclipse, choose src > com.huawei.service.subscribtionManagement, right-click
SubscribeServiceNotification.java, and choose Run As > Java Application.

Step 3 View the response log on the console. If all types of subscriptions receive "201 Created"
response, the subscription is successful.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 177

NOTE

l To modify the callback URL, change the value of CALLBACK_BASE_URL in the
Constants.java file and run
SubscribeServiceNotification.java. The new callback URL replaces the original one.

l After the subscription is complete, you can choose src > com.huawei.testMessagePush >
SimpleHttpServer.java to set up an NA to receive messages (for example, POST messages) pushed
by the IoT platform. If you need to perform a local test on the callback function and view the
callback content, use the class src > com.huawei.testMessagePush >
TestSubscribeAllServiceNotification.java provided in the Northbound JAVA API Demo and
refer to the operations in Data Reporting.

----End

1.5.3 Device Registration

Overview
The NA server calls the API for registering a directly connected device to add devices to the
IoT platform. For details about the API, see the API reference document.

This topic describes how to call the API for registering a directly connected device based on
the Java code sample of the API.

Procedure

Step 1 In the Eclipse, choose src > com.huawei.service.deviceManagement >
RegisterDirectConnectedDevice.java, and change the values of verifyCode, nodeId,
timeout, manufacturerId, manufacturerName, deviceType, model, and protocolType.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 178

Parameters are described as follows:

l The values of verifyCode and nodeId must be the same as the IMEI or MAC address of
a physical device. If a device simulator is used, the value of verifyCode can be a
combination of digits, letters, and special characters. The value can be user-defined but
must be unique.

l The unit of timeout is second. The values of timeout are as follows:
– 0: indicates that the device never expires.
– > 0: indicates that the device must be made online within the specified period.

Otherwise, the IoT platform removes the device immediately after the period
expires. If timeout is not specified, the default interval (180 seconds) is used.

– After a device is bound, timeout becomes invalid and the device will never expire.
l The values of manufacturerId, manufacturerName, deviceType, model, and

protocolType must be the same as those in the profile file.

Step 2 Right-click RegisterDirectConnectedDevice.java and choose Run As > Java Application.

Step 3 View the response log on the console. If deviceId is obtained, the registration is successful.

Developers can check whether the newly registered device is displayed on the Product >
Device Management of the Developer Center. In this case, the registered device has only the
device ID information.

----End

1.5.4 Device Access to the IoT Platform

Overview
After devices are connected to the IoT platform, data can be exchanged between the IoT
platform and NA servers.

The Developer Center provides the application test function to simulate the scenario in which
devices are connected to the IoT platform. Developers can also connect a physical device to
the IoT platform to test the application. The following describes how to simulate device
access to the IoT platform:

Procedure

Step 1 Choose Applications > Application Test. Click Use Virtual Device.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 179

Step 2 In the Add Virtual Device dialog box displayed, select a device.

----End

1.5.5 Data Reporting

Overview

After a device reports data, the IoT platform pushes data reported by the device to the
subscribed-to address. The Developer Center provides a device simulator to simulate the
scenario where a real device reports data. Developers can also connect a physical device to
report data.

This topic describes how to report data using the device simulator based on the Java code
sample of the data reporting API. A simple HTTP server is provided in the Java code sample
of the API to help developers test whether the IoT platform has pushed messages to the
subscribed-to address.

Procedure

Step 1 In the Eclipse, choose src > com.huawei.testMessagePush > NotifyType.java. Modify the
value of TEST_CALLBACK_BASE_URL, and enter the local IP address and port number.
The port number cannot be used by other local programs.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 180

Step 2 Right-click src > com.huawei.testMessagePush >
TestSubscribeAllServiceNotification.java, and choose Run As > Java Application.

Step 3 In the project space, choose Application > Application Test. Use the virtual device added in
Device Access to the IoT Platform to report data.

NOTE

Developers can also connect a physical device to report data.

In Device Simulator, enter a hexadecimal code stream or JSON data (for example, enter a
hexadecimal code stream) and click Send. Then, view the data reporting result in IoT
Platform and Application Simulator and processing logs of the IoT platform in Message
Tracking.

Step 4 In the Eclipse, choose the TestSubscribeAllNotification.java console and view the messages
pushed by the IoT platform to the NA server.

Developers can also test the subscription result. For example, if deviceAdded is subscribed
to, developers can view messages pushed by the IoT platform on the
TestSubscribeAllNotification.java console after performing the operations described in
Device Registration.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 181

----End

1.5.6 Command Delivery

Overview

The NA server calls the device command creation API or device service calling API of the
IoT platform to deliver control instructions to devices. For details about the APIs, see the API
reference document.

l When the access protocol at the application layer is LWM2M, the Creating Device
Commands API is called to deliver commands.

l When the access protocol at the application layer is MQTT, the Calling Device Services
API is called to deliver commands.

This topic describes how to deliver commands with the Calling Device Services API and the
Java code sample of the API.

Procedure

Step 1 In the Eclipse, choose src > com.huawei.service.commandDelivery >
CreateDeviceCommand.java, and change the values of deviceId, serviceId, method, and
paras.

Parameters are described as follows:

l The value of deviceId is obtained when a device is registered.

l The values of serviceId, method, and paras are the same as those defined in the profile
file.

Step 2 Right-click CreateDeviceCommand.java and choose Run As > Java Application.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 182

Step 3 View the command delivery log on the console. If the 201 Created response is received, the
command is delivered to the IoT platform.

If the application test function of the Developer Center is used to simulate device access and
data reporting, developers can select the virtual device created in Device Access to the IoT
Platform to view the received commands by choosing Application > Application Test.

After the NA server delivers a command, view the received command (for example, a
hexadecimal code stream) in Device Simulator and view processing logs of the IoT platform
in Message Tracking.

----End

1.5.7 Development of Other APIs
For details about how to develop other APIs, see the API reference document.

1.5.8 Reference

1.5.8.1 Preparing the Java Development Environment

This section uses Java as an example to describe the methods to install JDK, set environment
variables, and install Eclipse.

1.5.8.1.1 Installing JDK 1.8

Download the JDK 1.8 installation package (for example, jdk-8u161-windows-x64.exe), and
double-click it for installation.

The package is available at http://www.oracle.com/technetwork/java/javase/downloads/
jdk8-downloads-2133151.html.

1.5.8.1.2 Configuring Java Environment Variables (Windows OS)

Step 1 Right-click Computer and choose Properties.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 183

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Figure 1-26 Properties

Step 2 Select Advanced system settings.

Figure 1-27 System

Step 3 In the System Properties dialog box, choose Advanced > Environment Variables.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 184

Figure 1-28 System Properties dialog box

Step 4 Configure the system variables. Configure the following three variables: JAVA_HOME, Path,
and CLASSPATH (where the variable names are case-insensitive). If a variable name exits,
click Edit. If a variable name does not exist, click New to create one. Generally, the Path
variable exists, and the JAVA_HOME and CLASSPATH variables need to be added.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 185

Figure 1-29 Environment Variables dialog box

JAVA_HOME indicates the JDK installation path and is set to C:\ProgramFiles\Java
\jdk1.8.0_45. This path contains the lib and bin files.

Figure 1-30 Creating JAVA_HOME

Path enables the system to recognize a Java command in any path. If the Path variable exists,
add a path at the end of the variable value. Configuration example: ;C:\Program Files\Java
\jdk1.8.0_45\bin;C:\Program Files\Java\jdk1.8.0_45\jre\bin

Two paths need to be separated by using a semicolon (;).

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 186

Figure 1-31 Setting Path

CLASSPATH specifies the path of loaded Java classes (class or lib). Java commands can be
identified only if they are contained in the class path. Configuration example: .;
%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar

NOTE

The path starts with a dot (.), indicating the current path.

Figure 1-32 Setting CLASSPATH

Step 5 Restart the OS for the environment variables to take effect.

Step 6 Choose Start > Run, enter cmd, and run the following commands: Java -version, java, and
javac. If the commands can be run, the environment variables are set successfully.

Figure 1-33 Verifying environment variables

----End

1.5.8.1.3 Installing Eclipse

Download the Eclipse installation package and decompress it to a local directory. You can use
the software without installation.

Eclipse is available on the official website at http://www.eclipse.org/downloads.

1.5.8.1.4 Creating a Project

Step 1 In the Eclipse, and choose File > New > Project. In the dialog box displayed, select Java
Project and click Next.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 187

http://www.eclipse.org/downloads

Figure 1-34 Creating a Java project

Step 2 Specify Project name, set the JRE version to JavaSE-1.8, and click Finish.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 188

Figure 1-35 Setting the project name

----End

1.5.8.1.5 Importing Code Example

Step 1 Decompress the API calling code example in Java (click here to obtain).

Step 2 After the decompression, copy the Open source components and src folders by pressing Ctrl
+C.

Figure 1-36 Copying the folders

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 189

https://devcenter.huawei.com/ict/rescenter/resource/download/eresource/CMDA_FIELD_OCEAN_CONNECT/Huawei_IoT_Platform_Demo_North_Lite.zip

Step 3 Open the project created in the Eclipse, select the project name, and paste the copied folders
to the project directory.

Figure 1-37 Pasting the folders

After the paste is complete, files in the src directory are abnormal.

Figure 1-38 Abnormal files in the src directory

Step 4 Right-click the project name and choose Properties > Java Build Path > Libraries > Add
JARs. In the dialog box displayed, select all .jar files in the Open source components
directory and click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 190

Figure 1-39 Importing .jar files

After the .jar files are imported, files in the src directory become normal.

Figure 1-40 Normal files in the src directory

----End

1.5.8.2 Using Postman to Test IoT Platform APIs

Prerequisites
Before using this method, you need to:

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 191

l Obtain the IP address and port number (HTTPS-compliant) provided by the IoT platform
for applications.

l Install and run Postman.

NOTE

The Postman installation package is available at https://www.getpostman.com.

Configuring Postman

Step 1 Choose Settings.

Figure 1-41 Choosing Settings

Step 2 Disable certificate verification so that Postman does not verify the server certificate.

Figure 1-42 Disabling certificate verification

Step 3 Configure the client certificate. Specifically, enter the IP address and port number provided by
the IoT platform for applications in the Host input box.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 192

https://www.getpostman.com

Figure 1-43 Configuring the client certificate

----End

NOTE

client.crt and client.key are the client certificate and the private key file.

Debugging the Authentication API

Step 1 Configure the HTTP method, URL, and Headers of the authentication API.

Figure 1-44 Configuring the HTTP method, URL, and Headers of the authentication API

Step 2 Configure Body of the authentication API.

Figure 1-45 Configuring Body of the authentication API

Step 3 Click Send. The returned code and response are displayed in the lower part of the page.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 193

Keep the access token securely. It will be used when other APIs are called.

Figure 1-46 Viewing the response of the Auth API

----End

Debugging the API for Registering a Directly Connected Device

Step 1 Configure the HTTP method, URL, and Headers of the API for registering a directly
connected device.

Figure 1-47 Configuring the HTTP method, URL, and Headers of the API for registering a
directly connected device

Step 2 Configure Body of the API for registering a directly connected device.

Figure 1-48 Configuring Body of the API for registering a directly connected device

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 194

Step 3 Click Send. The returned code and response are displayed in the lower part of the page.

Keep the returned device ID properly. It will be used when other APIs are called.

Figure 1-49 Viewing the response of the API for registering a directly connected device

----End

1.5.8.3 CA Certificate

Exporting a CA Certificate

The CA certificate on the application server can be exported as follows:

Step 1 Start a browser, and type the callback address in the address box. Internet Explorer is used as
an example.

Step 2 Check the certificate. The methods for checking a self-signed certificate and non-self-signed
certificate are different.

l If the callback address uses a self-signed certificate, the message "There is a problem
with this website's security certificate" is displayed. Choose Continue to this website
(not recommended). > Certificate Error > View certificates.

Figure 1-50 Self-signed certificate callback address prompt

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 195

Figure 1-51 Checking the self-signed certificate

l If the callback address is not a self-signed certificate, choose Security Report > View
certificates.

Figure 1-52 Checking the non-self-signed certificate

Step 3 Check the certificate level on the Certification Path tab page. The current certificate level is
the last level of the certificate.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 196

Figure 1-53 Certificate Directory

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 197

Figure 1-54 Common certificate information

Step 4 On the Details tab page, click Copy to File, and select Base-64 encoded X.509 (.CER) to
export the certificate of the current level based on the certificate export wizard.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 198

Figure 1-55 Detailed certificate information

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 199

Figure 1-56 Selecting the certificate export format

Step 5 Double-click the upper-level certificate. In the displayed dialog box, choose Details > Copy
to File > Base-64 encoded X.509 (.CER) to export the upper-layer certificate by following
instructions provided by the certificate export wizard.

Step 6 Repeat Step 5 until all levels of certificates are exported.

Step 7 Use the text editor to combine all the exported certificates into a file.

NOTE

No newline character exists between the combined files.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 200

Figure 1-57 Combining certificates

Step 8 Change the file name suffix to pem.

Step 9 On the Developer Center, choose Interconnection > Application Security > Push
Certificate to upload the certificate to the IoT platform.

Figure 1-58 Uploading a Certificate

----End

Uploading a CA Certificate

The CA certificate of the application server must be uploaded to the IoT platform for the IoT
platform to push HTTPS messages to the NA server. The CA certificate can be uploaded
through the Developer Center or the SP portal.

Uploading the CA Certificate Through the Developer Center

Step 1 Choose Applications > Interconnection. In the Push Certificate area, click Certificate
Management.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 201

Step 2 The CA Certificate dialog box is displayed. Check whether the CA certificate has been
uploaded. If not, click Add.

Step 3 In the displayed Upload CA Certificate dialog box, select the certificate file, set parameters,
and click Upload.

----End

Uploading the CA Certificate on the Management Portal

Step 1 Choose System Manage from the upper navigation bar, select Application Management >
Application List, select an application, and click certificate manage on the Information tab
page.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 202

Step 2 The CA Certificate dialog box is displayed. Check whether the CA certificate has been
uploaded. If not, click Add.

Step 3 In the displayed CA Certificate dialog box, select the certificate file, set parameters, and
click Confirm.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 203

----End

1.5.8.4 Performing Single-Step Debugging
To view requests sent by applications and responses from the IoT platform in a more intuitive
manner, use the breakpoint debugging method of Eclipse. If you use the Postman test
interface, see Using Postman to Test IoT Platform APIs.

Step 1 Set a breakpoint at the code where HTTP or HTTPS messages are sent.

For example, set three breakpoints for the executeHttpRequest method in the sample code
HttpsUtil.java. (Set the breakpoints according to the actual situation of your code.)

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 204

Figure 1-59 Setting a breakpoint

Step 2 Right-click the class to be debugged based on the project type, for example,
Authentication.java, and choose Debug As > Java Application.

Step 3 After the program stops running at the breakpoint, click Step Over to perform single-step
debugging.

You can view the content of the corresponding variable in the Variables window, such as the
sent messages and the response messages of the IoT platform.

Figure 1-60 Performing single-step debugging

Step 4 Expand the request variable in the Variables window to view the content of the requests.

When the request variable is selected, the URLs of the requests sent by the applications are
displayed in the content area in the lower part of the pane, and the content the requests is
displayed in the entity area.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 205

Figure 1-61 Expanding the request variable

The application ID (appId) and application key (secret) are contained in the content field and
are represented by decimal ASCII codes. You need to convert them into letters and symbols
according to the ASCII code table.

Figure 1-62 Viewing the content field

Step 5 Expand the response variable in the Variables window to view the content of the responses.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 206

Figure 1-63 Expanding the response variable

NOTE

In the code example, all classes other than Authentication.java call the Auth API in the first step.
Therefore, when performing single-step debugging on a class other than Authentication.java, view the
variable content when the program runs for the second time to the position where the breakpoint is set.

----End

1.6 Developing a Device

1.6.1 LWM2M/CoAP Device Integration

1.6.1.1 Device Integration
In CoAP or LWM2M access scenarios, devices can be connected to the IoT platform by
integrating NB-IoT modules or LiteOS SDK.

Integrating NB-IoT Modules
Devices integrated with NB-IoT modules can connect to the IoT platform through NB-IoT
networks.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 207

Features l Wide coverage: The gain is 20 dB higher than that of LTE.
l Low power consumption: The solution focuses on applications with

small data volume at a low rate.
l Massive amounts of connections: A single sector supports a maximum

of 50,000 connections.
l Low cost: NB-IoT chipsets or modules are cost-effective for its low

rate, low power consumption, and low bandwidth.

Scenarios Low requirements on data timeliness, small data packets, fixed locations,
and power supply from batteries. For example, smart metering and smart
street lamp.

Applicable
Networks

l NB-IoT network: constructed by carriers
l NB-IoT SIM card: purchased from NB-IoT network carriers
l NB-IoT module: purchased from the module manufacturers

Communica
tion
Protocols

CoAP/LWM2M

Related
Resources

Obtain more information and support from the module manufacturer.

Integrating LiteOS SDK

LiteOS SDK is a lightweight SDK integrated on the device. Its features are as follows:

Features l Protocols and security details are shielded. Users can focus on their
applications without paying attention to the implementation of protocols
and security policies.

l An adaptation layer is provided. Users can migrate LiteOS SDK by
adapting only a few interfaces.

l Data reported by devices can be cached and retransmission and
acknowledgment mechanisms are provided to ensure data reporting
reliability.

l Firmware upgrade, resumable download, and integrity protection for
firmware packages are supported.

l Security and non-security connection modes are supported.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 208

Running
Environ
ment
Requirem
ents

RAM > 32KB
FLASH > 128KB

Applicabl
e
Networks

NB-IoT, 2G/3G/4G, and wired network

Commun
ication
Protocols

CoAP and LWM2M

Related
Resource
s

For details about how to integrate the LiteOS SDK, see LiteOS SDK
Integration Development Guide.

AT Command
AT commands are used to control devices. The following AT commands are for reference
only. Obtain the command set from the corresponding module manufacturer.

AT Command Function Remarks

AT+CMEE=1 To query an error. Standard AT
command.

AT+CFUN=0 To power off a device. Shut down a device
before setting the IMEI and IP address of
the IoT platform.

Standard AT
command.

AT+CGSN=1 To query an IMEI. The IMEI is a type of
device ID. When an NA server calls an API
to register a device, nodeId and verifyCode
must be set to the IMEI.

Standard AT
command.

AT
+NTSETID=1,xxxx

xxxx indicates an IMEI. If an IMEI is not
found, you can set an IMEI that is unique.
The IMEI is a type of device ID. When an
NA server calls an API to register a device,
nodeId and verifyCode must be set to the
IMEI if the device uses a HiSilicon chipset.
If the device uses a Qualcomm chipset,
nodeId and verifyCode must be set to
urn:imei:IMEI.

Proprietary AT
command of the
HiSilicon chipset,
which stores the
IMEI in the flash
memory. This
parameter is used
when the NA server
registers with the
IoT platform. Other
chipset or module
manufacturers can
refer to this
parameter.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 209

AT Command Function Remarks

AT
+NCDP="IP","port"

Set the IP address and port number of the
IoT platform connected to the device. 5683
is a non-encrypted port and 5684 is a DTLS
encrypted port.

Proprietary AT
command of the
HiSilicon chipset,
which stores the IP
address and port
number in the flash
memory. This
parameter is used
when the NA server
registers with the
IoT platform. Other
chipset or module
manufacturers can
refer to this
parameter.

AT+CFUN=1 To power on a device. Standard AT
command.

AT+NBAND=
frequency band

To set the frequency band. Proprietary AT
command of the
HiSilicon chipset,
which stores the
frequency band in
the flash memory.
This parameter is
used when the
device is connected
to a network. Other
chipset or module
manufacturers can
refer to this
parameter.

AT
+CGDCONT=1,"IP"
,"CTNB"

To set the APN of the core network. The
APN is related to the sleep and keep-alive
modes of a device and must be confirmed
with the carrier.

Standard AT
command.

AT+CGATT=1 To access a network. Standard AT
command.

AT+CGPADDR To obtain the IP address of a device. Standard AT
command.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 210

AT Command Function Remarks

AT+NMGS=x,xxxx To send downstream data. The first
parameter indicates the number of bytes,
and the second parameter indicates the
reported hexadecimal stream.

Proprietary AT
command of the
HiSilicon chipset.
Data transmitted for
the first time is used
for device
registration, and
after a device is
registered, only data
is sent. Other chipset
or module
manufacturers can
refer to this
parameter.

AT+NQMGR To receive downstream data. Proprietary AT
command of the
HiSilicon chipset. It
is used to query the
amount of data that
can be received in
the receive buffer,
the total number of
received messages,
and the number of
discarded messages.
Other chipset or
module
manufacturers can
refer to this
parameter.

AT+NMGR To read data. Proprietary AT
command of the
HiSilicon chipset.
The command is
used to read data
received from the
IoT platform
(LWM2M server).
Other chipset or
module
manufacturers can
refer to this
parameter.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 211

1.6.1.2 Device Testing

Overview

Online test supports device simulation and application simulation. It offers scenarios such as
data reporting and command delivery to test devices, profiles, and plug-ins.

Developers can use physical or virtual devices for online test.

l When the device development is complete but the application development is not,
developers can add physical devices and use the application simulator to test devices,
profiles, and plug-ins. The structure of physical device testing interface is as follows:

l When both device development and application development are not completed,
developers can create virtual devices and use the application simulator and device
simulator to test profiles and plug-ins. The structure of virtual device testing interface is
as follows:

Using a Physical Device for Online Test

Step 1 In the product development space, click Perform Online Test.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 212

Step 2 Click Add at the row where Device List resides.

Step 3 In the Add Test Device dialog box displayed, select Yes, set the parameters, and click OK.
l Device Name can contain only letters, digits, and underlines (_) and must be unique in

the product.
l Device Indentity must be set to a unique value, such as the IMEI or MAC address of the

device.
l Choose Unencrypt or Encrypt based on site requirements.

After the device is added, Device ID and PSK are returned. Keep the PSK securely as it
is required when the device uses DTLS to connect to the IoT platform.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 213

Step 4 In the device list, select the newly added physical device to enter the Online Test page.

Step 5 Connect the device to the IoT platform and report data. View the data reporting result in
Application Simulator and processing logs of the IoT platform in Message Tracking.

Step 6 Deliver a command in Application Simulator. View processing logs of the IoT platform in
Message Tracking and check the received command on the device.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 214

----End

Using a Virtual Device for Online Test

Step 1 In the product development space, click Perform Online Test.

Step 2 Click Add at the row where Device List resides.

Step 3 In the Add Test Device dialog box displayed, select No and click OK.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 215

Step 4 In the device list, select the newly added virtual device to enter the Online Test page. The
name of the virtual device is in the format of Product Name+Simulator. Only one virtual
device can be added for each product.

Step 5 In Device Simulator, enter a hexadecimal code stream or JSON data (for example, enter a
hexadecimal code stream) and click Send. Then, view the data reporting result in Application
Simulator and processing logs of the IoT platform in Message Tracking.

Step 6 Deliver a command in Application Simulator. View the received command (for example, a
hexadecimal code stream) in Device Simulator and processing logs of the IoT platform in
Message Tracking.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 216

----End

1.7 Self-Service Testing

1.7.1 Self-Service Testing Guide

Overview
Self-service testing provides end-to-end test cases to help developers test basic device
capabilities, such as data reporting and command delivery. It aims to help you find product
defects or problems and shorten the time to market (TTM). After the testing is complete, a test
report is generated by the Developer Center for product release certification.

Prerequisites
You have defined the product profile, developed the codec, and deployed the codec.

Procedure

Step 1 In the product development space, click Self-Service Testing.

Step 2 The Select Test Case page is displayed. You can select test cases as needed. The system
automatically checks whether the selected test cases meet the test requirements and returns the
check results.
l If all selected test cases pass the check, click Next to proceed to the next phase.
l If a test case fails to pass the check, click Information Missing on the right of the test

case and modify the profile file or codec as prompted.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 217

NOTE

– To initiate the self-service testing, in addition to the mandatory test case, either Data Reporting
or Command Delivery must be selected.

– The more cases of a product pass the test, the higher the pass rate of the product release to the
Product Center. It is recommended that either Software Upgrade or Firmware Upgrade be
selected and all other test cases be included.

Step 3 Perform the self-service testing as prompted. After the testing is complete, you can preview
the test report or apply for releasing the product.

----End

1.7.2 Device Registration and Access Test

Overview

The device registration and access test verifies the capability of the device to connect to the
IoT platform. This test includes device registration and device access.

NOTE

This test case is the prerequisite for other tests. If it fails, other tests cannot be performed.

Procedure

Step 1 On the device registration and access test page, click Next. The device registration page is
displayed.

Step 2 Enter the test page according to the wizard, select the device type, enter the device node ID
and module name, and then click Next.

If Device Type is set to Encrypted, PSK needs to be set.

NOTE

If no module is used for the test, set Module Name to Null.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 218

Step 3 Register a physical device on the IoT platform according to the wizard, and view the test
result.

l If the test is successful, click Next to proceed to the next phase.

l If the test fails, rectify the fault and click Retest.

----End

1.7.3 Data Reporting Test

Overview

The data reporting test verifies the data reporting capability of a device. The purpose is to test
whether the property fields defined in the profile file are correct. If the data format for the IoT
platform interacting with the device is binary code stream, the test also verifies whether the
mapping between the codec and the profile file is correct.

Procedure

Step 1 On the Data Reporting page, click Next to start the test.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 219

Step 2 Enter the test page according to the wizard, operate a physical device to report the property
data defined in the profile file. If all the data is reported, you can click Stop Testing and view
the test result.
l If the test is successful, click Next to proceed to the next phase.
l If the test fails, rectify the fault and click Retest.

NOTE

The platform will verify all attribute data that has been successfully reported and record it in the test
report. The repeative attributes will only be recorded once.

----End

1.7.4 Radio Parameter Reporting Test

Overview
This test case checks the radio signal data (signal strength, coverage level, signal to noise
ratio, and cell ID) reported by the device.

To execute this test case, you need to define the following radio signal parameters in the
profile file and set up the mapping in codec.

Parameter Type Description

RSRP/rsrp/
signalStrength/
SignalPower

int Signal strength. The value ranges from
-140 to -40.

ECL/signalECL int Coverage level. The value ranges from 0
to 2.

SNR/snr/SINR/sinr/
signalSNR

int Signal to noise ratio. The value ranges
from -20 to 30.

CellID/cellId int Cell ID. the value ranges from 0 to
2147483647.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 220

Procedure

Step 1 On the Radio Singnal Parameter Reporting page, click Next to start the test.

Step 2 Enter the test page according to the wizard. Use the physical device to report the radio signal
parameters defined in the profile file, and view the test result.
l If the test is successful, click Next to proceed to the next phase.
l If the test fails, rectify the fault and click Retest.

NOTE

The reported radio signal parameter values must be within the ranges.

----End

1.7.5 Command Delivery Test

Overview

The command delivery test verifies the capability of a device to receive and process
commands. The purpose is to test whether the command fields defined in the profile file are
correct. If the data format for the IoT platform interacting with the device is binary code
stream, the test also verifies whether the mapping between the codec and the profile file is
correct.

If a service application is used for the test, the test also verifies whether the service
application can correctly call the Creating Device Commands API of the IoT platform to
deliver commands to the device.

Procedure

Step 1 On the Command Delivery page, click Next to start the test.

Step 2 Enter the test page according to the wizard. Deliver a command defined in the profile file to
the device on the IoT platform. After the physical device responds to the command, view the
test result.
l If the test is successful, click Next to proceed to the next phase.
l If the test fails, rectify the fault and click Retest.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 221

NOTE

If a service application is connected to the IoT platform, the application server delivers a command to
the device. After the physical device responds to the command, the page for uploading the screenshot
about the successful application command delivery is displayed. Click + on the interface to upload
the screenshot. The screenshot is a credential for the service application to correctly call the Creating
Device Commands API of the IoT platform.

----End

1.7.6 Command Response Test

Overview

The command response test verifies the capability of a device to report the execution result
after receiving a command from the IoT platform. When the command delivery response
fields have been defined in the profile file (the device is required to return a command
execution result), test the command response.

Procedure

Step 1 On the Command Response page, click Next to start the test.

Step 2 Enter the test page according to the wizard. Deliver a command to the device on the IoT
platform according to the profile file. If the physical device can automatically return a
command execution result, you can directly view the test result when it receives the
command. If the physical device cannot automatically return a command execution result,
manually enable the physical device to report the result based on the command received, and
then view the test result.

l If the test is successful, click Next to proceed to the next phase.

l If the test fails, rectify the fault and click Retest.

NOTE

If a service application is connected to the IoT platform, enable the application server to deliver a
command to the device.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 222

----End

1.7.7 Firmware Upgrade Test

Overview

The firmware upgrade test verifies whether a device supports firmware upgrade. Before
performing a firmware upgrade test, ensure that the Firmware Upgrade has been enabled
under O&M Service in the Profile Definition.

Procedure

Step 1 On the Firmware Upgrade page, click Next to start the test.

Step 2 Enter the test page according to the wizard, upload the unsigned firmware upgrade package,
enter the version number, and click Next. The system automatically creates a firmware
upgrade task.

NOTE

Ensure that the firmware upgrade package is uploaded and the file is in .ZIP format.

Step 3 Enable a physical device to report property data to trigger the upgrade task. After the upgrade
task is complete, view the upgrade result.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 223

l If the upgrade is successful, click Next to check whether the device works properly after
the upgrade.

l If the upgrade fails, rectify the fault and click Retest.

Step 4 Use the physical device to report property data to check whether the device can communicate
with the IoT platform after the upgrade. View the test result.

l If the test is successful, click Next to proceed to the next phase.

l If the test fails, rectify the fault and click Retest.

----End

1.7.8 Software Upgrade Test

Overview

The software upgrade test verifies whether a device supports software upgrade. Before
performing a software upgrade test, ensure that Software Upgrade has been enabled under
O&M Service in the Profile Definition.

Procedure

Step 1 On the Software Upgrade page, click Next to start the test.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 224

Step 2 Enter the test page according to the wizard, upload the unsigned software upgrade package,
and click Next. The system automatically creates a software upgrade task.

NOTE

Ensure that the software upgrade package is uploaded and the file is in .ZIP format.

Step 3 Enable the physical device to report property data to trigger the upgrade task. View the test
result.
l If the upgrade is successful, click Next to check whether the device works properly after

the upgrade.
l If the upgrade fails, rectify the fault and click Retest.

Step 4 Enable the physical device to report property data to check whether the device can
communicate with the IoT platform after the upgrade. Check the test result.
l If the test is successful, click Next to proceed to the next phase.
l If the test fails, rectify the fault and click Retest.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 225

----End

1.7.9 Application Subscription Event Test

Overview

The application subscription event test verifies whether the service application can correctly
call the Subscribing to Service Data of the IoT Platform API to subscribe to the device data
changes.

If the IoT platform uses HTTPS to push data to a service application, the CA certificate
provided by the service application must be uploaded to the IoT platform. To load a CA
certificate, choose Applications > Interconnection, click Certificate Management, and
Add in the Push Certificate area. For details, see How Do I Export the HTTPS Push
Certificate.

Procedure

Step 1 On the application subscription event test page, click Next.

Step 2 Enter the application name and click Next.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 226

https://support-intl.huaweicloud.com/zh-cn/iot_faq/iot_faq_00066.html
https://support-intl.huaweicloud.com/zh-cn/iot_faq/iot_faq_00066.html

Step 3 Enter the test page according to the wizard, subscribe to device data change messages, and
view the test result.
l The message subscription is successful. Click Next to upload the screenshot about the

successful subscription.
l If the message subscription fails, rectify the fault and click Retest.

Step 4 Click + on the Upload the screenshots about the subscription page and upload the
screenshot. This screenshot is a credential for the service application to correctly call the API
for Subscribing to Service Data of the IoT Platform API on the IoT platform.

After the screenshot is uploaded, click Next to proceed to the next phase.

NOTE

The size of the screenshot to be uploaded cannot exceed 20 MB.

----End

1.7.10 Application Data Push Test

Overview

This test verifies whether the service application can correctly receive data pushed by the IoT
platform.

Procedure

Step 1 On the application data push test page, click Next.

Step 2 Enter the test page according to the wizard. Use the physical device to report property data
defined in the profile file. The IoT platform obtains the data and pushes it to the service
application. View the test result.
l If the data is pushed successfully, click Next to upload the screenshot about the

application ceceiving the data.
l If the test fails, rectify the fault and click Retest.

Step 3 Click + on the Upload the screenshot about the application receiving the data page and
upload the screenshot. This screenshot is a credential for the service application to correctly
receive data pushed by the IoT platform.

NOTE

The size of the screenshot to be uploaded cannot exceed 20 MB.

----End

1.8 Product Release

Overview

If the Developer Center has interconnected with the Product Center, you can apply to the
Product Center for product release. You can release your product and display it in the Product
Center or set it visible only to yourself.

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 227

Applying for Product Release

Step 1 Click Apply for Release after the product passes the test cases.

Step 2 The system automatically checks the integrity of the manufacturer and product information. If
no important information is missing, click Release.
l Information missing in yellow: Some information is incomplete, which does not affect

the product release. However, the product may fail to be approved for release in the
Product Center. It is recommended that the information be supplemented.

l Information missing in red: Important information is missing. The product can be
released only after the information is supplemented.

Step 3 Select a release mode and click Release.

----End

IoT Device Management
Development Guide 1 Product Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 228

2 Device Interconnection

Creating an Application

Importing a Product Model

Registering a Device

Connecting a Device

2.1 Creating an Application

Overview

Create an application on the Management Portal to connect physical devices and NAs to the
IoT platform for device data collection and device management.

After an application is created, the IoT platform assigns the application and device access
addresses and ports to support fast NA and device access.

Procedure

Step 1 Log in to the HUAWEI CLOUD management console. Click IoT Device Management, and
click Management Portal.

Step 2 Choose Application List, and click Create Application.

Step 3 Set the parameters based on Table 2-1.

Table 2-1 Application creation parameters

Parameter Description

Basic Information

Application
Name

Specify the name of an application. It must be unique under the user
and cannot be changed.

Industry Select a value based on the industry attributes of the application.

IoT Device Management
Development Guide 2 Device Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 229

Parameter Description

Message Tracing
Authorization

Specify whether the IoT platform operations administrator can trace
faulty devices.
l If message tracing authorization is enabled, the IoT platform

operations administrator, when helping you locate faults, can trace
service data reported by devices. When authorization is enabled,
Authorization Validity must also be specified. The value of
Authorization Validity can be set to Custom or Always. To ensure
user data rights, the IoT platform operations administrator can
retain the device data for a maximum of three days.

l If message tracing authorization is disabled, the IoT platform
operations administrator cannot trace service data reported by
devices. This may reduce fault locating efficiency. You are advised
to enable authorization.

Message Push

Protocol
Selection

Push Protocol
The push protocol is determined by the transport protocol set when a
network application (NA) subscribes to device information from the
IoT platform. If the transmission channel for data push is set to HTTP
on the NA, you can use HTTPS or HTTP to transmit data.
l HTTPS: Encrypted transmission is used between the IoT platform

and NA. A CA certificate must be uploaded to the NA.
l HTTP: Non-encrypted transmission is used between the IoT

platform and NA. This mode is relatively less secure, and data sent
between the IoT platform and NA may be disclosed.

CA Certificate
The CA certificate is provided by the NA and used by the IoT platform
to verify the NA.
NOTE

The CA certificate preconfigured on the IoT platform is used only for
commissioning. In commercial scenarios, use the CA certificate provided by the
NA.

Platform Capability

Device Data
Management

The IoT platform can store historical device data. You can enable or
disable the storage function. The default value is On.
l If the value is On, the IoT platform stores historical data. The

storage duration is subject to that displayed.
l If the value is Off, the IoT platform does not store historical data.

Push Service The NA subscribes to device information from the IoT platform, and
the IoT platform pushes messages to the NA.

Other

Description Describe the application.

Application Icon Specify the icon of the application.

IoT Device Management
Development Guide 2 Device Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 230

Step 4 Select I have read and agree to the Terms of Personal Data Use, and click Confirm. After
the application is created, the Success dialog box is displayed, showing basic information
about the application, including the application ID, application secret, application access
address, and device access address.
l Click Save Secret to Local to save the application secret. The secret is invisible on the

application details page. Keep it secure. If you forget the secret, click and choose
Reset Secret. Alternatively, you can open the application details page, click the
Information tab page, and click Reset under Security.

NOTE

The application ID and application secret are used by the NA to connect to the IoT platform. If
you reset the secret, the old secret becomes invalid, and the NA server must use the new secret to
access the IoT platform. Exercise caution when performing this operation.

l Click Go to Application Details to view the application details page.
l Click Return to Application List to display the page for creating an application. Click

the application icon to view its details.

Step 5 (Optional) For an NB-IoT device, click the created application. On the Service Settings tab
page of the application details page, set the working mode of the NB-IoT device. The working
mode corresponds to the cache mode of commands delivered by the IoT platform. The
working mode must be the same as the working mode used by the device.
l Pending delivery: Set the working mode to PSM. The value of expireTime in the

command delivery API is used. If expireTime is not set, the default time is 48 hours.
l Immediately delivery: Set the working mode to DRX or eDRX. Commands are not

cached and are delivered directly.

----End

2.2 Importing a Product Model

Overview

A product model (or profile file) describes the capabilities and features of a device. You can
construct an abstract model of a device type by defining a profile file on the IoT platform,
allowing it to understand the services, properties, and commands supported by the device.

After a product model is developed and released on the Product Center, import it on the
Management Portal.

Procedure

Step 1 Choose Product Models, and click Add.

Step 2 Import the product model from the Product Center or local PC.
l Import from the Product Center.

a. Choose Import from Product Center to open the Product Center page.
b. Search for a product by product name, device type, or manufacturer name. In the

search result, click the name of the product to be imported.

IoT Device Management
Development Guide 2 Device Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 231

c. Check whether the product is a public product.
n For a public product, you can click Import to import the product model from

the Product Center to the IoT platform.
n For a private product, you must enter the verification code obtained from the

Product Center. If the verification is successful, you can view the product
details and import the product model to the IoT platform.

l Import from your local PC.

a. Choose Import from Local.
b. In the dialog box displayed, enter the product name and upload the resource file.
c. Click Confirm and wait until the import is complete.

NOTE

The product ID and product key are used for device registration. Click Save to Local to save the
product key. The product key is not displayed on the product model details page. Keep it secure.

Step 3 View the import result on the Product Models page.
l Import failure: You can view the cause of the import failure in the Failure Cause area.

This helps with fault locating.
l Import success: You can click Details to view product model details.

NOTE

You can delete a disused product from the product list by clicking Delete. After deletion, the
devices of this product cannot be used. The functions of the devices under the product are restored
only after the product is imported to the Product Center again.

----End

2.3 Registering a Device

Overview
Register a device on the IoT platform and define device parameters. Then the device can
connect to the IoT platform if authentication succeeds.

Procedure

Step 1 Choose Devices > Registration.

Step 2 Click the Individual Registration tab, and then click Register. In the dialog box displayed,
set the parameters based on Table 2-2, and click Confirm.

IoT Device Management
Development Guide 2 Device Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 232

Table 2-2 Individual device registration parameters

Parameter Configuration Rule

Product Select a product.
You can select a product only after it is defined on the Product
Models page. If the product model has not been uploaded, upload or
create it first.

Node ID Specify the unique physical identifier of a device, such as its IMEI
or MAC address. This parameter is carried during device access and
used by the IoT platform to authenticate the device.
l For a native MQTT device, the device ID (corresponding to the

node ID) and secret generated after the registration are used for
IoT platform connection.

l For an NB-IoT device or a device integrated with the AgentLite
SDK, the node ID and pre-secret entered during the registration
are used for IoT platform connection.

Pre-secret l For an NB-IoT device, the pre-secret is used to encrypt the
transmission channel between it and the IoT platform.

l For a device integrated with the AgentLite SDK, the pre-secret is
used by the IoT platform to authenticate its access.

l A native MQTT device does not require a pre-secret.

Confirm Pre-secret Enter the pre-secret again.

----End

2.4 Connecting a Device

Overview

Connect a physical device to the IoT platform to verify that the device can report data to the
IoT platform and display the data on the Management Portal.

Prerequisites

A device has been developed. For details, see Developing a Device.

Procedure

Step 1 Set the IoT platform IP address and port number on the device to the device interconnection
information of IoT Device Management. You can view the interconnection information on the
IoT Management Console.

Step 2 (Optional) If the device is an MQTT device, load the commercial CA certificate provided by
the IoT platform to the device.

Step 3 Power on the device to report data to the IoT platform.

IoT Device Management
Development Guide 2 Device Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 233

Step 4 Log in to the Management Portal. Choose Device Management > Devices > Device List, and
check the device status on the device list. If the status is Online, the device has been
connected to the IoT platform.

Step 5 Click the device. On the details page, view the latest reported data. If the data can be properly
parsed and displayed, the device reports data successfully.

NOTE

To view all reported historical data, click the Historical Data tab.

Step 6 On the Commands tab page of the device details page, click Send Command, select a
command, and issue the command to the device. Check the execution result. If the device acts
as instructed and the execution result of the command delivery task is displayed as Delivered
or Successful on the Management Portal, the device command is delivered successfully.

NOTE

l If the NB-IoT device uses the pending delivery mode, the command is delivered to the device only
after the device reports data.

l If the device returns the command execution result (success or failure) to the IoT platform, the task
status is updated to Successful or Failed based on the execution result.

----End

IoT Device Management
Development Guide 2 Device Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 234

3 Application Interconnection

Connecting an NA

Subscribing to Data

Commissioning an NA

3.1 Connecting an NA

Overview

Connect an NA to the IoT platform to allow remote device management.

Prerequisites
l An application has been developed. For details, see Developing an Application.

l An application has been created. For details, see Creating an Application.

Procedure

Step 1 Set the IoT platform IP address and port number on the NA to the application interconnection
information of IoT Device Management. You can view the interconnection information on the
IoT Management Console.

Step 2 Replace the application ID and application secret on the NA with those allocated in Creating
an Application.

Step 3 If the NA uses HTTPS to communicate with the IoT platform, replace the commissioning
certificate with a commercial certificate.

The unidirectional authentication mode is used when the NA connects to the IoT platform.
Therefore, obtain the CA certificate of the IoT platform and load it to the NA.

Step 4 The NA calls the authentication API of the IoT platform to complete the access. For details on
the authentication APIs, see the Northbound API Reference.

----End

IoT Device Management
Development Guide 3 Application Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 235

3.2 Subscribing to Data

Overview
An NA calls the subscription API of the IoT platform to inform the IoT platform where a
notification is to be pushed and the type of the notification to be pushed, such as device
service data and device alarms.

HTTPS is used for subscription push, and the certificate of the NA must be loaded.

Procedure

Step 1 An NA calls the subscription API of the IoT platform to subscribe to data. For details about
the subscription API, see the Northbound API Reference.

Step 2 Log in to the Management Portal, and choose System Management > Application
Management > Application List. On the page displayed, click the created application.

Step 3 On the Information tab page of the application details page, click Manage Certificate in the
Message Push pane.

Step 4 Click Add. Set the parameters based on Table 3-1, and click Confirm.

Table 3-1 CA Certificate dialog box

Parameter Description

CA
Certificate

You must apply for and purchase a CA certificate in advance. The CA
certificate is provided by the NA.

Domain/IP
and Port

Specify the domain name or IP address and port number used by the IoT
platform to push messages to the NA. Set this parameter to the domain
name or IP address and port number in the callback URL in the subscription
API. Example values are api.ct10649.com:9001 and 127.0.1.2:8080.

LoadBalanc
e Nickname

Nickname of the LoadBalance to which the certificate is loaded. Retain the
default value Default.

Check
Common
Name

Specify whether the common name of the CA certificate is verified to
ensure that the loaded certificate matches the applied certificate. It is
recommended that the common name be verified.

Common
Name

This parameter is displayed when Check Common Name is set to ON.
This parameter specifies the common name of the CA certificate. Obtain the
value from the certificate applicant.

IoT Device Management
Development Guide 3 Application Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 236

Parameter Description

Use Device
Certificate

Enable this function if the NA needs to verify the validity of the IoT
platform.
l If this function is enabled, one-way authentication is used (the IoT

platform verifies the server corresponding to callback URL). In this case,
unidirectional authentication must also be configured on the server.

l If this function is turned on, the server corresponding to the callback
URL must apply for the corresponding certificate file and upload the
device certificate on the IoT platform.

Device
Certificate

A device certificate, also called public key certificate, is a digital certificate
that contains a public key. The device certificate is provided by the NA.

Private Key
File

Specify the private key file contained in the user key pair. You can set a
password to protect a private key file, preventing access by anyone without
the password.

Private Key
Password

Specify the password used to encrypt a private key file.

----End

3.3 Commissioning an NA

Overview

After connecting a device and an NA to the IoT platform, verify that the NA can receive data
reported by the device and that the device can receive and execute commands delivered by the
NA.

Procedure

Step 1 Power on the device to report data to the IoT platform.

Step 2 Log in to the Management Portal. Choose Device Management > Devices > Device List, and
check the device status on the device list. If the status is Online, the device has been
connected to the IoT platform.

Step 3 Click the device. On the details page, view the latest reported data. If the data can be properly
parsed and displayed, the device reports data successfully.

NOTE

To view all reported historical data, click the Historical Data tab.

IoT Device Management
Development Guide 3 Application Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 237

Step 4 On the server corresponding to callback URL, check whether it has received data from the
IoT platform. If so, the IoT platform has successfully pushed the message.

Step 5 Enable the NA to issue a command to the device. Check the execution result. If the device
acts as instructed and the execution result of the command delivery task on the Management
Portal is displayed as Delivered or Successful, the NA successfully delivers the command to
the device.

NOTE

l If the NB-IoT device uses the pending delivery mode, the command is delivered to the device only
after the device reports data.

l If the device returns the command execution result (success or failure) to the IoT platform, the task
status is updated to Successful or Failed based on the execution result.

----End

IoT Device Management
Development Guide 3 Application Interconnection

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 238

4 SDK Usage Guide on the Device Side

LiteOS SDK Integration Development Guide

4.1 LiteOS SDK Integration Development Guide

4.1.1 Overview

4.1.1.1 Background Introduction
LiteOS SDK consists of device-cloud interconnect components, FOTA, JavaScript engine,
and sensor framework.

Device-cloud interconnect components are critical to connect devices with limited resources
to OceanConnect in the Huawei IoT solution. Device-cloud interconnect components enable
device-cloud synergy and integrate a full set of IoT interconnection protocol stacks, such as
Lightweight M2M (LWM2M), Constrained Application Protocol (CoAP), mbed TLS, and
lightweight IP (lwIP). Based on LWM2M, device-cloud interconnect components provide
packaged open APIs for you to quickly and reliably connect applications to OceanConnect. In
addition, they help you improve service development efficiency and quickly build products.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 239

Figure 4-1 Huawei LiteOS architecture

4.1.1.2 System Plan
Device-cloud interconnect components provide the following two types of software
architectures.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 240

Figure 4-2 Architecture for single module or MCU

Figure 4-3 Architecture for external MCUs + chips/modules

Device-cloud interconnect components are divided into the following three layers:

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 241

l Open API layer: The device-cloud interconnect components provide open APIs for
applications. Devices quickly connect OceanConnect, report service data, and process
delivered commands by invoking these APIs. In the external MCUs + chips/modules
scenario, device-cloud interconnect components also provides the AT instruction
adaptation layer for parsing AT instructions.

l Protocol layer: Device-cloud interconnect components integrate protocols, such as
LWM2M, CoAP, Datagram Transport Layer Security (DTLS), TLS, and UDP.

l Driver and network adapter layer: This layer facilitates device integration and porting.
You can adapt to APIs related to the hardware random number, memory management,
logs, data storage, and network sockets based on the API list of the adaptation layer
provided by SDK and specific hardware platform.

LiteOS basic kernel provides RTOS features for devices.

4.1.1.3 Integration Strategies

4.1.1.3.1 Integrability

Device-cloud interconnect components can be easily integrated with various types of
communications modules, such as NB-IoT, eMTC, Wi-Fi, GSM, and Ethernet hardware
modules without considering the specific chip architecture and network hardware type.

4.1.1.3.2 Portability

The adapter layer of device-cloud interconnect components provides common hardware and
network adapter APIs. Device or module vendors can complete the porting of device-cloud
interconnect components after adapting their hardware to these APIs. The following table lists
the to-be-ported APIs and related functions.

Table 4-1 APIs to which the to-be-ported device-cloud interconnect components need adapt

API Category API Description

Network socket API atiny_net_connect Creates a socket network
connection.

atiny_net_recv Receives packets.

atiny_net_send Sends packets.

atiny_net_recv_timeout Receives packets in a
blocking manner.

atiny_net_close Closes a socket network
connection.

Hardware API atiny_gettime_ms Obtains the system time
(ms).

atiny_usleep Delay function, measured in
μs.

atiny_random Hardware random number
function.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 242

API Category API Description

atiny_malloc Applies for dynamic
memory.

atiny_free Releases dynamic memory.

atiny_snprintf Formats character strings.

atiny_printf Outputs logs.

API for resource exclusion atiny_mutex_create Creates a mutual exclusion
lock.

atiny_mutex_destroy Destroy a mutual exclusion
lock.

atiny_mutex_lock Obtains a mutual exclusion
lock.

atiny_mutex_unlock Releases a mutual exclusion
lock.

NOTE

Device-cloud interconnect components can be ported in OS and non-OS modes. The OS mode is
recommended.

Device-cloud interconnect components support firmware upgrade. The components need to
adapt to the atiny_storage_device_s object.

atiny_storage_device_s *atiny_get_hal_storage_device(void);
struct atiny_storage_device_tag_s;
typedef struct atiny_storage_device_tag_s atiny_storage_device_s;
struct atiny_storage_device_tag_s
{
//Device initialization
int (*init)(storage_device_s *this);
//Begin to write
int (*begin_software_download)(storage_device_s *this);
//Write software, and start from offset. buffer indicates the content, and len
indicates the length.
int (*write_software)(storage_device_s *this , uint32_t offset, const char
*buffer, uint32_t len);

//Download completed
int (*end_software_download)(storage_device_s *this);
//Activate software
int (*active_software)(storage_device_s *this);
//Activated results are obtained. O indicates successful. 1 indicates failed.
int (*get_active_result)(storage_device_s *this);
//Write update_info, and start from offset. buffer indicates the content, and len
indicates the length.
int (*write_update_info)(storage_device_s *this, long offset, const char
*buffer, uint32_t len);
//Read update_info, and start from offset. buffer indicates the content, and len
indicates the length.
int (*read_update_info)(storage_device_s *this, long offset, char *buffer,
uint32_t len);
};

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 243

4.1.1.3.3 Integration Restrictions

To integrate with device-cloud interconnect components, the following hardware
specifications requirements must be met:

l Modules or chips are supported by physical network hardware and support the UDP
protocol stack.

l Modules or chips provide sufficient Flash and RAM resources to integrate with protocol
stacks for device-cloud interconnect components. The following table lists the
recommended hardware specifications.

Table 4-2 Recommended hardware specifications

RAM Flash

> 32 KB > 128 KB

NOTE

The recommended hardware specifications are determined based on resources (including open APIs, IoT
protocol stacks, security protocols, SDK driver and network adapter layer) used by device-cloud
interconnect components and resources (including chip drivers, sensor drivers, and basic service
processes) minimally used by user service demos. The preceding specifications are for reference only.
The specific hardware specifications need to be evaluated based on user service requirements.

4.1.1.4 Security

Device-cloud interconnect components support DTLS. Currently, the pre-shared key (PSK)
mode is supported. Other modes will be supported.

After the components first complete the handshake process with OceanConnect, the
subsequent application data will be encrypted, as shown in the following figure.

Figure 4-4 DTLS interaction process

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 244

4.1.1.5 Upgrade
Device-cloud interconnect components support the remote firmware upgrade of
OceanConnect and feature resumable data transfer and firmware package integrity protection.

The following figure shows the firmware upgrade functions and process.

Figure 4-5 Firmware upgrade Diagram

4.1.2 Process for Connecting Devices to OceanConnect on the
Device Side

When connecting a device to OceanConnect, ensure that the device has been registered and
the device applications have been deployed on OceanConnect. After the device has been
connected, OceanConnect can manage it. This section describes how to connect device-side
devices to OceanConnect using device-cloud interconnect components. The following figure
shows the general diagram of connecting device-side devices to OceanConnect.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 245

Figure 4-6 General diagram of connecting device-side devices to OceanConnect

4.1.2.1 Preparations

The information to be obtained before development is as follows:

l Huawei LiteOS and LiteOS SDK source code. The general project architecture is as
follows:

├── arch //Architecture-related files

│ ├── arm

│ └── msp430

├── build

│ └── Makefile

├── components //Various LiteOS components

│ ├── connectivity

│ ├── fs

│ ├── lib

│ ├── log

│ ├── net

│ ├── ota

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 246

│ └── security

├── demos //Sample programs

│ ├── agenttiny_lwm2m //All sample programs listed in this chapter are from the
agent_tiny_demo.c file in this directory.

│ ├── agenttiny_mqtt

│ ├── dtls_server

│ ├── fs

│ ├── kernel

│ └── nbiot_without_atiny

├── doc //Documents

│ ├── Huawei_LiteOS_Developer_Guide_en.md

│ ├── Huawei_LiteOS_Developer_Guide_zh.md

│ ├── Huawei_LiteOS_SDK_Developer_Guide.md

│ ├── LiteOS_Code_Info.md

│ ├── LiteOS_Commit_Message.md

│ ├── LiteOS_Contribute_Guide_GitGUI.md

│ ├── LiteOS_Supported_board_list.md

│ └── meta

├── include //Header files required by projects

│ ├── at_device

│ ├── at_frame

│ ├── atiny_lwm2m

│ ├── atiny_mqtt

│ ├── fs

│ ├── log

│ ├── nb_iot

│ ├── osdepends

│ ├── ota

│ ├── sal

│ └── sota

├── kernel //System kernels

│ ├── base

│ ├── extended

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 247

│ ├── include

│ ├── los_init.c

│ └── Makefile

├── LICENSE //Licenses

├── osdepends //Dependencies

│ └── liteos

├── README.md

├── targets //BSP projects

│ ├── Cloud_STM32F429IGTx_FIRE

│ ├── Mini_Project

│ ├── NXP_LPC51U68

│ └── STM32F103VET6_NB_GCC

└── tests //Test cases

├── cmockery

├── test_agenttiny

├── test_main.c

├── test_sota

└── test_suit

To obtain the source code, visit https://github.com/LiteOS/LiteOS.

l Integration development tools:

– MDK 5.18 or later, which can be downloaded from http://www2.keil.com/mdk5

– MDK packages

NOTE

The licenses for MDK tools can be obtained from http://www2.keil.com/mdk5.

4.1.2.2 Entrypoint Function for LiteOS SDK Device-Cloud Interconnect
Components

To connect the LiteOS SDK device-cloud interconnect component Agent Tiny to
OceanConnect, create an entrypoint function agent_tiny_entry().

Function Description

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 248

https://github.com/LiteOS/LiteOS

void agent_tiny_entry(void) Entrypoint function for LiteOS SDK device-
cloud interconnect components. This
function can be used to initialize Agent
Tiny, create report tasks, and call the main
function body of Agent Tiny.
Parameter list: N/A
Return value: null

Based on the task mechanism provided by the LiteOS kernel, a developer can create a main
task main_task, and call the entrypoint function agent_tiny_entry() in the main task to
enable the Agent Tiny workflow.

 UINT32 creat_main_task()
 {
 UINT32 uwRet = LOS_OK;
 TSK_INIT_PARAM_S task_init_param;
 task_init_param.usTaskPrio = 0;
 task_init_param.pcName = "main_task";
 task_init_param.pfnTaskEntry = (TSK_ENTRY_FUNC)main_task;
 task_init_param.uwStackSize = 0x1000;
 uwRet = LOS_TaskCreate(&g_TskHandle, &task_init_param);
 if(LOS_OK != uwRet)
 {
 return uwRet;
 }
 return uwRet;
 }

4.1.2.3 Initializing LiteOS SDK Device-Cloud Interconnect Components

Call the atiny_init() function in the entrypoint function to initialize Agent Tiny.

Function Description

int atiny_init(atiny_param_t*
atiny_params, void** phandle);

Function for initializing device-cloud
interconnect components, which is
implemented by device-cloud interconnect
components and invoked by devices. The
parameters involved are as follows:
l atiny_params. For details about the

parameter, see the description of the
atiny_param_t data structure.

l phandle, an output parameter, which
represents the handle of the currently
created device-cloud interconnect
component.
Return value: Integer variable, indicating
that the initialization is successful or failed.

The input parameter atiny_params needs to be set based on specific services. Developers can
set the parameter by the following code:

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 249

#ifdef CONFIG_FEATURE_FOTA
 hal_init_ota(); //To define the FOTA functions, perform FOTA-related
initialization.
 #endif

 #ifdef WITH_DTLS
 device_info->endpoint_name = g_endpoint_name_s; //Encrypted device
verification code
 #else
 device_info->endpoint_name = g_endpoint_name; //Unencrypted device
verification code
 #endif
 #ifdef CONFIG_FEATURE_FOTA
 device_info->manufacturer = "Lwm2mFota"; //Unencrypted device
verification code
 device_info->dev_type = "Lwm2mFota"; //Device type
 #else
 device_info->manufacturer = "Agent_Tiny";
 #endif
 atiny_params = &g_atiny_params;
 atiny_params->server_params.binding = "UQ"; //Binding mode
 atiny_params->server_params.life_time = 20; //Life cycle
 atiny_params->server_params.storing_cnt = 0; //Number of cached data packets

 atiny_params->server_params.bootstrap_mode = BOOTSTRAP_FACTORY; //Boot mode
 atiny_params->server_params.hold_off_time = 10; //Waiting latency

 //pay attention: index 0 for iot server, index 1 for bootstrap server.
 iot_security_param = &(atiny_params->security_params[0]);
 bs_security_param = &(atiny_params->security_params[1]);

 iot_security_param->server_ip = DEFAULT_SERVER_IPV4; //Server address
 bs_security_param->server_ip = DEFAULT_SERVER_IPV4;

 #ifdef WITH_DTLS
 iot_security_param->server_port = "5684"; //Encrypted device port number
 bs_security_param->server_port = "5684";

 iot_security_param->psk_Id = g_endpoint_name_iots; //Encrypted
device verification
 iot_security_param->psk = (char *)g_psk_iot_value; //PSK password
 iot_security_param->psk_len = sizeof(g_psk_iot_value); //PSK password
length

 bs_security_param->psk_Id = g_endpoint_name_bs;
 bs_security_param->psk = (char *)g_psk_bs_value;
 bs_security_param->psk_len = sizeof(g_psk_bs_value);
 #else
 iot_security_param->server_port = "5683"; //Unencrypted device port number
 bs_security_param->server_port = "5683";

 iot_security_param->psk_Id = NULL; //No PSK-related parameter setting for
unencrypted devices
 iot_security_param->psk = NULL;
 iot_security_param->psk_len = 0;

 bs_security_param->psk_Id = NULL;
 bs_security_param->psk = NULL;
 bs_security_param->psk_len = 0;
 #endif

After setting the atiny_params parameter, initialize Agent Tiny based on the set parameter.
 if(ATINY_OK != atiny_init(atiny_params, &g_phandle))
 {
 return;
 }

After setting the atiny_params parameter, initialize Agent Tiny based on the set parameter.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 250

4.1.2.4 Creating a Data Reporting Task
After initializing Agent Tiny, create a data reporting task function app_data_report() by
calling the creat_report_task() function.

 UINT32 creat_report_task()
 {
 UINT32 uwRet = LOS_OK;
 TSK_INIT_PARAM_S task_init_param;
 UINT32 TskHandle;
 task_init_param.usTaskPrio = 1;
 task_init_param.pcName = "app_data_report";
 task_init_param.pfnTaskEntry = (TSK_ENTRY_FUNC)app_data_report;
 task_init_param.uwStackSize = 0x400;
 uwRet = LOS_TaskCreate(&TskHandle, &task_init_param);
 if(LOS_OK != uwRet)
 {
 return uwRet;
 }
 return uwRet;
 }

In the app_data_report() function, assign a value to the reported data structure
data_report_t, including the data buffer address buf, callback function callback called after
the ACK response is received from a platform, data cookie, data length len, and data
reporting type type (set to APP_DATA by default).

 uint8_t buf[5] = {0, 1, 6, 5, 9};
 data_report_t report_data;
 int ret = 0;
 int cnt = 0;
 report_data.buf = buf;
 report_data.callback = ack_callback;
 report_data.cookie = 0;
 report_data.len = sizeof(buf);
 report_data.type = APP_DATA;

After a value is assigned to the report_data parameter, data can be reported by calling the
atiny_data_report() function.

Function Description

int
atiny_data_report(v
oid* phandle,
data_report_t*
report_data)

Function for reporting data of device-cloud interconnect
components, which is implemented by device-cloud interconnect
components and invoked by devices. This function is used to report
device application data. The function is blocked and cannot be used
when being interrupted. The parameters involved are as follows:
Parameter list: phandle is the Agent Tiny handle obtained by calling
the initialization function atiny_init(). report_data is the reported
data structure.
Return value: Integer variable, indicating that the data reporting is
successful or failed.

The implementation method of a report task in the sample code is as follows:

 while(1)
 {
 report_data.cookie = cnt;
 cnt++;
 ret = atiny_data_report(g_phandle, &report_data); //Data reporting

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 251

function
 ATINY_LOG(LOG_DEBUG, "data report ret: %d\n", ret);
 (void)LOS_TaskDelay(250 * 8);
 }

4.1.2.5 Command Processing Function for LiteOS SDK Device-Cloud
Interconnect Components

All commands delivered by OceanConnect are executed by calling the atiny_cmd_ioctl()
function.

Function Description

int atiny_cmd_ioctl
(atiny_cmd_e cmd,
char* arg, int len);

Implemented by developers to declare and invoke device-cloud
interconnect components. This API is a unified portal for
LWM2M standard objects to deliver commands to devices. The
parameters involved are as follows:
l cmd, a specific command word, such as commands for

delivering service data and resetting and upgrade.
l arg, a specific command parameter; len, the parameter length.

Return value: null

The atiny_cmd_ioctl API is a universal extensible API defined by device-cloud interconnect
components. The command word of this API is defined by referring to the enumerated type
atiny_cmd_e. Users can implement or extend this API based on respective requirements. The
following table lists common APIs. Each API corresponds to an enumerated value of the
atiny_cmd_e API.

Callback Function Description

int
atiny_get_manufacture
r(char*
manufacturer,int len)

Obtains the vendor name. The memory specified by the
manufacturer parameter is allocated by device-cloud
interconnect components. A user can specify the parameter. The
parameter length cannot exceed the value of len.

int
atiny_get_dev_type(ch
ar * dev_type,int len)

Obtains the device type. The memory specified by the dev_type
parameter is allocated by device-cloud interconnect components.
A user can specify the parameter. The parameter length cannot
exceed the value of len.

int
atiny_get_model_num
ber((char *
model_numer, int len)

Obtains the device model number. The memory specified by the
model_number parameter is allocated by device-cloud
interconnect components. A user can specify the parameter. The
parameter length cannot exceed the value of len.

int
atiny_get_serial_numb
er(char* num,int len)

Obtains the device SN. The memory specified by the number
parameter is allocated by device-cloud interconnect components.
A user can specify the parameter. The parameter length cannot
exceed the value of len.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 252

Callback Function Description

int
atiny_get_dev_err(int*
arg,int len)

Obtains the device status, such as used-up memory, low battery,
and low signal strength. The arg parameter is allocated by
device-cloud interconnect components. A user can specify the
parameter. The parameter length cannot exceed the value of len.

int
atiny_do_dev_reboot(
void)

Resets devices.

int
atiny_do_factory_rese
t(void)

Resets vendors.

int
atiny_get_baterry_leve
l(int* voltage)

Obtains remaining battery level.

int
atiny_get_memory_fre
e(int* size)

Obtains available memory size.

int
atiny_get_total_memo
ry(int* size)

Obtains total memory size.

int
atiny_get_signal_stren
gth(int*
singal_strength)

Obtains signal strength.

int
atiny_get_cell_id(long
* cell_id)

Obtains the cell ID.

int
atiny_get_link_qualit
y(int* quality)

Obtains the channel quality.

int
atiny_write_app_writ
e(void* user_data, int
len)

Delivers service data.

int
atiny_update_psk(char
* psk_id, int len)

Updates PSKs.

A developer needs to make a command response by calling the atiny_write_app_write()
function based on site services.

 int atiny_write_app_write(void* user_data, int len)
 {
 (void)atiny_printf("write num19 object success\r\n");

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 253

 return ATINY_OK;
 }

4.1.2.6 Main Function Body for LiteOS SDK Device-Cloud Interconnect
Components

After creating the data reporting task and implementing the command processing function,
call the atiny_bind() function.

Function Description

int
atiny_bind(atiny_device_info_
t* device_info, void* phandle)

Main function body of a device-cloud interconnect
component, which is implemented by device-cloud
interconnect components and invoked by devices.
However, no value is returned after the function is
successfully called. This function is the main loop body
of a device-cloud interconnect component, which
implements LWM2M processing, state machine
registration, queue retransmission, and subscription
reporting.
Parameter list: device_info is the device parameter
structure. phandle is the Agent Tiny handle obtained by
calling the initialization function atiny_init().
Return value: Integer variable, indicating the execution
status of the main function body for LiteOS SDK device-
cloud interconnect components. This value can be
returned only when the execution failed or the
deinitialization function atiny_deinit() for LiteOS SDK
device-cloud interconnect components is called.

The atiny_bind() function can be used to create and register the LwM2M client based on the
LwM2M protocol, send the data reported in the data reporting task creation function
app_data_report() to OceanConnect through communication modules, receive and parse
commands delivered by OceanConnect, and submit the parsed commands to the command
processing function atiny_cmd_ioctl() for unified processing. Similar to the atiny_init()
function, the atiny_bind() function does not need to be modified by developers.

NOTE

For details about the LWM2M protocol, see the appendix.

LiteOS SDK device-cloud interconnect components continuously report data and process commands
through the main function body. When calling the deinitialization function atiny_deinit() for LiteOS
SDK device-cloud interconnect components, exit the main function body.

Function Description

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 254

void atiny_deinit(void*
phandle);

Function for deinitializing device-cloud interconnect
components, which is implemented by device-cloud
interconnect components and invoked by devices. This
function is blocked. It cannot stop being invoking until the
main task of Agent Tiny quits and resources are
completely released.
Parameter list: phandle is the LiteOS SDK device-cloud
interconnect component handle obtained by calling the
atiny_init() function.
Return value: null

4.1.2.7 Data Structure
l Enumerated type of commands delivered by OceanConnect
 typedef enum
 {
 ATINY_GET_MANUFACTURER, /*Obtain the manufacturer name.*/
 ATINY_GET_MODEL_NUMBER, /*Obtain device models defined and used by
the manufacturer.*/
 ATINY_GET_SERIAL_NUMBER, /*Obtain the device SN.*/
 ATINY_GET_FIRMWARE_VER, /*Obtain the firmware version number.*/
 ATINY_DO_DEV_REBOOT, /*Deliver device resetting commands.*/
 ATINY_DO_FACTORY_RESET, /*Restore factory resetting.*/
 ATINY_GET_POWER_SOURCE, /*Obtain power supplies.*/
 ATINY_GET_SOURCE_VOLTAGE, /*Obtain device voltage.*/
 ATINY_GET_POWER_CURRENT, /*Obtain device current.*/
 ATINY_GET_BATERRY_LEVEL, /*Obtain the battery level.*/
 ATINY_GET_MEMORY_FREE, /*Obtain idle memory.*/
 ATINY_GET_DEV_ERR, /*Obtain the device status, such as used-up
memory and low battery level.*/
 ATINY_DO_RESET_DEV_ERR, /*Obtain the device resetting status.*/
 ATINY_GET_CURRENT_TIME, /*Obtain the current time.*/
 ATINY_SET_CURRENT_TIME, /*Set the current time.*/
 ATINY_GET_UTC_OFFSET, /*Obtain the UTC difference.*/
 ATINY_SET_UTC_OFFSET, /*Set the UTC difference.*/
 ATINY_GET_TIMEZONE, /*Obtain the time zone.*/
 ATINY_SET_TIMEZONE, /*Set the time zone.*/
 ATINY_GET_BINDING_MODES, /*Obtain the binding mode.*/
 ATINY_GET_FIRMWARE_STATE, /*Obtain the firmware upgrade status.*/
 ATINY_GET_NETWORK_BEARER, /*Obtain the network bearer type, such as
GSM and WCDMA. */
 ATINY_GET_SIGNAL_STRENGTH, /*Obtain the network signal strength.*/
 ATINY_GET_CELL_ID, /*Obtain the network cell ID.*/
 ATINY_GET_LINK_QUALITY, /*Obtain network link quality.*/
 ATINY_GET_LINK_UTILIZATION, /*Obtain network link usage.*/
 ATINY_WRITE_APP_DATA, /*Write command words delivering service
data.*/
 ATINY_UPDATE_PSK, /*Update PSK command words.*/
 ATINY_GET_LATITUDE, /*Obtain device latitude.*/
 ATINY_GET_LONGITUDE, /*Obtain device longitude.*/
 ATINY_GET_ALTITUDE, /*Obtain device height.*/
 ATINY_GET_SPEED, /*Obtain device running speed.*/
 ATINY_GET_TIMESTAMP, /*Obtain timestamp.*/
 } atiny_cmd_e;

l Enumerated type of key events

This enumerated type is used to notify users of the statuses of LiteOS SDK device-cloud
interconnect components.
typedef enum
 {

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 255

 ATINY_REG_OK, /*Device registration successful*/
 ATINY_REG_FAIL, /*Device registration failed*/
 ATINY_DATA_SUBSCRIBLE, /*Starting data subscription. Devices allow to
report data */
 ATINY_DATA_UNSUBSCRIBLE, /*Canceling data subscription. Devices stop
reporting data*/
 ATINY_FOTA_STATE /*Firmware upgrade status*/
 } atiny_event_e;
l LwM2M parameter structure
typedef struct
 {
 char* binding; /*U or UQ is currently
supported.*/
 int life_time; /*LwM2M protocol life cycle,
which is set to 50000 by default.*/
 unsigned int storing_cnt; /*Number of LwM2M cache data
packets*/
 } atiny_server_param_t;
l Security and server parameter structure
typedef struct
 {
 bool is_bootstrap; /*Whether the bootstrap server is used.*/
 char* server_ip; /*Server IP address, which can be represented by
character strings and supports IPv4 and IPv6.*/
 char* server_port; /*Server port number.*/
 char* psk_Id; /*PSK ID.*/
 char* psk; /*PSK*/
 unsigned short psk_len; /*PSK length*/
 } atiny_security_param_t;
l Enumerated type of reported data

Type of data reported by users, which can be expanded based on users' applications.

typedef enum
 {
 FIRMWARE_UPDATE_STATE = 0; /*LWM2M protocol life cycle, which is set to
50000 by default.*/
 APP_DATA /*User data*/
 } atiny_report_type_e;
l Server parameter structure
typedef struct
 {
 atiny_server_param_t server_params;
 atiny_security_param_t security_params[2]; /*One IoT server and one
bootstrap server are supported.*/
 } atiny_param_t;

l Device parameter structure
typedef struct
 {
 char* endpoint_name; /*Device ID generated for northbound application*/
 char* manufacturer; /*Manufacturer name generated for northbound
application*/
 char* dev_type; /*Device type generated for northbound application*/
 } atiny_device_info_t;
l Reported data structure

The following enumerated values indicate user data types. For example, data is sent
successfully; data has been sent but is not acknowledged. The specific information is as
follows:

typedef enum
 {

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 256

 NOT_SENT = 0, /*To-be-reported data has not been sent.*/
 SENT_WAIT_RESPONSE, /*To-be-reported data has been sent and is waiting for
response.*/
 SENT_FAIL, /*To-be-reported data sending failed.*/
 SENT_TIME_OUT, /*To-be-reported data has been sent and waiting for
response times out.*/
 SENT_SUCCESS, /*To-be-reported data sending successful.*/
 SENT_GET_RST, /*To-be-reported data has been sent but the receiver
sends an RST packet.*/
 SEND_PENDING, /*To-be-reported data is waiting for sending.*/
 } data_send_status_e;

//Users can use the following data structure to report data:

 typedef struct _data_report_t
 {
 atiny_report_type_e type; /*Reported data type, such as service data and
remaining battery level.*/
 int cookie; /*Data cookie, which is used to distinguish
data during ACK callback.*/
 int len; /*Data length, which must be not greater than
MAX_REPORT_DATA_LEN.*/
 uint8_t* buf; /*First address of the data buffer.*/
 atiny_ack_callback callback; /*ACK callback, whose value is
data_send_status_e.*/
 } data_report_t;

4.1.3 Appendix 1 LWM2M

4.1.3.1 Definition

LWM2M is a lightweight, standard, and general-purpose IoT device management protocol
developed by the Open Mobile Alliance (OMA). It can be used to quickly deploy IoT services
in client or server mode.

In addition, LWM2M provides a set of standards for the management and application of IoT
devices. It supports small and portable security communications APIs and efficient data
models to implement M2M device management and service support.

4.1.3.2 Features

LWM2M supports the following features:

l Simple objects based on resource models

l Resource operations including creation, retrieval, update, deletion, and attribute
configuration

– Resource observation or notification

l Data formats including TLV, JSON, plain text, and opaque

l Transport layer protocols including UDP and SMS

l DTLS

l NAT or firewall solution — queue mode

l Multiple LWM2M Servers

l Basic M2M functions including LWM2M Server, Access Control, Devices, Connectivity
Monitoring, Firmware, Location, and Connectivity Statistics

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 257

4.1.3.3 System Architecture
The following figure shows the system architecture of LWM2M.

Figure 4-7 System architecture of LWM2M

4.1.3.4 Object Defined by LWM2M

Object Concept
An object is a collection of resources that are logically used for specific purposes. For
example, firmware upgrade. The object includes all resources used for firmware upgrade,
such as firmware packages, firmware URLs, upgrade execution, and upgrade results.

Before using the functions of an object, instantiate the object. An object can have multiple
instances, which are numbered from 0 in ascending order.

LWM2M has defined fixed IDs for the standard objects defined by the OMA. For example,
the ID of the firmware upgrade object is 5. The object includes eight types of resources,
which are numbered from 0 to 7. The ID of the firmware package name is 6. Therefore, URI
5/0/6 represents the firmware package name of instance 0 of the firmware upgrade object.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 258

Object Format
Name Object ID Instance Mandatory Object URN

Object
Name

16-bit
Unsigned
Integer

Multiple/Single Mandatory/Optional urn:oma:LwM2M:
{oma,ext,x}:{Object
ID}

Standard Object Defined by OMA
The OMA LWM2M specifications define the following seven standard objects.

Object Object ID description

LwM2M
Security

0 Includes the URI and payload security mode of an
LWM2M bootstrap server and information about partial
algorithms or keys and short server IDs.

LwM2M Server 1 Includes the short ID of a server, registration life cycle,
minimum or maximum period of observation, and
binding models.

Access Control 2 Includes the access control permission of each object.

Device 3 Includes the device manufacturer, model, serial number,
power, and memory.

Connectivity
Monitoring

4 Includes the network standard, link quality, and IP
address.

Firmware 5 Includes the firmware package and its URI, status, and
upgrade results.

Location 6 Includes the latitude, longitude, altitude, and time
stamp.

Connectivity
Statistics

7 Includes the data volume sent and received during data
collection and package size.

Device-cloud interconnect components match OceanConnect capabilities and support the
following LWM2M APPDATA with the object ID of 19.

Object Object
ID

Description

LwM2M APPDATA 19 Includes application service data on LWM2M
servers, such as water meter data.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 259

NOTE

For details about other common objects defined by the OMA, see http://
www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html.

4.1.3.5 Resource Defined by LWM2M

Resource Model
LWM2M defines a resource model. In this resource model, all information can be abstracted
and accessed as resources. An object includes resources. An LWM2M Client can have a large
amount of resources. Like an object, a resource can have multiple instances.

The following figure shows the relationship among the LWM2M Client, objects, and
resources.

Figure 4-8 Relationship among the LWM2M Client, objects, and resources

Resource Format

ID 0

Name Resource Name

Operation R (Read), W (Write), E (Execute)

Instance Multiple/Single

Mandatory Mandatory/Optional

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 260

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html

Type String,
Integer,
Float,
Boolean,
Opaque,
Time,
Objlnk none

Range or
Enumeration

If any

Unit If any

Description Description

4.1.3.6 API Defined by LWM2M

Overview
The LWM2M Enabler consists of two components: LWM2M Server and LWM2M Client.
LWM2M designs the following four types of APIs for the interaction between the two
components:

l API for device discovery and registration
l Bootstrap API
l API for device management and service enablement
l Information reporting API

API Model
The following figure shows an API model defined by LWM2M.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 261

Figure 4-9 API model defined by LWM2M

Message Interaction Process
The following figure shows the message interaction process defined by LWM2M.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 262

Figure 4-10 Message interaction process defined by LWM2M

API for Device Management and Service Enablement
Each type of LWM2M APIs represents a type of functions. The API for device management
and service implementation is one of the four types of APIs defined by LWM2M.

The functions of the four types of APIs are implemented by the following two operations:

l Upstream operation: LWM2M Client –> LWM2M Server
l Downstream operation: LWM2M Server –> LWM2M Client

LWM2M Server accesses object instances and resources of the LWM2M Client through the
API for device management and service enablement. This API implements seven operations
including create, read, write, delete, execute, write attributes, and discover.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 263

Figure 4-11 Operations implemented by the API for device management and service
enablement

API Operation Direction

Device
management
and service
enablement

Create, read, write, delete, execute, write
attributes, and discover

Downstream

The following figure shows the interaction process implemented by the API for device
management and service enablement.

Figure 4-12 Interaction process implemented by the API for device management and service
enablement

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 264

Figure 4-13 Creating and deleting an object

4.1.3.7 Firmware Upgrade

The firmware upgrade object makes it possible for users to manage the firmware upgrade. The
firmware upgrade objects include installing the firmware package, updating the firmware, and
other actions. After the firmware is successfully upgraded, the corresponding device must be
restarted to make the new firmware take effect.

Before the device is restarted, values related to the upgrade results must be saved.

After the device is restarted, if the Packet resource contains a valid but uninstalled firmware
package, the State resource must be in the downloaded state. Otherwise, it must be in the idle
state.

Object Definition
Name Object ID Instance Mandatory Object URN

Firmware Update 5 Single Optional rn:oma:LwM2M:oma:5

Resource Definition
I
D

Name Operatio
n

Instanc
e

Mandato
ry

Typ
e

Range or
Enumerat
ion

Description

0 Package W Single Mandator
y

Opa
que

Firmware
package.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 265

I
D

Name Operatio
n

Instanc
e

Mandato
ry

Typ
e

Range or
Enumerat
ion

Description

1 Package
URI

W Single Mandator
y

Strin
g

0-255
bytes

URI for
downloading the
firmware
package.

2 Update E Single Mandator
y

none no
argument

Updating the
firmware.
The resource is
executable only
when the State
resource is in the
downloaded
state.

3 State R Single Mandator
y

Integ
er

0-3 Firmware
upgrade status.
The value is set
by the LWM2M
Client. 0: Four
statuses of the
firmware are as
follows: Idle,
Downloading,
Downloaded,
and Updating. If
the Resource
Update
command is
executed, the
status changes
from
Downloaded to
Updating.
If the upgrade is
successful, the
status changes to
Idle. If the
upgrade fails, the
status changes to
Downloaded.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 266

I
D

Name Operatio
n

Instanc
e

Mandato
ry

Typ
e

Range or
Enumerat
ion

Description

4 Update
Support
ed
Objects

RW Single Optional Bool
ean

The default
value is false.
If the value is set
to true, the
LWM2M Client
must notify the
LWM2M Server
of the Object
parameter value
change by
sending the
upgrade message
or registration
message after
the firmware is
successfully
upgraded.
If the upgrade
fails, the Object
parameter value
change is
reported by
sending the
upgrade message
in the next
phase.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 267

I
D

Name Operatio
n

Instanc
e

Mandato
ry

Typ
e

Range or
Enumerat
ion

Description

5 Update
Result

R Single Mandator
y

Integ
er

0-8 The results of
downloading or
upgrading the
firmware are as
follows:0: Initial
value. When
upgrade or
downloading
starts, the
resource value
must be set to 0.
1: The firmware
is successfully
upgraded; 2: The
space for storing
the new
firmware
package is
insufficient; 3:
The memory is
insufficient in
the downloading
process; 4: The
connection
breaks in the
downloading
process; 5:
Failed to check
the integrity of
the newly
downloaded
package; 6:
Unsupported
package types;
7: Invalid URI;
8: The firmware
upgrade fails,
and this resource
can be reported
by executing the
Observe
command.

6 PkgNa
me

R Single Optional Strin
g

0-255
bytes

Name of the
firmware
package.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 268

I
D

Name Operatio
n

Instanc
e

Mandato
ry

Typ
e

Range or
Enumerat
ion

Description

7 PkgVers
ion

R Single Optional Strin
g

0-255
bytes

Version of the
firmware
package.

Status Mechanism
The following figure shows the firmware upgrade status mechanism.

Figure 4-14 Firmware upgrade status mechanism

Flowchart
The following figure shows the firmware upgrade flowchart.

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 269

Figure 4-15 Firmware upgrade flowchart

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 270

5 SDK Usage Guide on the Application Side

Huawei IoT Platform Java SDK Usage Guide

5.1 Huawei IoT Platform Java SDK Usage Guide

5.1.1 Before You Start
l This document describes how to use the Java SDK to connect to the IoT platform, such

as certificate configuration and callback.

l The northbound Java SDK Demo is used as an example. Each class (except the tool
class) contains a main method, which can be run independently to demonstrate how to
call SDK APIs.

5.1.2 Requirements for the Development Environment
Requirements for the development environment

Develop
ment
Platform

Development Environment Mapping
Requirem
ents

Recommended
OS

IoT 1. J2EE for Java Developers
2. Maven plug-in: m2e-Maven integration
for Eclipse (includes incubating
components)

JDK 1.8 or
later

Windows 7

The SDK packages are pure Java JAR packages. They do not have any special limitations as
long as the JDK version is 1.8 or later.

5.1.3 Downloading Related Development Resources
Obtain the northbound Java SDK Demo and northbound Java SDK from Resources.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 271

https://support-intl.huaweicloud.com/en-us/devg-IoT/iot_02_1004.html

l The Java SDK is stored in the lib directory. Its JAR package dependencies are stored in
\testSDK\api-client-test_lib. You can also download the JAR packages from the maven
repository.

l The JAR package dependencies for the Java SDK Demo are stored in the components
folder. You can also download the JAR packages from the maven repository.

NOTE

The lib directory in the Java SDK Demo contains the SDK library.

5.1.4 Importing the Java SDK Demo
Step 1 Decompress the downloaded package OceanConJavaDemo.zip to a local directory.

Step 2 Start Eclipse, choose File > Import > Maven > Existing Maven Projects, and click Next.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 272

Step 3 Click Browse. Select the path to which the Java SDK Demo package is decompressed. Then,
click Finish.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 273

----End

5.1.5 Initializing and Configuring Certificates
Create a NorthApiClient instance. Specify ClientInfo (including the IoT platform IP
address, port number, application ID, and secret) to initialize the certificate.

l In this example, the IoT platform IP address, port number, application ID, and secret are
read from the configuration file ./src/main/resources/application.properties. Therefore,
when the values change, you only need to modify the configuration file.

l The certificate mentioned in this section is provided by the IoT platform for use when
calling related APIs. Generally, this certificate is different from the one used for API
callback.

Using a Test Certificate

If the test certificate is used:

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 274

NorthApiClient northApiClient = new NorthApiClient();

PropertyUtil.init("./src/main/resources/application.properties");

ClientInfo clientInfo = new ClientInfo();
clientInfo.setPlatformIp(PropertyUtil.getProperty("platformIp"));
clientInfo.setPlatformPort(PropertyUtil.getProperty("platformPort"));
clientInfo.setAppId(PropertyUtil.getProperty("appId"));
clientInfo.setSecret(PropertyUtil.getProperty("secret"));

northApiClient.setClientInfo(clientInfo);
northApiClient.initSSLConfig();//The default certificate is a test certificate.
The host name is not verified.

Using a Specified Certificate

If the test certificate is not used, you can manually specify a certificate (for example, a
commercial certificate).

NorthApiClient northApiClient = new NorthApiClient();

PropertyUtil.init("./src/main/resources/application.properties");

ClientInfo clientInfo = new ClientInfo();
clientInfo.setPlatformIp(PropertyUtil.getProperty("platformIp"));
clientInfo.setPlatformPort(PropertyUtil.getProperty("platformPort"));
clientInfo.setAppId(PropertyUtil.getProperty("appId"));
clientInfo.setSecret(getAesPropertyValue("secret"));

SSLConfig sslConfig= new SSLConfig();
sslConfig.setTrustCAPath(PropertyUtil.getProperty("newCaFile"));
slConfig.setTrustCAPwd(getAesPropertyValue("newCaPassword"));
slConfig.setSelfCertPath(PropertyUtil.getProperty("newClientCertFile"));
slConfig.setSelfCertPwd(getAesPropertyValue("newClientCertPassword"));

northApiClient.setClientInfo(clientInfo);
northApiClient.initSSLConfig(sslconfig); //Use the specified certificate. Strict
host name verification is used by default.

If strict host name verification is not used when a specified certificate is used, you can define
the host name verification method before calling northApiClient.initSSLConfig(sslconfig).
northApiClient.setHostnameVerifier(new HostnameVerifier() {
 public boolean verify(String arg0, SSLSession arg1) {
 //Customized host name verification

 return true;
 }
});

The method for host name verification should follow security-first principles. The value true
should not be returned directly.

5.1.6 Calling Service APIs
You can call other service APIs only after the NorthApiClient instance is configured by
following the instructions provided in Initializing and Configuring Certificates. The
following APIs are used as an example to describe how to call service APIs:

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 275

Authentication
//After the NorthApiClient instance is obtained, use the NorthApiClient to obtain
the authentication instance.
Authentication authentication = new Authentication(northApiClient);

//Call the service API provided by the authentication instance, for example,
getAuthToken.
AuthOutDTO authOutDTO = authentication.getAuthToken();

//Obtain the required parameters from the returned authOutDTO, for example,
accessToken.
String accessToken = authOutDTO.getAccessToken();

Subscription
//After the NorthApiClient instance is obtained, use the NorthApiClient to obtain
the subscription instance.
SubscriptionManagement subscriptionManagement = new
SubscriptionManagement(northApiClient);

//Set the first input parameter SubDeviceDataInDTO in the subDeviceData API.
SubDeviceDataInDTO sddInDTO = new SubDeviceDataInDTO();
sddInDTO.setNotifyType("deviceDataChanged");
//Modify the callback IP address and port number based on site requirements.
ddInDTO.setCallbackUrl("https://XXX.XXX.XXX.XXX:8099/v1.0.0/messageReceiver");
try {
 //Call the service API provided by the subscription class instance
subscriptionManagement, for example, subDeviceData.
 SubscriptionDTO subDTO = subscriptionManagement.subDeviceData(sddInDTO, null,
accessToken);
 System.out.println(subDTO.toString());
} catch (NorthApiException e) {
 System.out.println(e.toString());
}

Device Registration
//After the NorthApiClient instance is obtained, use the NorthApiClient to obtain
the device management instance.
DeviceManagement deviceManagement = new DeviceManagement(northApiClient);

//Set the first input parameter RegDirectDeviceInDTO2 in the regDirectDevice API.
RegDirectDeviceInDTO2 rddInDTO = new RegDirectDeviceInDTO2();
String nodeid = "86370303XXXXXX"; //this is a test imei
String verifyCode = nodeid;
rddInDTO.setNodeId(nodeid);
rddInDTO.setVerifyCode(verifyCode);
rddInDTO.setTimeout(timeout);

//Call the service API provided by the device management instance
deviceManagement, for example, regDirectDevice.
RegDirectDeviceOutDTO rddod = deviceManagement.regDirectDevice(rddInDTO, null,
accessToken);

//Obtain the required parameters from the returned rddod structure, for example,
deviceId.
String deviceId = rddod.getDeviceId();

NOTE

For details about mandatory parameters, see Northbound Java SDK API Reference. If a parameter is not
required, it can be left empty or set to null.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 276

5.1.7 Implementing Callback APIs and Making, Exporting, and
Uploading a Callback Certificate

Implementing Callback APIs
Create a class inheriting PushMessageReceiver. If a specific type of message needs to be
received, overwrite the corresponding method. For details, see PushMessageReceiverTest in
the Java SDK Demo.
@Override
public void handleDeviceAdded(NotifyDeviceAddedDTO body) {
 System.out.println("deviceAdded ==> " + body);
 //TODO deal with deviceAdded notification
}

NOTE

l A message pushed by the IoT platform must be processed according to the service. However,
complex calculations, I/O operations, and operations that will take a long time are not
recommended. You can write data into the database, and access or refresh the corresponding page
before obtaining data from the database.

l The callback path has been set in the SDK. Therefore, pay attention to the callback URL during
subscription. For details, see APIs in the "Message Push" section in the Java SDK API Reference
Document.

l The callback IP address is the same as that of the server. It must be a public IP address.

l The callback port of the Java SDK Demo is configured in the src\main\resource
\application.properties directory.
#specify the port of the web application
server.port=8099

Making a Callback Certificate
A self-signed certificate is used as an example. A commercial certificate must be applied from
the CA.

Step 1 Open the Windows CLI, and enter where java to switch to the bin directory of the JDK.
where java
Cd /d {bin directory of the JDK}

Step 2 Run the following command to generate the tomcat.keystore file:
keytool -genkey -v -alias tomcat -keyalg RSA -keystore tomcat.keystore -validity
36500

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 277

l If the tomcat.keystore file exists in the bin directory of the JDK, move the file to another
path.

l Enter the IP address or domain name of the application server under What is your first
and last name?

l The password of <tomcat> must be the same as that of the keystore (press Enter in the
last step). Remember the password of the keystore, as it will be used in subsequent
configurations.

Step 3 Place the root certificate ca.pem provided by the IoT platform in the bin directory of the JDK
and run the following command to add it to the trust certificate chain of the tomcat.keystore
file:
keytool -import -v -file ca.pem -alias iotplatform_ca -keystore tomcat.keystore

Enter the keystore password. Check the imported certificate content and enter y.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 278

NOTE

l The test root certificate ca.pem of the IoT platform can be found in the cert directory of the Java
SDK package.

l After the root certificate ca.pem provided by the IoT platform is added to the trust certificate chain
of the tomcat.keystore file, the sub-certificate issued by ca.pem can obtain the trust of the
application server.

Step 4 Place the tomcat.keystore file in the directory of the Java SDK Demo, for example, src\main
\resources. Open the src\main\resource\application.properties file and add the following
configuration, where server.ssl.key-store indicates the path where the tomcat.keystore file is
stored and server.ssl.key-store-password indicates the password of the keystore:
#one-way authentication (server-auth)
server.ssl.key-store=./src/main/resources/tomcat.keystore
server.ssl.key-store-password=741852963.

Step 5 Right-click PushMessageReceiverTest and choose Run As > Java Application to run the
PushMessageReceiverTest class in the Java SDK Demo. The command output is as follows:

NOTE

Data is transferred to the corresponding callback function when it is pushed to the application server.

----End

Exporting a Callback Certificate

Step 1 Use a browser to open the callback URL https://server:8099/v1.0.0/messageReceiver and
view the certificate. Google Chrome is used as an example.

The IP address of the server is the same as that of the local host. 8099 is the port configured in
the application.properties file.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 279

Step 2 In the Certificate dialog box, click the Details tab. Click Copy to File.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 280

Step 3 Click Next. In the Export File Format dialog box displayed, select Base-64 encoded X.509
(.CER), and click Next.

Step 4 Specify the path for saving the certificate.

1. In the File to Export dialog box, click Browse. Select a path, enter the file name, and
click Save to return to the Certificate Export Wizard dialog box. Then, click Next.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 281

2. Click Finish to export the certificate.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 282

If the application server is deployed on the cloud, multiple certificates may exist. You are
advised to export the certificates one by one after the deployment is complete.

Step 5 If multi-level certificates exist, export them one by one.

1. In the Certificate dialog box, select a certificate path and click View Certificate.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 283

2. Click the Details tab and repeat the preceding steps to export every selected certificate.

Step 6 Use the text editor to combine all the exported certificates sequentially into a PEM file. This
file must be uploaded to the corresponding application on the IoT platform.

----End

l The configuration in the Demo is one-way authentication. After the certificate is exported,
change it to two-way authentication. Open the following configuration file (delete the
comment and change the tomcat.keystore directory and password). The root certificate of
the platform has been added to the tomcat.keystore trust certificate chain. Therefore, you
do not need to modify the configuration file. Restart the server.
#two-way authentication (add client-auth)
server.ssl.trust-store=./src/main/resources/tomcat.keystore
server.ssl.trust-store-password=741852963.
server.ssl.client-auth=need

l One-way authentication is less secure than two-way authentication. Therefore, two-way
authentication is recommended.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 284

Uploading the Callback Certificate

Step 1 Log in to the Developer Center and access a project.

Step 2 Choose Applications > Interconnection, and click Certificate Management.

Step 3 Click Add to upload the certificate.

----End

5.1.8 Service API Calling Process and Precautions
The methods for calling other APIs are similar to those for calling service APIs. For details,
see Calling Service APIs.

l The following figure shows the flow for calling a service API.

l The following figure shows the profile file used in the Java SDK Demo. There is only
one Brightness service, which contains a brightness attribute and a PUT command.
When calling a device command or device service API, change the service,
attribute, or command name to the corresponding name if the following profile
content is not used.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 285

l To create a profile, perform the following steps:
Log in to the Developer Center, choose Product > Product Development > Add >
Customization, and click Customization to open the Set Product Information page.
Specify Product Name, Model, Manufacture ID, Industry, Device Type, and
Protocol Type, and click Create. Click +Add Service to add attributes and commands
based on device functions, and click Save.

NOTE

You are advised to call the API to register the device after the profile file is defined.

l The values of DeviceType, ManufacturerId, ManufacturerName, and Model must be
the same as those defined in the profile file.

l The accessToken can be managed by the SDK or third-party applications. For details,
choose Secure Application Access > Periodically Refreshing a Token in the
Northbound Java SDK API Reference.

5.1.9 Testing the SDK
The SDK packages provide JAR packages that can be run independently to test the related
northbound APIs provided by the IoT platform. JAR packages that can run independently are
stored in the testSDK directory.

Figure 5-1 JAR packages that can be run independently

Step 1 Modify the config.properties file and double-click runMe.bat to perform the test.

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 286

Figure 5-2 Modifying config.properties

Step 2 If a commercial certificate is used, place it in the testSDK directory (the certificate name
cannot be ca.jks or outgoing.CertwithKey.pkcs12) and configure the certificate name and
password in the config.properties file. If the test certificate is used, you do not need to
modify the certificate data in the config.properties file.

Step 3 The test result is displayed at the beginning. [y] indicates that the test is successful. [x]
indicates an error. Check the error message or description in that line.

Step 4 The JDK is required to run JAR packages. Ensure that the JDK has been installed and the
system environment variables have been set.

The command output is as follows:

----End

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 287

	Contents
	1 Product Development
	1.1 Obtaining Development Resources
	1.2 Creating a Project and Product
	1.3 Developing a Product Model
	1.3.1 Development Guide
	1.3.2 Offline Development
	1.3.2.1 Profile Writing Guide
	1.3.2.2 Profile Providing Method
	1.3.2.3 Profile Field Description

	1.3.3 Reference
	1.3.3.1 Product Model Sample
	1.3.3.2 Fields in the Profile Sample

	1.4 Developing a Codec
	1.4.1 Development Guide
	1.4.2 Offline Development
	1.4.2.1 Preparing the Development Environment
	1.4.2.2 Importing the DEMO Project of the Codec
	1.4.2.3 Developing a Codec
	1.4.2.4 Packaging the Codec
	1.4.2.5 Inspecting the Quality of the Codec
	1.4.2.6 Signing the Codec Package with an Offline Signature

	1.4.3 Codec Development Examples
	1.4.3.1 Codec for Data Reporting and Command Delivery
	1.4.3.2 Codec for Multiple Data Reporting Messages
	1.4.3.3 Codec for Strings and Variable-Length Strings
	1.4.3.4 Codec for Arrays and Variable-Length Arrays
	1.4.3.5 Codec for Containing Command Execution Results

	1.4.4 Reference
	1.4.4.1 Message Processing Flow
	1.4.4.2 decode API Description
	1.4.4.3 Description of encode API
	1.4.4.4 getManufacturerId Interface Description
	1.4.4.5 getModel Interface Description
	1.4.4.6 Precautions on Interface Implementation
	1.4.4.7 Input/Output Format of the Codec Plug-In
	1.4.4.8 Implementation Sample Interpretation
	1.4.4.9 Appendix: Encryption Algorithms Supported by the JDK

	1.5 Developing an Application
	1.5.1 Application Connection to the IoT Platform
	1.5.2 Data Subscription
	1.5.3 Device Registration
	1.5.4 Device Access to the IoT Platform
	1.5.5 Data Reporting
	1.5.6 Command Delivery
	1.5.7 Development of Other APIs
	1.5.8 Reference
	1.5.8.1 Preparing the Java Development Environment
	1.5.8.1.1 Installing JDK 1.8
	1.5.8.1.2 Configuring Java Environment Variables (Windows OS)
	1.5.8.1.3 Installing Eclipse
	1.5.8.1.4 Creating a Project
	1.5.8.1.5 Importing Code Example

	1.5.8.2 Using Postman to Test IoT Platform APIs
	1.5.8.3 CA Certificate
	1.5.8.4 Performing Single-Step Debugging

	1.6 Developing a Device
	1.6.1 LWM2M/CoAP Device Integration
	1.6.1.1 Device Integration
	1.6.1.2 Device Testing

	1.7 Self-Service Testing
	1.7.1 Self-Service Testing Guide
	1.7.2 Device Registration and Access Test
	1.7.3 Data Reporting Test
	1.7.4 Radio Parameter Reporting Test
	1.7.5 Command Delivery Test
	1.7.6 Command Response Test
	1.7.7 Firmware Upgrade Test
	1.7.8 Software Upgrade Test
	1.7.9 Application Subscription Event Test
	1.7.10 Application Data Push Test

	1.8 Product Release

	2 Device Interconnection
	2.1 Creating an Application
	2.2 Importing a Product Model
	2.3 Registering a Device
	2.4 Connecting a Device

	3 Application Interconnection
	3.1 Connecting an NA
	3.2 Subscribing to Data
	3.3 Commissioning an NA

	4 SDK Usage Guide on the Device Side
	4.1 LiteOS SDK Integration Development Guide
	4.1.1 Overview
	4.1.1.1 Background Introduction
	4.1.1.2 System Plan
	4.1.1.3 Integration Strategies
	4.1.1.3.1 Integrability
	4.1.1.3.2 Portability
	4.1.1.3.3 Integration Restrictions

	4.1.1.4 Security
	4.1.1.5 Upgrade

	4.1.2 Process for Connecting Devices to OceanConnect on the Device Side
	4.1.2.1 Preparations
	4.1.2.2 Entrypoint Function for LiteOS SDK Device-Cloud Interconnect Components
	4.1.2.3 Initializing LiteOS SDK Device-Cloud Interconnect Components
	4.1.2.4 Creating a Data Reporting Task
	4.1.2.5 Command Processing Function for LiteOS SDK Device-Cloud Interconnect Components
	4.1.2.6 Main Function Body for LiteOS SDK Device-Cloud Interconnect Components
	4.1.2.7 Data Structure

	4.1.3 Appendix 1 LWM2M
	4.1.3.1 Definition
	4.1.3.2 Features
	4.1.3.3 System Architecture
	4.1.3.4 Object Defined by LWM2M
	4.1.3.5 Resource Defined by LWM2M
	4.1.3.6 API Defined by LWM2M
	4.1.3.7 Firmware Upgrade

	5 SDK Usage Guide on the Application Side
	5.1 Huawei IoT Platform Java SDK Usage Guide
	5.1.1 Before You Start
	5.1.2 Requirements for the Development Environment
	5.1.3 Downloading Related Development Resources
	5.1.4 Importing the Java SDK Demo
	5.1.5 Initializing and Configuring Certificates
	5.1.6 Calling Service APIs
	5.1.7 Implementing Callback APIs and Making, Exporting, and Uploading a Callback Certificate
	5.1.8 Service API Calling Process and Precautions
	5.1.9 Testing the SDK

