loT Device Management

Development Guide

Issue 02
Date 2019-08-28

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2019. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written
consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the
customer. All or part of the products, services and features described in this document may not be within the
purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information,
and recommendations in this document are provided "AS IS" without warranties, guarantees or
representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. i

IoT Device Management
Development Guide Contents

Contents

1 Product Development.........iininnineninininincniininsinnincssesesnisseiisisissessssssssses 1
1.1 Obtaining Development RESOUICES.c..cuiiiiiiiiiiriietirierte sttt ettt ettt ettt bbbt se ettt et ebeebeeaeeaea 1
1.2 Creating @ Project and PTOQUCE...........couoiiiiieie et ettt ettt ae ettt sb e b e b e e et e s e e et eneeneene e 4
1.3 Developing @ ProdUCt MOGEL........c.oouiiiiiieeieii ettt ettt ettt et et esseesaesseesaesseensesseensessaensesssensenssenseans 9
1.3.1 DeVEIOPMENE GUIAE.eeueiitieieiitieiietieie ettt ettt ettt e ettt e et e e et e en b e es e e et ese e bt eme e st eneeeaeemeesaeensesseenseeseenseeneenseensanseans 9
1.3.2 OffliNg DEVEIOPIMENL.ccuiiiiiiieiieiieitiet ettt ettt ettt et e b e et ebeesa e beesseseessaeseessesseessesssessesssessesssesseessesseessenseans 14
1.3.2.1 Profile WITHNG GUIAC.ccuieiiiieiieeiieie ettt ettt ettt ettt et et e e seesseeseesseenaesseensesseenseeseenseessenseeseenseensenseenes 14
1.3.2.2 Profile Providing MEthOd...........oo oottt sttt see et s e et be et eseebeeneenneens 17
1.3.2.3 Profile Field DeSCIIPLION.ecviitieiiieieieeieesteeteete et ettt ettt e ett e s e eteesaesseessesseesseesaesseessesseessassaesseessensensseseeseesseeseas 18
L TR BB S 3 (<) 1T TSRS 29
1.3.3.1 Product MOAE] SAMPIE.....ccueeiuiieiieiiieitiecieeiee sttt ettt et e et et e st e esseeesae e seeasseenseesssaeseesnseenssesnseessseanseenseeans 29
1.3.3.2 Fields in the Profile SAmPIe.........c.ccveiiieiiiieieie ettt ettt et te e e saeessessaesseesaenbesssenseensenseensens 38
L B T e 1o] oY o T (< BTSRRI 49
1.4.1 DeVElOPMENt GUIAC.eciieiieeiieiieeiieie ettt ettt ettt et e e te et e e te e beeseesseesaesseessesaeessesssessesssesseessesseessessenssesseessenseens 49
1.4.2 OFfling DEVEIOPIMICHIL.ccuieiiiiieiieiietiet ettt ettt et e et e e st ebeesaebeese et e esee st enseeseensesseensessaensesssenseessensennsenseans 64
1.4.2.1 Preparing the Development ENVITONMENT.cc.eiiiitiiieitieieetieie et ettt st e e st eseeneeeneesaeeneas 65
1.4.2.2 Importing the DEMO Project 0f the COAECC.......cuiiiiriiiiiiiiiiiiieeiesiteiesete ettt sre e s esae e essessaenseeseens 67
1.4.2.3 DEVEIOPING @ COUECC. ...c..eruiriirtiitiriiitieteteet ettt ettt ettt ettt b e bt bttt b e b st ettt et et eneebeebeeaes 69
1.4.2.4 Packa@ing the COAEC.uiiuiiiiiieieitt ettt ettt ettt e et st e bt e e bt eat e bt e st e ebeent e e bt et e eneeneeeseenaeeneas 69
1.4.2.5 Inspecting the Quality 0f the COAEC.cuiviiiiiiieieiieie ettt st besseesbeesaenseesaenes 72
1.4.2.6 Signing the Codec Package with an Offline Signature.............coooveiiiieiirienieeeee e 76
1.4.3 Codec Development EXAMPIES........cccuiiiiiiiiiiieeie ittt ettt ettt st e steeebeestaeesaeensaesnseenseesnseenseesnseesseenseenses 78
1.4.3.1 Codec for Data Reporting and Command DeliVEry...........c.cceiirriiiieriieieieiese et eee e 78
1.4.3.2 Codec for Multiple Data Reporting IMeESSAZES.ccueeueeruieierieeierieeiestieieeteeteeseeteesee et eseesaeeseesseeneesseensesseensesneans 86
1.4.3.3 Codec for Strings and Variable-Length Strings..........cccocvieiiiiiiieiiiiiiiciese et re s 99
1.4.3.4 Codec for Arrays and Variable-Length ATTaYs..........cccciiieiiiiieiieieiieiest ettt ens 117
1.4.3.5 Codec for Containing Command EXecution ReSUILS..........ccoiriiiiiiiiiiiiiiieeee e 135
Li44 RETETEIICE. ...ttt bttt ettt h bbbt e bt b e e bbb e b et e et et e st e st esteneebeebe e bt et e ebenbenbennen 150
1.4.4.1 MeSSage ProCeSSING FLOW........ooiiiiiiiieiieie ettt et ettt e st et esseentesseenseeseenteeneenseeneenes 151
1.4.4.2 deCOAE APT DESCIIPLION.uiiiietietieiteiteetteeteeteeteete et este et ebeessesbeessesseesseeseesseeseesseeseesseessesseessesssessesseessesseessenseanns 152
1.4.4.3 Description 0f @N1C0AE APL......c.iiiiiiiieie ettt ettt a et r e saesae et e eseenbeeneenseeneenes 156
1.4.4.4 getManufacturerld Interface DEeSCIIPLION.c.iiiiiuiiiiiiieiet ettt ettt ettt ne e eneenes 159
1.4.4.5 getModel INterface DESCIIPLION.icviiuieiiiieii et ete ettt ettt e ste et e steesaeeseesseeseesaesseessesssessessseseessesenssenseans 160

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. ii

IoT Device Management

Development Guide Contents
1.4.4.6 Precautions on Interface IMplementation............c.ccuiiieriiiieniieiesieeiecie ettt ete e sseeaeseaesessaesseesaesessnenseens 160
1.4.4.7 Input/Output Format of the Codec PIUZ-IN.......c.coiiiiiiiie e et 163
1.4.4.8 Implementation Sample INTErPretation..........cc.eiveeierierieeieieeierie ettt st e et et e et eeaesseessesseessesseenseeseeneeens 165
1.4.4.9 Appendix: Encryption Algorithms Supported by the JDKccooiiiiiiiiiiieiieeeee e 173
1.5 Developing an APPIICALION.cc.eiuieiieiieiieteete ettt et ettt et e e st e e te et e e teeseenteesee st eseesseeneeeseeneesneensesneensesneensenneens 174
1.5.1 Application Connection to the I0T PLlatform............ccoocveiiieieiiiiieicce e 175
1.5.2 Data SUDSCIIPTION. ¢...eeueetieiieitiete ittt ettt ettt ettt et e e e bt e st et e ese et e em e et e em e ebeembees e e bt esee bt emeesaeenseabeenseeneanteeneenes 176
1.5.3 DEVICE REZISIIATION.eeiieiiiiieieciieie sttt ettt et ettt et et esseestesseenaesseenseeseenseesaenseessenseeneesseensesseensesseensesseensessaensens 178
1.5.4 Device Access t0 the T0T PIAtfOTM.......co.iiiiiieieiee ettt ettt ne e eae e 179
LT R B 1 010 1TSS 180
1.5.6 COMMANA DEIIVETY.....ccoiiiiieiiiiieiieiieieet ettt ettt ettt et e s te e be st e beesaesbeesbebeessenseessaeseesseessessesssessesssessesnsesseensensens 182
1.5.7 Development Of Other APIS.........ooiiiiieieee et et ettt ettt et e e sa et eeseeteeseenteeneenaeeneenneas 183
LL5.8 RETEIEIICE. ...ttt bbbt b e bt bbb sttt et e st e bt e bt ebteue e bt e bt et e b e s bestenen 183
1.5.8.1 Preparing the Java Development ENVIFONMENT.c..coueiiiiiiiiiii ittt 183
1.5.8. 1.1 INStAlliNG JDK T.8......eeiieieieiieietietieiteitet ettt ettt et sttt et s e st e st ese et s eseese et e eseeseeseeseesessessessensassassensensessaseesens 183
1.5.8.1.2 Configuring Java Environment Variables (WIindows OS).........cccveviirieriiiieniiiieie ettt 183
1.5.8.1.3 INStALlING ECLIPSE. .. eeuteiueiiieiiiiieie ettt ettt et et ettt e a e et st e bt es e bt e st e eseemeeebeenseeseenseeneenneane 187
1.5.8.1.4 Creating @ PrOJECL.......ocviiiieieeiieieetieie ettt ettt ettt ettt et e e teesseeseessesseessesssesesssesseesseseessenseensenseensens 187
1.5.8.1.5 Importing Code EXAMPIE........coiiiiiiiiiieieee ettt ettt et e e sbe et e e bt e e saeeneenneas 189
1.5.8.2 Using Postman to Test I0T PIatform APIS.......c.coiiiririiiiiiiiiieicieens sttt 191
1.5.8.3 CA COTtIICALE. ...eueueeeeeiieieet ettt ettt ettt ettt ettt e et et e st ee e st es e eb e eb e e bt et e e b e ae b en b et et eneeneeneeneeneeneeee 195
1.5.8.4 Performing Single-Step DeDUZZING.coviiiiiiiiieie ettt ettt ettt ettt e st e e s st entesseeneeeneenseene 204
1.6 DEVEIOPING @ DEVICE....c.uieuiiiiiiiieiieiiettete ettt ettt st e et e st e e te e b e et e esseeseesseeseesseessesseassesseessesseessensaensenseensenseenes 207
1.6.1 LWM2M/COAP DeViICe INTEGIAtION.ceiuiiiiiiieiiiitieiieitt ettt ettt ettt ettt e ee st este bt emaesbeenbesbeenbeeneenaeene 207
1.6.1.1 DEVICE INEEEIALION. ... eeuieiiiieeiieiteeiieete ettt ettt et e et et e et e e e st e st e seesseeseesseesseeseenseeseenseeseenseeseenseeneenseensesseensensennsens 207
1.6.1.2 DIEVICE TESHINE....c.vieueeiieiiiitieiieeteete et ettt e ste et eete et e e st esbesaeesseessesbeessesbeessesseesseeseesseeseessesssesseessesseessesseesseseessenseenes 212
A 1<) S (T LT 1 SRS 217
1.7.1 Self-Service TeStING GUIAE........ccviiieiieieiieieiteeierte et e sttt e et ete st etesteebeesseseessesseessesseasseeseessesseessesseensesssensesssensens 217
1.7.2 Device Registration and ACCESS TEST......c.eruiiiiiieiieieitt ettt ettt ettt se e e e saeeteeseeaesneebeennenteens 218
1.7.3 Data REPOTTING TESt....ueetieiiiiieiieiieieeit ettt ete st et e st e st e s st et e e et esbeesaesseeseasseeseesseessesseansesseensesseensesseensesseensenssensenssenes 219
1.7.4 Radio Parameter REPOTTING TESt........cciiiiiieiiitieieitieieete ettt ettt ettt e ste e e e sreesaesaeessestsesseessesbeessesseessesseessesseensenes 220
1.7.5 Command DEIVETY TES......cc.eeuiriiiriirtinierert ettt sttt ettt ettt ettt ettt e be bt be et sa ettt ea s eteneen 221
1.7.6 ComMMANA RESPONSE TESL......eeiiiiieiiiiieiieiieit ettt ettt ettt ettt te b e e e e b e essesseessesseeseesseaseesseessesseensesseessesseensenseans 222
1.7.7 FAIrmMware UPZLAAE TEST.....c.eiueetieiieitieieeti ettt ettt ettt ettt ettt et e et ent e et e enteese e et eseesteemeeaseemeesseensenseennenneans 223
1.7.8 SOFtWAre UPGLAAE TEST.....eeviieierieiietieierti ettt ete et e e st e e st e e e et e beesae s e esse s e essesseenseessensesseensesssensesssenseensenseans 224
1.7.9 Application SubSCIiption EVENE TeSt......cccuiiiiieiieiieiieeiie sttt ettt ettt e e et esseesaeesnbeessaeenseensneesseennes 226
1.7.10 Application Data PUSH TESt........ccuiiiiiiiiiiitiecrtesee ettt ettt ettt et ebe ettt st sbe e 227
1.8 PrOQUCE REIBASE.........euetietiit ettt ettt b ettt ettt e st e st bt bt ekt e bt sbe et e besae b e e s e e eneenes 227
2 Device INtercONNECHiON.c.civeeruiereiiirsinrensinsuicecsissscssessesssissssssessaessssssesssessssssessssssssssesssessass 229
2.1 Creating an APPIICALION.cc.iiiiiiiiiet ettt ettt e bt et et e e st e bt et e e te e bt es e e bt sme e beeeee bt enee bt eneeebeenteeneenes 229
2.2 Importing @ ProdUCt MOAEL..........oouieiiiieieiieeee ettt ettt ettt et et e e st e e st ensesseanseeneenseensesseensennens 231
2.3 REISTEIING @ DIEVICE. .. ueiuviitiiiieiiiitieteittete st e i e et et e et e te et e te e st e eseessesseessesssesseessesseessasseessaseesseaseesseeseessessaeseessesseessens 232

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. il

IoT Device Management

Development Guide Contents
2.4 CONNECLING @ DIEVICE. .. uieutieiiiiieiieitietestetesteste et esteettesteeste st esseeseessesseensesssessesssesseessenseessansaesseessessesseensesssensesssessenssens 233
3 Application INtercONNECtiON.......ccivivierisniiriniiintistiiscniieisscssnssessetssessessssessessessssessessssees 235
3.1 CONNECHNG AN INAooiiiiiiiieie ettt ettt et e bt et e st et e eseesseeseessesssensesseesseesseseesseaseessenseenseassenseeneensesssenseessesseensensens 235
3.2 SUDSCIIDING 10 DIALA. ... ceueiiieie ettt ettt ettt ettt e bt e e bt e s et e en s et e eaeees e e e e eseeseemeeeseeneeaneenseeneenseeneenseeneenes 236
3.3 CommiSSIONING AN INAL....oiiiiiiiieieet ettt bt et h et et e bt eae et e e st et e e st e sbeemteabeentesbeenbeebeentesbeenteane 237
4 SDK Usage Guide on the Device Side.........ieneeninennnreiniieinnensnnesinsensneessesesseseanes 239
4.1 LiteOS SDK Integration Development GUIAE...........ccueruirieieieieieieiee ettt eaeeae e e 239
AT T OVEIVIEW. ..uiiitettetieie ettt ettt sttt ettt et et e a et eheeh e eb e e bt e 4okt He st et et et eatea b es e eheeb e eb e ebe e bt eb e e bt sttt et et et en b et eneentebeebeenea 239
4.1.1.1 Background INtrOQUCTION.ouieieiiierie ettt ettt ettt et e st et e et eseeeseen e e seenseeseenseeseenseeneenseeneenneeneas 239
O O B 1S 1 T o DO SO U SRR 240
4.1.1.3 INtCGIAtION STEALCZICS. .eeuvirtierieierteeierteetesteestesteestesseesseestesseessessesseessesssesseessesseasseseessessaensenssensenseensesssensesssessesseas 242
O 0 7 1 o 1 TSRS 242
A.1.1.3.2 POTTADILIEY ...ttt h e bbbtttk bbbttt 242
4.1.1.3.3 Inte@ration RESIIICHIONS.ccvieiertieieitieieeteeteeeete et esteeeeestesaesseesaeseessesseessesseesseasaessesseensesssensesssesesssessennsensens 244
O R BT 1 | ST 244
O O BT 00T T [OOSR USROS 245
4.1.2 Process for Connecting Devices to OceanConnect on the Device Side................cccooviiiiiiiiiniiniiiee 245
O 0 B <) 12 15) SRS ST 246
4.1.2.2 Entrypoint Function for LiteOS SDK Device-Cloud Interconnect COmponents............cceeeveeruereenereenieeeennenne 248
4.1.2.3 Initializing LiteOS SDK Device-Cloud Interconnect COMPONENLS.........cc.evveruerverrerienienieieeienreeeesseeeeeseeeeenns 249
4.1.2.4 Creating a Data Reporting TaSK..........cooiiiiiiiieiieiesteee ettt et e e e e e saeeneeeneenneenean 251
4.1.2.5 Command Processing Function for LiteOS SDK Device-Cloud Interconnect Components.............c.cccceeerueneene 252
4.1.2.6 Main Function Body for LiteOS SDK Device-Cloud Interconnect Components...........c.eceeeeeeeerereneneneneenne 254
4.1.2.7 DA STIUCEULE. ...ccuvteeiteeuiee ittt sttt ettt et st et e sh bt et e e eh et e bt e ea et eabeeshteeabeesb et e bt e bt e e bt esseesabeesbbeeabeenbbeenbeenseeen 255
4.1.3 APPENAIX 1 LWIM2M...ooiiiiiiiiiieiieeeete ettt ettt et ettt et e st e e aeesebe e saeenbeesbeeanseenseesabaenseessseesnessseeseeenseenseens 257
A.T.30T DETINITION. ..ttt ettt sttt et a e et e h e bt eb e bt e bt e bt e bt eb et b e bt et e et et en s en e e st ebe bt bt et 257
4132 FRATUTES. ..ottt ettt ettt ettt e b e e et e bt e st e bt s et e e bt eat e e eb b e e st e e bt e e a bt e bt e e bt e eh b e e e bt e eb bt e bt e nhe e e beeehteeabeas 257
4.1.3.3 SYStEM ATCRITECIUIR.etieuiieeieit ettt ettt b et b et e b et s e s bt e at e s bt eseesbeembesbeentesbeenbeebeenbesneenes 258
4.1.3.4 Object Defined DY LWIM2M.......c.ocoiiiiiiiieieeieie ettt ettt ettt s ae e e bessaesbeesse st aesseeseensesssensessnesseensesseensessens 258
4.1.3.5 Resource Defined DY LWIM2M.......ociiiiiiiiiieieieeee sttt ettt ettt et e st e te et eeesseensesseeneeeneensesneenseens 260
4.1.3.6 API Defined by LWIM2Mottt ettt e 261
4.1.3.7 FIrMWAare UPGIAUE........cc.eeieriiiierieiieiteeiesteete st ete st e e eteesseeteessesseesesseesseessesseessesseessasaessenseensenssensesssensesssessenseas 265
5 SDK Usage Guide on the Application Side.........cceevuvirenrierriernnrirenriesnnesensesesniscsnesesnenes 271
5.1 Huawei [oT Platform Java SDK USagE GUIAC........c.ccveruiiieiieiieiieieeie ettt ettt sttt sseessesseesseeseenseseas 271
oI B B 2 155 o) (g (0 B PSSR 271
5.1.2 Requirements for the Development ENVITONMENL...........cc.coieriiiuieiiiieieeeetieeesre et eere et ere e sreeae e esaeseseseesaesreens 271
5.1.3 Downloading Related Development RESOUICES.c.oviiiiriiriiiieiecieie ettt sae e saeeseseaesseesaenens 271
5.1.4 Importing the Java SDK DEIMO......ccuiiiiiieiiiieieeti ettt ettt ettt et e st e eeeseesteeneesseensesseenseeseenseeneenes 272
5.1.5 Initializing and Configuring CertifiCates.........cueririiriiiiriiereeee ettt ettt ettt eate st e e nbeens 274
S5.1.6 Calling SEIVICE APIS....ccuiiiiiiieiiciietieee ettt ettt e et et e e sb e et e esseeseesseeseesseensesseessesseensesseensenssensenseenes 275
5.1.7 Implementing Callback APIs and Making, Exporting, and Uploading a Callback Certificate.........c..ccccocereruennene. 277

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. iv

IoT Device Management

Development Guide Contents
5.1.8 Service API Calling Process and PreCaUutiONS...........c.ecuiiieriirieriieieiieieie ettt eee e ae e sessaesessaenseesaensesssenes 285
S5.1.9 TeStING the SDKottt ettt ettt ettt e te s et e st e st e bt esee st emseeseeneeeneenseeneeseeneeaneeneesseensenseensenseens 286

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. v

IoT Device Management
Development Guide 1 Product Development

Product Development

Obtaining Development Resources
Creating a Project and Product
Developing a Product Model
Developing a Codec

Developing an Application
Developing a Device

Self-Service Testing

Product Release

1.1 Obtaining Development Resources

Application Development Resources

The IoT platform provides a wealth of RESTful APIs and SDKs to ease application
development. Application development is the process in which an application calls APIs of
the IoT platform to implement service scenarios such as secure access, device management,
data collection, and command delivery. Download the corresponding resource files as
required.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 1

IoT Device Management
Development Guide

1 Product Development

Resource Package

Description

Download Link

Application Development
Java API Demo

The IoT platform provides
the RESTful API for
application developers to
quickly experience open
API capabilities, service
functions, and service
processes.

For details, see Northbound
API Reference and
Application Development
Guide.

Application Development
Java API Demo

Application Development
Java SDK

The Java SDK provides Java
methods to call RESTful
APIs to communicate with
the IoT platform. The Java
SDK Demo provides the
code sample for calling the
SDK APIs.

For details, see Northbound
Java SDK API Reference
and Java SDK Usage
Guide.

® JAVA SDK
® JAVA SDK Demo

Device Development Resources

The IoT platform allows device access using MQTT or LWM2M/CoAP. Devices can connect
to the IoT platform by calling device APIs or integrating with SDKs.

Resource Package

Description

Download Link

LiteOS SDK

Devices can connect to the
IoT platform through the
integrated LiteOS SDK. The
LiteOS Demo provides the
code sample for calling the
SDK APIs. For details, see
LiteOS SDK Integration
Development Guide.

LiteOS SDK

Profile Templates

Profile templates of typical
scenarios are provided.
Developers can customize
their profile files based on
the templates.

For details, see Offline
Profile Definition.

Profile Example

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

https://support-intl.huaweicloud.com/en-us/api-IoT/iot_06_0002.html
https://support-intl.huaweicloud.com/en-us/api-IoT/iot_06_0002.html
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/LiteNAdemointl.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/LiteNAdemointl.zip
https://support-intl.huaweicloud.com/en-us/api-IoT/iot_06_2001.html
https://support-intl.huaweicloud.com/en-us/api-IoT/iot_06_2001.html
https://support-intl.huaweicloud.com/en-us/devg-IoT/iot_02_6002.html
https://support-intl.huaweicloud.com/en-us/devg-IoT/iot_02_6002.html
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/OceanConnectJava.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/OceanConJavaDemo.zip
https://github.com/LiteOS/LiteOS
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/ProfileTemplate.zip

IoT Device Management

Development Guide

1 Product Development

Resource Package

Description

Download Link

Codec Example

Demo codec projects are
provided for developers to
perform secondary
development.

For details, see Offline
Codec Development.

Codec Example

Codec Test Tool

This tool is used to check
whether the codec
developed offline is normal.

Codec Test Tool

NB-IoT Device Simulator

delivery.

This tool is used to simulate
the access of NB-IoT
devices to the IoT platform
using CoAP for data
reporting and command

NB-IoT Device Simulator

Certificates

In some scenarios where a device and NA connect to the IoT platform, the corresponding
certificate must be loaded to the device and NA. Click here to obtain the certificate files.

MnoTe

This certificate package is used only for interconnection with the IoT platform deployed on HUAWEI

CLOUD.

For details about the directory structure of the certificate package and the usage of each
certificate, see Table 1-1.

Table 1-1 Certificate information

Certifica | Level-1 | Level- | Level- | Description
te Director | 2 3
Package |y Direct | Direct
Name ory ory
certificate | Northbo | code Java The certificates in this directory are used
und API when the NA calls IoT platform APIs using
PHP HTTPS. Select the certificate in the
Python conesponding directory based on the
programming language of the NA, and load
the certificate to the NA.
postma | - The certificate in this directory is used when
n Postman tests the [oT platform APIs using
HTTPS.
Agent Androi | - The certificates in this directory are used
Lite d when the device or gateway connects to the

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/devicecodec.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/Encodingintl.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/DeviceSimulator.zip
https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/certificateintl.zip

IoT Device Management

Development Guide 1 Product Development
Certifica | Level-1 | Level- | Level- | Description
te Director | 2 3
Package |y Direct | Direct
Name ory ory
C- - IoT platform through the integrated AgentLite
Linux SDK. Select the certificate in the
corresponding directory based on the
Java } programming language of the device or
gateway, and load the certificate to the device
or gateway.

1.2 Creating a Project and Product

Concept
® Project: an independent space where you can develop IoT products and applications.
® Product: a collection of devices with the same capabilities or features. In addition to
physical devices, a product includes product information, product models (profile files),
codecs, and test reports generated during IoT capability building.
Procedure

Step1 Access the home page of [oT Device Management, and click Developer Center.
(Onote

Currently, the Developer Center is available only in Hong Kong. You need to complete product
development on the Developer Center in the Hong Kong region and then select your region to connect
devices and applications.

Step 2 (Optional) If you are using the Developer Center for the first time, click Manufacturer in the
upper right corner, complete the manufacturer information, and click Save.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 4

IoT Device Management
Development Guide 1 Product Development

Home > Manufacturer &

Basic Information

Logo™ @ Full Name * ® Manufacturer ID @
O)CO This parameter is used as the manufacturer D in th
Short Name * & Website
& Update
This parameter is mandatory
Contact Information
Contact Person * Phone Number Customer Service Email

This parameter is mandatory

Hetline Address

Introduction

Enter the company introduction.

Step 3 On the home page of the Developer Center, click Create Project. In the dialog box displayed,
enter a project name, select the industry to which the project belongs, and click OK.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 5

IoT Device Management

Development Guide 1 Product Development

Create Project %

*Project Name

loT_Device Dev

*Industry

Utilities (NB-oT) -

Description

Step 4 When a dialog box indicating that the project is created is displayed, click Download Secret

to download the application ID and secret to your local PC, and click View Project to open
the project.

MnoTe

The application ID and secret are required when a network application (NA) accesses the [oT platform.

Keep them securely. If you forget the secret, reset it by clicking Reset Secret under Applications >
Interconnection > Application Security.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 6

IoT Device Management
Development Guide 1 Product Development

Information
The application has been created in the project.

The allocated application ID and secret are as
follows. Save the information securely as itis
displayed just for once.

If you forget the application secret, choose
Applications = Interconnectation = Reset Secret
to reset it.

Application 1D
aV SwsyJpQ5IR89J46iRWgHOgCZ0a

Secret
JiytMgiufmcHaqxdZG3vysRdSeMa

Step 5 On the home page of the project, choose Products > Product Development, and click
Create Product.

Step 6 You can create a product based on a preset template or customize a product. The following
uses customization as an example.

Step 7 Click the Customization tab, and click Customization.

Select your product creation mode.

System Templates Rapid Integration Created Products Profile L i

You can customize a product based on your needs.

Step 8 In the Set Product Information dialog box, enter the information such as Product Name,
Model, and Industry, and click Create.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

IoT Device Management

Development Guide 1 Product Development
Set Product Information @ P
* Product Name : WaterMeter01
* Model : NBloTDevicel1

* Manufacturer 1D : b6 167f4b4e2441a29319be6f276089d0
* [ndustry : NB_INDUSTRY v
* Device Type : WaterMeter e
* Protocol Type G LWIMZIM -

Mote: For devices that use LWM2M, the reported binary data needs to
be converted into data in JSON format.

* Data Type : Binary -

(i

Image :

®
o

Step 9 On the Product Development page, click the product to enter its development space.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 8

IoT Device Management
Development Guide 1 Product Development

OceanConnect Current Project: loT_Device_Dev \/

09 peveloping 09 seif-service Testing

+Add O Refresh

Al Products(1)

& Waterheterd1 NBloTDevice01 WaterMeter Binary 2019006118 135659

B e

——End

1.3 Developing a Product Model

1.3.1 Development Guide

Overview

A product model (or profile file) describes the capabilities and features of a device. You can
construct an abstract model of a device type by defining a profile file on the IoT platform,
allowing it to understand the services, properties, and commands supported by the device.
® Device Capability

For a water meter, the device capabilities include the type, manufacturer, model,
protocol, and services to be provided.

For example, for a water meter, the manufacturer is HZYB, the manufacturer ID is
TestUtf8Manuld, the model is NBloTDevice, and the protocol is CoAP.

The water meter provides the following services: WaterMeterBasic, WaterMeterAlarm,
Battery, DeliverySchedule, and Connectivity. The Battery service is optional and the
other services are mandatory.

® Service

Service defines service capabilities of a device. Each service contains properties,
commands, and parameters.

For example, the preceding five services of the water meter contain corresponding
properties or commands.

Product Service O&M
information ccapabilities capabilities

Hardware Software Configuration

Manufacturer ~ Manufacturer Product u .
D name Froduetbpe noge Protocoltype upgrade upgrade update

Property Command Property

Command Response
fields fields

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 9

IoT Device Management
Development Guide 1 Product Development

Procedure

If you have used a default template when creating a project and product, the corresponding
profile file template is selected automatically. You can directly use or modify the template. If
a customized product is created, you must define your profile file.

Step1 On the Product Development page, click a product to enter its development space.

OceanConnect Current Project: oT_Device_Dev \/

09 Dpeveloping 09 seif-service Testing 03 Authenticating

+Add O Refresh

All Products(1)

'& WaterMeter01 NBIoTDeice01 WaterMeter Binary 2019006118 13:56.59

Product Development > WaterMeter01 . @Development Guide
WaterMeter01 st NB_INDUSTRY anufacturer Name: 2 e Binay Protocol Type: LWM2M
odel®: NBloTDevice01 Device Type®: WaterMeter D167i4b4624412293196c6127608910
@ Profile Definition | »
O&M Service
Software Upgrade Fimware Upgrade
Software Upgrade Protosol Fimware Upgrade Profoco :
Pcp L2

Service List @ {Add Service | &Export Profile almport Profile

Step 3 Inthe Add Service area, define the service name, properties, and commands. A service can
contain properties and/or commands. Configure the properties and commands based on your
requirements.

Add Service

Basic Information

* Senvice Name Deseription

Property List

Command List

Cancel

1. Enter Service Name using the camelcase naming method, such as waterMeter or battery.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 10

IoT Device Management
Development Guide

1 Product Development

Basic Information

Click Add under Property List, set the parameters in the dialog box displayed, and click
OK. For Name, the first letter of the first word must be lowercase, and the first letters of
subsequent words must be capitalized, for example, batteryLevel or internal Temperature.
For other parameters, set them based on your requirements.

The rules for configuring Data Type are as follows:

int: Select this value if the reported data is an integer or Boolean values.
decimal: Select this value if the reported data is a decimal.

string: Select this value if the reported data is a string, enumerated values, or
Boolean values. If enumerated or Boolean values are reported, use commas (,) to
separate the values.

DateTime: Select this value if the reported data is a date.
jsonObject: Select this value if the reported data is in JSON structure.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 11

IoT Device Management

Development Guide 1 Product Development

Add Property X

* Name

batterylLevel

* Data Type

int
* Minimum * Maximum

0 100

Step Unit

* Access Mode
R Read property value
W wwrite property value

E Report property value change

Mandatory

Yes

3. Click Add under Command List. In the dialog box displayed, set Command Name and
click OK. It is recommended that the value of Command Name consist of only
uppercase letters and underscores (_), for example, DISCOVERY or
CHANGE_STATUS.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 12

IoT Device Management

Development Guide 1 Product Development

Add X

* Command Name

‘ CHANGE_STATUS

4. Click Add under Command Fields. In the dialog box displayed, set the parameters and
click OK. For Name of the command field, the first letter of the first word must be
lowercase, and the first letters of the subsequent words must be capitalized, for example,
statusValue. For other parameters, set them based on your requirements.

Add Command Field »

* Name

statusValue

* Data Type

int

* Minimum * Maximum

0 1

Step Unit

Mandatory

Yes

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 13

IoT Device Management
Development Guide 1 Product Development

5. Click Add under Command Response Fields. In the dialog box displayed, set the
parameters and click OK. For Name of the command response field, the first letter of the
first word must be lowercase, and the first letters of the subsequent words must be
capitalized, for example, commandResult. For other parameters, set them based on your
requirements.

The command response field is optional. It must be defined only if the device is required
to return a command execution result.

Add Command Response Field X

* Name

commandResult

int -

* Minimum * Maximum

0 1

Step Urit

Mandatory

B es

—End

1.3.2 Offline Development

1.3.2.1 Profile Writing Guide
A profile is in JSON format.
Identification attributes: include device type, manufacturer, model, and protocol type.

Service list: provides detailed services.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 14

IoT Device Management
Development Guide 1 Product Development

Naming Rules
The profile file must comply with the following naming rules:

® (Capitalize device types, service types, and service IDs. Example: WaterMeter and
Battery.

® For the attribute name, uncapitalize the first character in the first world and capitalize the
first characters in subsequent words. Example: batteryLevel and internalTemperature.

® For the order, capitalize all characters, with words separated by underscores. For
example: DISCOVERY and CHANGE_COLOR.

® A device capability profile file (json file) must be named devicetype-capability.json.
® A service capability profile file (.json file) must be named servicetype-capability.json.

® The manufacturer ID, manufacturer name, and device model uniquely identify a device.
Therefore, their combinations must be unique in different profile files and only English
is supported.

® You must ensure that names are universal and concise and service capability descriptions
clearly indicate corresponding functions. For example, you can name a multi-sensor
device MultiSensor and name a service that displays the battery level Battery.

MnoTe

In some profile file samples, files named devicetype-display.json or servicetype-display.json may
exist. These files are used in some SmartHome scenarios. If they are not involved in the solution
communication between you and the [oT platform service provider, these files may not be included in
your profile file.

If you need to create a profile file for the SmartHome scenarios, contact the IoT platform support
personnel.

Device Profile File

To connect a new device to the [oT platform, you need to define a profile file for the device.
The IoT platform provides some profile file templates. If the types and functions of devices
newly connected to the [oT platform are included in these templates, directly use the
templates. If the types and functions are not included in the device profile file templates,
define your profile file.

For example, if a water meter is connected to the IoT platform, you can directly select the
corresponding profile file template on the IoT platform and modify the device model
identifier attribute and device service list.

MnoTe

The profile file template provided by the IoT platform is updated continuously. The following table
provides some examples of device types and service types, which are for reference only.

Device identification attributes

Item Profile Key Value

Device type deviceType WaterMeter
Manufacturer 1D manufacturerld TestUtf8Manuld
Manufacturer name manufacturerName HZYB

Device model model NBIoTDevic

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 15

IoT Device Management

Development Guide

1 Product Development

Item Profile Key Value
Protocol type protocol Type CoAP

Service list
Service Service ID Service Type Value
Basic water meter WaterMeterBasic Water Mandatory
function
Alarm service WaterMeterAlarm Battery Mandatory
Battery service Battery Battery Optional
Data reporting rule DeliverySchedule DeliverySchedule Mandatory
Connectivity Connectivity Connectivity Mandatory

For details about a complete sample, see Appendix I: Water Meter Profile Sample. The
service definition can be modified as required. For example, the value ranges or enumerated
values of attributes can be modified.

MnoTe

Developers can consult IoT platform support personnel to determine whether the IoT platform supports
their own device types. If the device types or service types are supported, developers can obtain the
profile file references from the IoT platform support personnel.

A device model is composed of a product type ID and a product ID. For example, if the values of
ProducTypeld and Productld are 0x0168 and 0x0188, respectively, the device model is 0168-0188.

Profile Packaging

After the profile file is completed, package it in the format shown in Figure 1-1.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

16

IoT Device Management
Development Guide

1 Product Development

Figure 1-1 Profile file hierarchy

WaterMeter_TestUtfEManuld_MNBloTDevic_zip

:

WaterMeterBasic

E—————————Fﬁﬂrﬂﬂgmnﬁhnn

l

Battery

The following requirements must be met for profile packaging:

The profile file hierarchy must be the same as that shown in Figure 1-1 and cannot be
added or deleted. For example, the second level can contain only the profile and service
folders, and each service must contain the profile folder.

The names in orange in Figure 1-1 cannot be changed.
The profile file must be compressed in ZIP format.

The profile file must be named in the format of deviceType manufacturerld model. The
values of deviceType, manufacturerld, and model must be the same as those in the
devicetype-capability.json file. For example, the following provides the main fields of
the devicetype-capability.json file.

"devices": [
{

"manufacturerId": "TestUtf8ManuIld",
"manufacturerName": "HZYB",
"model": "NBIoTDevice",
"protocolType": "CoAP",
"deviceType": "WaterMeter",
"serviceTypeCapabilities": ***x*

WaterMeterBasic, WaterMeterAlarm, and Battery in Figure 1-1 are services defined in
the devicetype-capability.json file.

The profile file is in JSON format. After the file is edited, you can search for some
format verification websites on the Internet to check the validity of the JSON file.

1.3.2.2 Profile Providing Method

You must send the prepared the profile file to the Huawei loT administrator for review. After
the approval, the Huawei IoT administrator imports the file to the Huawei [oT lab.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 17

IoT Device Management
Development Guide

1 Product Development

1.3.2.3 Profile Field Description

Device Capabilities

The devicetype-capability.json file records basic information about a device.

{
"devices": [
{
"manufacturerId": "TestUtf8ManuIld",
"manufacturerName": "HZYB",
"model": "NBIoTDevice",
"protocolType": "CoAP",
"deviceType": "WaterMeter",
"omCapability": {

"upgradeCapability" : {
"supportUpgrade":true,
"upgradeProtocolType" :"PCP"

}I

"fwUpgradeCapability" : {
"supportUpgrade":true,
"upgradeProtocolType" : "LWM2M"

}I

"configCapability" : {
"supportConfig":true,
"configMethod":"file",
"defaultConfigFile": ({

"waterMeterInfo" : {
"waterMeterPirTime" : "300"

}I
"serviceTypeCapabilities": [
{

"serviceId": "WaterMeterBasic",
"serviceType": "WaterMeterBasic",
"option": "Mandatory"

}I

{
"serviceId": "WaterMeterAlarm",
"serviceType": "WaterMeterAlarm",
"option": "Mandatory"

}I

{
"serviceId": "Battery",
"serviceType": "Battery",
"option": "Optional"

}I

{
"serviceId": "DeliverySchedule",
"serviceType": "DeliverySchedule",
"option": "Mandatory"

}I

{
"serviceId": "Connectivity",
"serviceType": "Connectivity",
"option": "Mandatory"

}

The fields are described as follows:

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

18

IoT Device Management
Development Guide

1 Product Development

Fiel

Sub-field

Mandatory
or Optional

Description

devi
ces

Mandatory

Contains complete capability information
about a device. (The root node cannot be
modified.)

manufacturer
1d

Mandatory

Identifies the manufacturer of the device.

manufacturer
Name

Mandatory

Specifies the manufacturer name of the
device. (The value must be in English.)

model

Mandatory

Specifies the device model. As a type of
device may have multiple models, it is
recommended that the value contain
letters or digits to ensure scalability.

protocolType

Mandatory

Specifies the protocol used by the device
to connect to the IoT platform. For
example, the value is CoAP for NB-IoT
devices.

deviceType

Mandatory

Specifies the device type.

omCapabilit
y

Optional

Defines the software upgrade, firmware
upgrade, and configuration update
capabilities of the device. For details, see
the description of the omCapability
structure in the following.

If software or firmware upgrades of the
device are not involved, this field can be
deleted.

serviceType
Capabilities

Mandatory

Describes service capabilities of the
device.

servic
eld

Mandatory

Identifies a service. If a service type
includes only one service, the value of
serviceld is the same as that of
serviceType. If the service type includes
multiple services, the services are
numbered correspondingly, such as
SwitchO1, Switch02, and Switch03.

servic
eType

Mandatory

Specifies the service type. The value of
this field must be the same as that of
serviceType in the servicetype-
capability.json file.

option

Mandatory

Specifies the service type. The value can
be Master, Mandatory, or Optional.

This field is not a functional field but a
descriptive one.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 19

IoT Device Management
Development Guide 1 Product Development

Description of the omCapability structure

Field Sub-field Mand | Description

atory
or
Optio
nal

upgradeCap Optio | Specifies software upgrade capabilities of a device.
ability nal

supportUpgr | Optio | true: The device supports software upgrades.

ade nal false: The device does not support software

upgrades.

upgradeProto | Optio | Specifies the protocol type used by the device for
colType nal upgrades. It is different from protocolType of the
device. For example, the software upgrade
protocol of CoAP devices is PCP.

fwUpgrade Optio | Specifies firmware upgrade capabilities of the
Capability nal device.

supportUpgr | Optio | true: The device supports firmware upgrades.

ade nal false: The device does not support firmware

upgrades.

upgradeProto | Optio | Specifies the protocol type used by the device for
colType nal upgrades. It is different from protocolType of the
device. Currently, the IoT platform supports only
firmware upgrade of LWM2M devices.

configCapa Optio | Specifies configuration update capabilities of the
bility nal device.

supportConfi | Optio | true: The device supports configuration updates.

g nal false: The device does not support configuration

updates.

configMetho | Optio | file: Configuration updates are delivered in the
d nal form of files.

defaultConfi | Optio | Specifies the default device configuration

gFile nal information (in JSON format). The specific
configuration information is defined by the
manufacturers. The [oT platform only stores the
information for delivery and does not parse the
meaning of the configuration fields.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 20

IoT Device Management
Development Guide

1 Product Development

Service Capabilities

The servicetype-capability.json file records service information about a device.

{

"services": [

{

"serviceType":
"description":
"commands": [
{
"commandName" :
"paras": [

{

"paraName":
"dataType":
"required":

"WaterMeterBasic",
"WaterMeterBasic",

"SET PRESSURE READ PERIOD",

"value",
"int",
true,

"min": 1,

"step":

"maxLength":

"unit":

"enumList":

] 4
"responses": [

{

"responseName":

"paras":

{

"properties": [

{
"propertyName": '
"dataType": "int'
"required":
"min": O,
"max": O,
"step": 1,
"maxLength": O,
"method": "R",
"unit": null,
"enumList": null

"propertyName": "
"dataType":
"required":
"min": O,
"max": O,
"step": 1,
"maxLength": O,
"method": "M",
"unit": "L",
"enumList":

"stri
false

null

true,

max": 24,

ll

10,
"hour",
null

[

"paraName":
"dataType":
"required": true,
"min": -1000000,
max": 1000000,
"step": 1,
"maxLength":
"unit": null,
"enumList": null

"result",
"int",

10,

'registerFlow",

"
’

currentReading",
ng",

’

"SET PRESSURE READ PERIOD RSP",

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

21

IoT Device Management
Development Guide

1 Product Development

"propertyName": "timeOfReading",
"dataType": "string",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": O,

"method": "M",

"unit": null,

"enumList": null
"propertyName": "internalTemperature",
"dataType": "int",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": O,

"method": "M",

TrmiETs @.01°CT,
"enumList": null
"propertyName": "dailyFlow",
"dataType": "int",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "M",

"unit": "L",

"enumList": null
"propertyName": "dailyReverseFlow",
"dataType": "int",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "M",

"yunit": "L",

"enumList": null
"propertyName": "peakFlowRate",

"dataType"
"required": false,
"min": O,

"max": O,

"step": 1,
"maxLength": 0,
"method": "M",
"unit": "L/H",
"enumList": null
"propertyName": "peakFlowRateTime",
"dataType": "string",
"required": false,
"min": O,

"max": O,

"step": 1,

"maxLength": O,

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 22

IoT Device Management
Development Guide 1 Product Development

"method": "M",
"unit": null,
"enumList": null

"propertyName": "intervalFlow",
"dataType": "array",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "M",

TpmidEPg TLO,

"enumList": null

"propertyName": "pressure",
"dataType": "array",
"required": false,

"min": O,

"max": 0,

"step": 1,

"maxLength": O,

"method": "O",

"unit": "kPa",

"enumList": null

"propertyName": "temperature",
"dataType": "array",
"required": false,

"min": O,

"max": 0,

"step": 1,

"maxLength": O,

"method": "M",

"unit": "0.01°C",

"enumList": null

"propertyName": "vibration",
"dataType": "array",
"required": false,

"min": O,

"max": O,
"step": 1,
"maxLength": 0,
"method": "M",
"unit": "0.01g",

"enumList": null

}

The fields are described as follows:

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 23

IoT Device Management

Development Guide

1 Product Development

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal
servi Mand | Contains complete information about a
ces atory | service. (The root node cannot be
modified.)
ser Mand | Specifies the service type. The value of
vic atory | this field must be the same as that of
eTy serviceType in the devicetype-
pe capability.json file.
des Mand | Provides description about the service.
crp atory | Thjs field is not a functional field but a
tion descriptive one. It can be set to null.
co Mand | Specifies a parameter that a device can
mm atory | run. If the service has no commands, set
and the value to null.
S
comman Mand | Specifies the name of a command. The
dName atory | command name and parameters together
form a complete command.
paras Mand | Specifies parameters contained in a
atory | command.
paraNa Mand | Specifies the name of a parameter in the
me atory | command.
dataTy Mand | Specifies the data type of a command
pe atory | parameter.

Value: string, int, string list, decimal,
DateTime, or jsonObject

Complex types of reported data are as
follows:

® string list: ["str1","str2","str3"]

® DateTime: The value is in the
format of yyyyMMddTHHmmssZ,
for example, 20151212T121212Z.

® jsonObject: The value is in
customized JSON structure, which is
not parsed by the loT platform and is
transparently transmitted only.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 24

IoT Device Management
Development Guide

1 Product Development

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal
require Mand | Specifies whether the command is
d atory | mandatory. The value can be true or
false. The default value is false
(optional).
This field is not a functional field but a
descriptive one.
min Mand | Specifies the minimum value.
atory | This parameter is valid only when
dataType is set to int or decimal.
max Mand | Specifies the maximum value.
atory | Thjs parameter is valid only when
dataType is set to int or decimal.
step Mand | Specifies the step.
atory | This field is not used. Set it to 0.
maxLe Mand | Specifies the character string length.
ngth atory | Thjs field is valid only when dataType
is string, string list, or DateTime.
unit Mand | Specifies the unit.
atory | The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa
enumLi Mand | Specifies a list of enumerated values.
st atory | For example, the status of a switch can
be set as follows:
"enumList": ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.
response Mand | Specifies responses to command
s atory | execution.
respons Mand | You can add RSP to the end of
eName atory | commandName in the command
corresponding to responses.
Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 25

IoT Device Management
Development Guide

1 Product Development

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal
paras Mand | Specifies parameters contained in a
atory response.

pa | Mand | Specifies the name of a parameter in the

ra | atory | command.
Na
me
dat | Mand | Specifies the data type.
aT |atory | vyjye: string, int, string list, decimal,
yp DateTime, or jsonObject
e
Complex types of reported data are as
follows:
® string list: ["strl","str2","str3"]
® DateTime: The value is in the
format of yyyyMMddTHHmmssZ,
for example, 20151212T121212Z.

® jsonObject: The value is in
customized JSON structure, which is
not parsed by the IoT platform and is
transparently transmitted only.

re | Mand | Specifies whether the command

qu | atory | response is mandatory. The value can be

ire true or false. The default value is false

d (optional).

This field is not a functional field but a
descriptive one.

mi | Mand | Specifies the minimum value.

n | atory | This field is valid only when dataType
is int or decimal. The value of a field of
the int or decimal type must be greater
than or equal to the value of min.

ma | Mand | Specifies the maximum value.

X | atory | This field is valid only when dataType
is int or decimal. The value of a field of
the int or decimal type must be less
than or equal to the value of max.

ste | Mand | Specifies the step.

P |atory | This field is not used. Set it to 0.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 26

IoT Device Management

Development Guide 1 Product Development
Fiel | Sub-field Mand | Description
d atory
or
Optio
nal

ma | Mand | Specifies the character string length.

xL | atory | This field is valid only when dataType
en is string, string list, or DateTime.

gt

h

un | Mand | Specifies the unit.
it | atory | The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %

Pressure unit: Pa or kPa

en | Mand | Specifies a list of enumerated values.

U |atory | For example, the status of a switch can
? be set as follows:
i
st "enumList": ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.
pro Mand | Describes reported data. Each sub-node
pert atory | indicates an attribute.
ies
property Mand | Specifies the attribute name.
Name atory
dataTyp Mand | Specifies the data type.
c atory | valye: string, int, string list, decimal,

DateTime, or jsonObject

Complex types of reported data are as
follows:

® string list: ["strl","str2","str3"]

® DateTime: The value is in the
format of yyyyMMddTHHmmssZ,
for example, 20151212T1212127.

® jsonObject: The value is in
customized JSON structure, which is
not parsed by the IoT platform and is
transparently transmitted only.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 27

IoT Device Management

Development Guide

1 Product Development

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal
required Mand | Specifies whether an attribute is
atory | mandatory. The value can be true or
false. The default value is false, which
indicates that the attribute is optional.
This field is not a functional field but a
descriptive one.
min Mand | Specifies the minimum value.
atory | This field is valid only when dataType
is int or decimal. The value of a field of
the int or decimal type must be greater
than or equal to the value of min.
max Mand | Specifies the maximum value.
atory | Thjs field is valid only when dataType
is int or decimal. The value of a field of
the int or decimal type must be less
than or equal to the value of max.
step Mand | Specifies the step.
atory | This field is not used. Set it to 0.
method Mand | Specifies the access mode.
atory | @ R: readable
® W: writable
® E: subscription
Value: R, RW, RE, RWE, or null
unit Mand | Specifies the unit.
atory | The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa
maxLen Mand | Specifies the character string length.
gth atory | This field is valid only when dataType
is string, string list, or DateTime.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

28

IoT Device Management

Development Guide

1 Product Development

Fiel

Sub-field

Mand
atory
or
Optio
nal

Description

enumlLis
t

Mand
atory

Specifies a list of enumerated values.

For example, batteryStatus can be set as
follows:
"enumList" : [0, 1,2, 3,4, 5, 6]

This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

1.3.3 Reference

1.3.3.1 Product Model Sample

Appendix I: Water Meter

A water meter profile sample contains six files, whose names and content are described as

follows:

Profile Sample

1. devicetype-capability.json

{

"devices": [

{

"manufacturerId":
"manufacturerName" :
"model":
"protocolType":
"deviceType":

"HZYB",
"NBIoTDevice",
"CoAP",
"WaterMeter",

"serviceTypeCapabilities":

{

"TestUtf8ManuId",

"serviceId": "WaterMeterBasic",
"serviceType": "WaterMeterBasic",
"option": "Mandatory"

by

{
"serviceId": "WaterMeterAlarm",
"serviceType": "WaterMeterAlarm",
"option": "Mandatory"

by

{
"serviceId": "Battery",
"serviceType": "Battery",
"option": "Optional"

by

{
"serviceId": "DeliverySchedule",
"serviceType": "DeliverySchedule",
"option": "Mandatory"

by

{
"serviceId": "Connectivity",
"serviceType": "Connectivity",
"option": "Mandatory"

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 29

IoT Device Management
Development Guide

1 Product Development

}

2. servicetype-capability.json (Battery)
{

"propertyName": "batterylLevel",

"services": [
{
"serviceType": "Battery",
"description": "Battery",
"commands": null,
"properties": [
{
"dataType": "int",
"required": true,
"min": O,
"max": 100,
"step": 1,
"maxLength": 0,
"method": "RE",
"unit": "s&",

"enumList": null

"propertyName": "batteryThreshold",

"dataType": "int",
"required": false,
"min": O,

"max": 100,
"step": 1,
"maxLength": 0,
"method": "RE",
"unit": "&",

"enumList": null

"propertyName": "batteryStatus",
"dataType": "int",
"required": false,

"min": O,

"max": 0,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": [
Ol

r

r

r

r

’

o U b W N

}

3. servicetype-capability.json (ConnectivityMonitoring)

{

"services": [
{
"serviceType": "Connectivity",
"description": "Connectivity",
"commands": null,

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

30

IoT Device Management
Development Guide

1 Product Development

}

"properties": [

{

"propertyName": "signalStrength",
"dataType": "int",

"required": true,

"min": -110,

max": -48,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": "dbm",

"enumList": null

"

"propertyName": "linkQuality",
"dataType": "int",

"required": false,

"min": -110,

max": -48,

"step": 1,

"maxLength": O,

"method": "RE",

"unit": "dbm",

"enumList": null

"

"propertyName": "cellId",
"dataType": "int",
"required": false,

"min": O,

"max": 268435455,

"step": 1,

"maxLength": O,

"method": "RE",

"unit": null,
"enumList": null

4. servicetype-capability.json (DeliverySchedule)

{

"services": [
{
"serviceType": "DeliverySchedule",
"description": "DeliverySchedule",
"commands": null,
"properties": [
{
"propertyName": "startTime",
"dataType": "int",
"required": true,
"min": O,
"max": O,
"step": 1,
"maxLength": O,
"method": "RW",
"unit": "SeC",

"enumList": null

"propertyName": "UTCOffset",
"dataType": "string",
"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": O,

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

31

IoT Device Management
Development Guide

1 Product Development

S.

}

"method":
"unit": null,

"RW",

"enumList": null

"propertyName":

"dataType":

"frequency",

"il’lt",

"required": true,

"min": O,
"max": O,
"step": 1,

"maxLength": O,
"RW",

"method":

"unit": "sec",

"enumList": null

"propertyName":
llintll’
false,

"dataType":
"required":
"min": O,
"max": O,
"step": 1,

"maxLength": 0,
"RW",

"method":
"unit": null,

"randomisedDeliveryWindow",

"enumList": null

"propertyName":
llintll’
false,

"dataType":
"required":
"min": O,
"max": O,
"step": 1,

"maxLength": 0,
"RW",

"method":
"unit": null,

"enumList": null

"propertyName":

"dataType":
"required":
"min": O,
"max": O,
"step": 1,

"maxLength": 0,
"RW",

"method":
"unit": null,

"enumList": null

"retries",

"retryPeriod",

llintll’
false,

servicetype-capability.json (WaterMeterAlarm)

{

"services": [

{

"serviceType":
"description":
"commands": null,
"properties": [

{

"propertyName":

"dataType":

"WaterMeterAlarm",
"WaterMeterAlarm",

"lowFlowAlarm",

"int" ,

"required": true,

"min": O,

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

32

IoT Device Management
Development Guide

1 Product Development

"

max": 0,
"step": 1,
"maxLength": 0,
"method": "RE",
"unit": null,
"enumList": null

"propertyName": "highFlowAlarm",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "tamperAlarm",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "lowBatteryAlarm",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "batteryRunOutAlarm",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "highInternalTemperature",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "reverseFlowAlarm",

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 33

IoT Device Management
Development Guide

1 Product Development

"dataType": "int",
"required": true,
"min": O,

"max": O,

"step": 1,
"maxLength": 0,
"method": "RE",

"unit": null,
"enumList": null

"propertyName": "highPressureAlarm",
"dataType": "int",

"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,
"enumList": null

"propertyName": "lowPressureAlarm",
"dataType": "int",

"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,
"enumList": null

"propertyName": "highTemperatureAlarm",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,
"enumList": null

"propertyName": "lowTemperatureAlarm",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,
"enumList": null

"propertyName": "innerErrorAlarm",

"dataType": "int",
"required": true,
"min": O,

"max": O,

"step": 1,
"maxLength": 0,
"method": "RE",

"unit": null,
"enumList": null

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 34

IoT Device Management
Development Guide

1 Product Development

"propertyName": "storageFault",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "waterTempratureSensorFault",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "innerTempratureSensorFault",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "pressureSensorFault",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "vibrationSensorFault",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "RE",

"unit": null,

"enumList": null

"propertyName": "strayCurrent",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 35

IoT Device Management
Development Guide 1 Product Development

"method": "RE",
"unit": null,
"enumList": null

}

6. servicetype-capability.json (WaterMeterBasic)
{

"services": [
{
"serviceType": "WaterMeterBasic",
"description": "WaterMeterBasic",
"commands": null,
"properties": [
{
"propertyName": "registerFlow",
"dataType": "int",
"required": true,
"min": O,
"max": O,
"step": 1,
"maxLength": O,
"method" . "R",

"unit": null,
"enumList": null

"propertyName": "currentReading",
"dataType": "string",

"required": false,

"min": O,

"max": 0,

"step": 1,

"maxLength": O,

"method" . "W",

"unit": "L",

"enumList": null

"propertyName": "timeOfReading",
"dataType": "string",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": O,

"method" . "W",

"unit": null,
"enumList": null

"propertyName": "internalTemperature",
"dataType": "int",

"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": O,

"method" . "W",

TemileTs 70 ,01°CT,

"enumList": null

"propertyName": "dailyFlow",
"dataType": "int",
"required": false,

"min": O,

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 36

IoT Device Management
Development Guide

1 Product Development

"max": O,
"step": 1,
"maxLength": O,
"method": "W",
llunitll: "L",

"enumList": null

"propertyName": "dailyReverseFlow",
"dataType": "int",

"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "W",

"unit": "L",

"enumList": null

"propertyName": "peakFlowRate",
"dataType": "int",

"required": false,

"min": O,

"max": 0,

"step": 1,

"maxLength": O,

"method": "W",

"unit": "L/H",

"enumList": null

"propertyName": "peakFlowRateTime",
"dataType": "string",

"required": false,

"min": O,

"max": 0,

"step": 1,

"maxLength": 0,

"method": "W",

"unit": null,
"enumList": null

"propertyName": "intervalFlow",
"dataType": "array",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "W",

"unit": "L",

"enumList": null

"propertyName": "pressure",
"dataType": "array",
"required": false,

"min": O,

"max": 0,

"step": 1,

"maxLength": O,

"method": "W",

"unit": "kPa",

"enumList": null

"propertyName": "temperature",

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 37

IoT Device Management
Development Guide

1 Product Development

"dataType": "array",
"required": false,
"min": O,

"max": O,

"step": 1,
"maxLength": 0,
"method": "W",
TumiE®s P0.01°CY,

"enumList": null

"propertyName": "vibration",
"dataType": "array",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "W",

"unit": "0.01g",

"enumList": null

1.3.3.2 Fields in the Profile Sample

Device Capabilities

The devicetype-capability.json file records basic information about a device.

{
"devices": [
{
"manufacturerId": "TestUtf8ManuId",
"manufacturerName": "HZYB",
"model": "NBIoTDevice",
"protocolType": "CoAP",
"deviceType": "WaterMeter",
"omCapability":{
"upgradeCapability" : {
"supportUpgrade":true,

"upgradeProtocolType" :"PCP"

}I
"fwUpgradeCapability" : {
"supportUpgrade":true,

"upgradeProtocolType" : "LWM2M"

}I
"configCapability" : {
"supportConfig":true,
"configMethod":"file",
"defaultConfigFile": {
"waterMeterInfo"

"waterMeterPirTime"

}I
"serviceTypeCapabilities": [

{

"serviceId": "WaterMeterBasic",
"serviceType": "WaterMeterBasic",
"option": "Mandatory"

}I

{
"serviceId": "WaterMeterAlarm",

"300"

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

38

IoT Device Management
Development Guide

1 Product Development

}

"serviceType":

"serviceId":
"serviceType":
: "Optional"

"serviceId":
"serviceType":

"serviceId":
"serviceType":

The fields are described as follows:

"Battery",
"Battery",

"WaterMeterAlarm",
: "Mandatory"

"DeliverySchedule",
"DeliverySchedule",
: "Mandatory"

"Connectivity",
"Connectivity",
: "Mandatory"

Fiel | Sub-field Mandatory | Description
d or Optional
devi Mandatory Complete capability information about a
ces device. (The root node cannot be
modified.)
manufacturer Mandatory Manufacturer ID of the device.
Id
manufacturer Mandatory Manufacturer name of the device. (The
Name value must be in English.)
model Mandatory Device model. As a type of device may
have multiple models, it is recommended
that the value contain letters or digits to
ensure scalability.
protocolType Mandatory Protocol used by the device to connect to
the 10T platform. For example, the value
is CoAP for NB-IoT devices.
deviceType Mandatory Type of the device.
omCapabilit Optional Software upgrade, firmware upgrade, and
y configuration update capabilities of the
device. For details, see the description of
the omCapability structure below.
If software or firmware upgrade is not
involved, this field can be deleted.
serviceType Mandatory Service capabilities of the device.
Capabilities

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

39

IoT Device Management

Development Guide

1 Product Development

Fiel

Sub-field

Mandatory
or Optional

Description

servic
eld

Mandatory

Service ID. If a service type includes only

one service, the value of serviceld is the
same as that of serviceType. If the service
type includes multiple services, the
services are numbered correspondingly,
such as Switch01, Switch02, and
Switch03.

servic
eType

Mandatory

Type of the service. The value of this field
must be the same as that of serviceType
in the servicetype-capability.json file.

option

Mandatory

Type of the service field. The value can be
Master, Mandatory, or Optional.

This field is not a functional field but a
descriptive one.

Description of the omCapability structure

Field Sub-field Mand | Description
atory
or
Optio
nal
upgradeCap Optio | Software upgrade capabilities of the device.
ability nal
supportUpgr | Optio | true: The device supports software upgrades.
ade nal false: The device does not support software
upgrades.
upgradeProto | Optio | Protocol type used by the device for software
colType nal upgrades. It is different from protocolType of the
device. For example, the software upgrade
protocol of CoAP devices is PCP.
fwUpgrade Optio | Firmware upgrade capabilities of the device.
Capability nal
supportUpgr | Optio | true: The device supports firmware upgrades.
ade nal false: The device does not support firmware
upgrades.
upgradeProto | Optio | Protocol type used by the device for firmware
colType nal upgrades. It is different from protocolType of the
device. Currently, the [oT platform supports only
firmware upgrades of LWM2M devices.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

40

IoT Device Management
Development Guide

1 Product Development

Field

Sub-field Mand | Description
atory
or
Optio
nal

configCapa
bility

Optio | Configuration update capabilities of the device.
nal

supportConfi | Optio | true: The device supports configuration updates.

g nal false: The device does not support configuration

updates.

configMetho | Optio | file: Configuration updates are delivered in the
d nal form of files.

defaultConfi | Optio | Default device configuration information (in JSON
gFile nal format). The specific configuration information is
defined by the manufacturer. The IoT platform
stores the information for delivery but does not
parse the configuration fields.

Service Capabilities

The servicetype-capability.json file records service information about a device.

{

"services": [

{

"serviceType": "WaterMeterBasic",
"description": "WaterMeterBasic",
"commands": [
{
"commandName": "SET PRESSURE READ PERIOD",
"paras": [
{
"paraName": "value",
"dataType": "int",
"required": true,
"min": 1,
"max": 24,
"step": 1,
"maxLength": 10,
"unit": "hour",
"enumList": null
}
1,
"responses": [
{
"responseName": "SET PRESSURE READ PERIOD RSP",
"paras": [
{
"paraName": "result",
"dataType": "int",
"required": true,
"min": -1000000,
"max": 1000000,
"step": 1,
"maxLength": 10,
"unit": null,
"enumList": null

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 41

IoT Device Management

Development Guide

1 Product Development

"properties": [

"propertyName": "registerFlow",
"dataType": "int",

"required": true,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "R",

"unit": null,
"enumList": null

"propertyName": "currentReading",
"dataType": "string",

"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "W",

TpmidEPg TLO,

"enumList": null

"propertyName": "timeOfReading",
"dataType": "string",
"required": false,

"min": O,

"max": O,

"step": 1,

"maxLength": 0,

"method": "W",

"unit": null,
"enumList": null

"propertyName": "internalTemperature",
"dataType": "int",

"required": false,

"min": O,

"max": 0,

"step": 1,

"maxLength": 0,

"method": "W",

"unit": "0.01°C",

"enumList": null

"propertyName": "dailyFlow",
"dataType": "int",
"required": false,

"min": O,

"max": O,
"step": 1,
"maxLength": 0,
"method": "W",
"unit": "L",

"enumList": null

"propertyName": "dailyReverseFlow",

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

42

IoT Device Management

Development Guide

1 Product Development

"propertyName":
"dataType"
"required": false,
"min": O,

"dataType": "int",
"required": false,
"min": O,

"max": O,
"step": 1,
"maxLength": O,
"method": "W",
"unit": "L",

"enumList": null

"propertyName": "peakFlowRate",

"dataType": "int",
"required": false,
"min": O,

"max": O,

"step": 1,
"maxLength": O,
"method": "W",
"unit": "L/H",
"enumList": null

"propertyName": "peakFlowRateTime",
"dataType": "string",

"required": false,
"min": O,

"max": O,
"step": 1,
"maxLength": O,
"method": "W",

"unit": null,
"enumList": null

max": 0,

"step": 1,
"maxLength": O,
"method": "W",
"'Llnit": IIL",
"enumList": null

"propertyName":
"dataType": "array",
"required": false,
"min": O,

max": 0,

"step": 1,
"maxLength": O,
"method": "W",
"unit": "kPa",

"enumList": null

"propertyName":
"dataType": "array",
"required": false,
"min": O,

max": 0,

"step": 1,
"maxLength": O,
"method": "W",

TrmdETs @.01°CT,
"enumList": null

"intervalFlow",
"array",

"pressure",

"temperature",

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

43

IoT Device Management
Development Guide

1 Product Development

}

"propertyName":
"dataType": "array",
"required": false,
"min": O,

"max": O,

"step": 1,
"maxLength": 0,
"method": "W",
"unit": "0.01g",
"enumList": null

The fields are described as follows:

"vibration",

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal
servi Mand | Complete information about a service.
ces atory | (The root node cannot be modified.)
ser Mand | Type of the service. The value of this
vic atory | field must be the same as that of
eTy serviceType in the devicetype-
pe capability.json file.
des Mand | Description of the service.
crip atory | Thjs field is not a functional field but a
tion descriptive one. It can be set to null.
co Mand | Command supported by the device. If
mm atory | the service has no commands, set the
and value to null.
]
comman Mand | Name of the command. The command
dName atory | name and parameters together form a
complete command.
paras Mand | Parameters contained in the command.
atory
paraNa Mand | Name of a parameter in the command.
me atory

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

44

IoT Device Management

Development Guide

1 Product Development

Fiel | Sub-field Mand | Description
d atory

or

Optio

nal

dataTy Mand | Data type of the parameter in the

pe atory | command.

Value: string, int, string list, decimal,

DateTime, or jsonObject

Complex types of reported data are as

follows:

® string list: ["strl","str2","str3"]

® DateTime: The value is in the
format of yyyyMMdd'T'HHmmss'Z',
for example, 20151212T1212127.

® jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform but is
transparently transmitted only.

require Mand | Whether the command is mandatory.

d atory | The value can be true or false. The
default value is false, indicating that the
command is optional.

This field is not a functional field but a
descriptive one.

min Mand | Minimum value.

atory | Thjs field is valid only when dataType
is set to int or decimal.

max Mand | Maximum value.

atory | This field is valid only when dataType
is set to int or decimal.

step Mand | Step.

atory | This field is not used. Set it to 0.
maxLe Mand | Character string length.

ngth atory | This field is valid only when dataType
is set to string, string list, or
DateTime.

unit Mand | Unit.

atory | The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

45

IoT Device Management
Development Guide

1 Product Development

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal
enumLi Mand | List of enumerated values.
st atory | For example, the status of a switch can
be set as follows:
"enumList": ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.
response Mand | Responses to command execution.
s atory
respons Mand | Youcan add RSP to the end of
eName atory | commandName in the command
corresponding to responses.
paras Mand | Parameters contained in a response.
atory
pa | Mand | Name of a parameter in the command.
ra | atory
Na
me
dat | Mand | Data type.
aT | atory | vajye: string, int, string list, decimal,
yp DateTime, or jsonObject
e
Complex types of reported data are as
follows:
® string list: ["strl","str2","str3"]
® DateTime: The value is in the
format of yyyyMMdd'T'HHmmss'Z',
for example, 20151212T121212Z.
® jsonObject: The value is in
customized JSON format, which is
not parsed by the [oT platform but is
transparently transmitted only.
re | Mand | Whether the command response is
qu | atory | mandatory. The value can be true or
ire false. The default value is false,
d indicating that the command response is

optional.

This field is not a functional field but a
descriptive one.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 46

IoT Device Management

Development Guide

1 Product Development

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal
mi | Mand | Minimum value.
n | atory | This field is valid only when dataType
is set to int or decimal. The value of a
field of the int or decimal type must be
greater than or equal to the value of
min.
ma | Mand | Maximum value.
X |atory | This field is valid only when dataType
is set to int or decimal. The value of a
field of the int or decimal type must be
less than or equal to the value of max.
ste | Mand | Step.
P | atory | This field is not used. Set it to 0.
ma | Mand | Character string length.
xL | atory | This field is valid only when dataType
en is set to string, string list, or
gt DateTime.
h
un | Mand | Unit.
It latory | The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa
en | Mand | List of enumerated values.
u |atory | por example, the status of a switch can
? be set as follows:
i
st "enumList": ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.
pro Mand | Reported data. Each sub-node indicates
pert atory | a property.
ies
property Mand | Name of the property.
Name atory

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

47

IoT Device Management

Development Guide

1 Product Development

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal
dataTyp Mand | Data type.
© atory | value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
® string list: ["str1","str2","str3"]
® DateTime: The value is in the
format of yyyyMMdd'T'"HHmmss'Z',
for example, 20151212T121212Z.
® jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform but is
transparently transmitted only.
required Mand | Whether the property is mandatory. The
atory | value can be true or false. The default
value is false, indicating that the
property is optional.
This field is not a functional field but a
descriptive one.
min Mand | Minimum value.
atory | This field is valid only when dataType
is set to int or decimal. The value of a
field of the int or decimal type must be
greater than or equal to the value of
min.
max Mand | Maximum value.
atory | This field is valid only when dataType
is set to int or decimal. The value of a
field of the int or decimal type must be
less than or equal to the value of max.
step Mand | Step.
atory | This field is not used. Set it to 0.
method Mand | Access mode.
atory | @ R: readable
® W: writable
® E: subscription
Value: R, RW, RE, RWE, or null

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 48

IoT Device Management
Development Guide 1 Product Development

Fiel | Sub-field Mand | Description
d atory
or
Optio
nal

unit Mand | Unit.

atory | The value is determined by the
parameter, for example:

Temperature unit: C or K
Percentage unit: %

Pressure unit: Pa or kPa

maxLen Mand | Character string length.

gth atory | This field is valid only when dataType
is set to string, string list, or
DateTime.

enumLis Mand | List of enumerated values.

t atory | For example, batteryStatus can be set as

follows:
"enumList" : [0, 1,2, 3,4, 5, 6]

This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

1.4 Developing a Codec

1.4.1 Development Guide

Overview

If a device reports binary data, a codec must be developed for data format conversion. If a
device reports JSON data, codec development is not required.

For example, in the NB-IoT scenario where devices communicate with the IoT platform using
CoAP, the payload of the CoAP message is data at the application layer and the data type is
defined by the device. As NB-IoT devices require low power consumption, data at the
application layer is in binary format instead of JSON. However, the loT platform
communicates with NAs by sending data in JSON format. Therefore, codec development is
required for the IoT platform to convert data in binary and JSON formats.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 49

IoT Device Management
Development Guide

1 Product Development

Figure 1-2 Codec conversion

'y

Message in json format described
in the profile

Plug-in management

Message processing
[Plug-in of vendor
E 1
CoAP protocol stack

Proprietary pfotocol
of vendor ¥

Device of vendor 1

Proprietacy protocel of
vendeor 2

Procedure

Application
Protocol Ny
structure coar The plug-in converts application layer data
UoP | to that in json format described in the
| profile.

® The NB-loT device communicates with the 1oT platform using 1 Sorvi

CoAP or UDP. Payload containedin the CoAP message carries | Waterieter | 4
Y e | daiyAciuyTime —int
the application layer data, |internalTemperature |int_
Mow Jint
® The format of application layer data is defined by vendors, |reverseFiow Jint
< . LintervalFlow st
and the vendors provide the codec plug-in |pressure Jlist
— ; temperature
for application protocol parsing. [list
g |vibration ist
® The codec plug-in implements the TiowPlowAiaim fint
following two interfaces: {highFlowAlarm Jint
| tamperAlarm Jint
String Decode{byte[]);
Bete[] Encode{string);
Invokesthe
Parsesthe CoAP it Sendsthe
Uplek pachetts chtun P ';":gt;ﬂ':* — message to the
e giclni the application i MA
[
Ivekesth Azzemblesthe
Downlink Deliversthe - cndcﬂf:_,]f,;_;n B CohPmessage
Freseage message providedbythe andsends it to
s the device

If you have used a preset template when creating a project and product, you can directly
use or modify the codecs contained in the template. If a customized product is created, you

must develop your codec.

Step 1 In the product development space, click Codec Development.

@ Codec Development N

Online Codec Editor Codec Management

+ Add Message

[) Save & Deploy

= More

Device Model

Step 2 In the Online Codec Editor area, click Add Message.

@ Codec Development »

Online Codec Editor

+ Add Message

Codec Management

Self-Service Testing

[7) Save & Deploy

= More

Device Model

battery v

Step 3 In the Add Message dialog box, specify Message Name, set Message Type to Data

Reporting, and click OK.

® [fthe [oT platform is required to return an ACK message after receiving data reported by
the device, select Add Response Field. The data carried in the ACK message is the
value of Response. The default value is AAAA0000.

® Message Name can contain only letters, digits, underscores (_), and dollar signs ($) and

cannot start with a digit.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 50

IoT Device Management
Development Guide 1 Product Development

Add Message X

Basic Information

Description

Description

*Message Type

) Data Reporting| Command Delivery

[H Add Response Field @

Field

+ Add Field

Response. if this parameter is not specified, the default value AAA

“ Ganee!

Step 4 Click + next to Data Reporting Fields.

~
+ Add Message /3 Device Model

[N
»
)]

Battery W
Battery

Data Reporting Fields

Response Fields : AAAA0DQD

Step 5 Inthe Add Field dialog box, select Tagged as address field. Other parameters are set
automatically. Click OK.

When messages of the same type are created, such as two data reporting messages, Tagged as
address field must be selected and this field in every such message must be in the same place
on the field list. A command response can be regarded as a type of data reporting message.
Therefore, if a command response exists, messageld must be added to the data reporting
message.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 51

IoT Device Management
Development Guide 1 Product Development

Add Field X

/] Tagged as address field (7)

“Mame When the field is tagged as address field, the field name is fixed at messageld. The names of other fields cannct be set to messageld.
messageld
Description
Description
Data Type (Big-endian mode
intSu(8 bit unsigned integer) v
* Length (@

1

* Default Value (@)

0x0

Offset @

“ Cance'

Step 6 Click + next to Data Reporting Fields.

4 n
e Device Model
Battery [| =) battery v
Data Reporting Fields =
messageld Details

Response Fields : AAAA0000

Step 7 In the Add Field dialog box, set the parameters and click OK.

® Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot
start with a digit.

® Data Type is configured based on the data reported by the device and must match the
type defined in the profile file.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 52

IoT Device Management
Development Guide

1 Product Development

Add Field
Tagged as address field (@

*Name

batterylLevel

Descnption

Description

Data Type (Big-endian mode)

int8u(s bit unsigned integer)

* Length (&

1

Default Value (@)

Offset ()

1-2

Step 8 In the Online Codec Editor area, click Add Message.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

53

IoT Device Management
Development Guide 1 Product Development

Device Model

-
o

Battery 4 battery v

Battery

Data Reporting Fields +
messageld Details
batteryLevel

Response Fields : AAAA0000

Step 9 In the Add Message dialog box, specify Message Name, set Message Type to Command
Delivery, and click OK.

® [fthe device is required to return the command execution result, select Add Response
Field. After the check box is selected:

- The address field must be defined in both the data reporting message and the
command response, and this field in the two messages must be in the same place on
the field list, so that the codec can distinguish the data reporting message from the
command response.

- The response ID field must be defined in the command delivery message and the
command response, and this field in the two messages must be in the same place on
the field list, so that the codec can associate the command delivery message with
the corresponding command response.

® Message Name can contain only letters, digits, underscores (), and dollar signs ($) and
cannot start with a digit.

Add Message x

Basic Information

“Message Name Description

CHANGE_STATUS

Data Reporting

[E Add Response Field

Field

Response Field

+ Add Response Field

“ cancel

Step 10 Click + next to Command Delivery Fields.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 54

IoT Device Management
Development Guide

1 Product Development

Data Reporting Fields +

+ Add Message
messageld

Battery batteryLevel

@ CHANGE STATUS

ponse Fields : AAAAD00O

zn

o

CHANGE_STATUS

Command Delivery Fields El
Rest

ponse Fields +

battery v

Details

Step 11 In the Add Field dialog box, select Tagged as address field. Other parameters are set

automatically. Click OK.

When messages of the same type are created, such as two command delivery messages,

Tagged as address field must be selected and this field in every such message must be in the
same place on the field list. A data reporting response can be regarded as a type of command
delivery message. Therefore, if a data reporting response exists, messageld must be added to

the command delivery message.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

55

IoT Device Management
Development Guide

1 Product Development

Add Field
B Tagged as address field (&

Tagged as response |D field (&)

"Name

messageld

Description

Description

Data Type (Big-endian mode)

intu(8 bit unsigned integer)

* Length (®

1

* Default Value (@

Ox1

Q
=
@
@

0-1

Step 12 Click + next to Command Delivery Fields.

Data Reporting Fields +
+ Add Message
messageld
Battery batteryLevel
@ CHANGE_STATUS
Response Fields : AAAA0000
[| a

CHANGE_STATUS

Command Delivery Fields

messageld

Response Fields

Step 13
automatically. Click OK.

When the field is tagged as address field. the field name is fixed at messageld. The names of other fields cannot be set to messageld.

Cancel

Device Model

battery

Details

In the Add Field dialog box, select Tagged as response ID field. Other parameters are set

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

IoT Device Management

Development Guide 1 Product Development

Add Field
[] Tagged as address field (3

[V Tagged as response ID field (2

*Mame When the field is tagged as response D field, the fisld name must be fixed at mid. The names of cther fields cannot be set to mid.

mid

Description

Description

Data Type (Big-endian mode)

int16u(16 bit unsigned integer)

* Length ®

2

Default Value &

Offset @

1-3

“ Cancel

Step 14 Click + next to Command Delivery Fields.

batteryLevel
(1 A meceame)
(L oamese) Response Fields : AAAA0000 Device Model
Battery hattery o
@ CHANGE_STATUS
[E | =)
CHANGE_STATUS
Command Delivery Fields Details
messageld
mid
Response Fields +

Step 15 In the Add Field dialog box, set the parameters and click OK.

® Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot
start with a digit.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 57

IoT Device Management
Development Guide 1 Product Development

® Data Type is configured based on the data reported by the device and must match the
type defined in the profile file.

Add Field X
[[] Tagged as address field (3

[[] Tagged asresponse ID field (2

*Name

value

Description

Description

Data Type (Big-endian mode)

intGu(B bit unsigned integer) -

* Length (3

1
Default Value &
Offset ()

Step 16 Click + next to Response Fields.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 58

IoT Device Management

Development Guide 1 Product Development

Response Fields : AAAA000O

s n
(el Device Model
Battery “ n a battery v
@ CHANGE_STATUS
CHANGE_STATUS
jor: —
Command Delivery Fields ;
messageld Details
mid
value
Response Fields

Step 17 1In the Add Field dialog box, select Tagged as address field. Other parameters are set
automatically. Click OK.

Add Field

Tagged as address field (2)
Tagged as response |D field ()

Tagged as command execution state field (&)

N

When the field is tagged as address field, the field name is fixed at messageld. The names of other fields cannot be set to messageld

messageld

Data Type (Big-endian mode)

intdu(8 bit unsigned integer)

* Length (@)
1

* Default Value @
0x2

Cancel

Step 18 Click + next to Response Fields.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

59

IoT Device Management
Development Guide 1 Product Development

+ Add Message Device Model

3 | a
Battery CHANGE_STATUS battery v
® CHANGE_STATUS Message Type: cloudReq

Response Contained: Yes
Endian: Big-endian mode

Description: —

Command Delivery Fields +

messageld

mid Details

value

Response Fields

messageld

Step 19 In the Add Field dialog box, select Tagged as response ID field. Other parameters are set
automatically. Click OK.

Add Field %

[] Tagged as address field (3
[Tagged as response IDfield (@

[] Tagged as command execution state field ()

*Name When the field is tagged as response D field, the field name must be fixed at mid. The names of other fields cannot be set to mid.

mid

Description

Description

Data Type (Big-endian mode)

int16u(16 bit unsigned integer) -

* Length @)

2

Default Value (&

Offset (3

1-3

Cancel

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 60

IoT Device Management
Development Guide

1 Product Development

Step 20 Click + next to Response Fields.

zn

[n}]

(+ Add Message)

CHANGE_STATUS

Battery

@ CHANGE_STATUS

Gommand Delivery Fields +

messageld [|

Device Model

battery v

Details

Step 21 In the Add Field dialog box, select Tagged as command execution state field, set the other

parameters, and click OK.

® The value of Name is automatically populated.

® Data Type is configured based on the actual command response and must match the type

of the corresponding field defined in the profile file.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

61

IoT Device Management
Development Guide 1 Product Development

Add Field X

[[] Tagged as address field (7
[[] Tagged as response ID field ()

[¥] Tagged as command execution state field (2

“MName When the field is tagged as command execution state field, the field name is fixed at Errcode. The names of other fields cannot be set to Errcode

errcode

Data Type (Big-endian mode)

int8u(8 bit unsigned integer) -

* Length &

1

Default Value

)]

Offset (3

34

“ Cancel

Step 22 Click + next to Response Fields.

T e
((+AddMessage) Device Model
I [|

o

Battery CHANGE_STATUS e ”
@ CHANGE_STATUS

Command Delivery Fields 4
messageld
mid Details
value

Response Fields
messageld

mid

errcode

Step 23 In the Add Field dialog box, set the parameters and click OK.

® Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot
start with a digit.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 62

IoT Device Management
Development Guide 1 Product Development

® Data Type is configured based on the data reported by the device and must match the
type defined in the profile file.

Add Field X

[[] Tagged as address field (&)
[[] Tagged as response ID field (3)

[[] Tagged as command execution state field (@

*Name

result

Description

Description

Data Type (Big-endian mode)

int8u(8 bit unsigned integer) -

* Length (&)

1

Default Value ()

Offset (@

4-5

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 63

IoT Device Management
Development Guide 1 Product Development

Step 24 Map the property fields, command fields, and response fields in Device Model on the right
with the fields in the data reporting message, command delivery message, and command
response.

X
m
0y

batterylLevel

battery

Data Reporting Fields +

messageld

batteryLevel

Response Fields : AAAADDOD

value

CHANGE_STATUS

&

CHANGE_STATUS

& result

CHANGE_STATUS

Command Delivery Fields +
messageld
mid
value

Response Fields +
messageld
mid
errcode

result

Step 25 Click Save and then Deploy to deploy the codec on the IoT platform.

Online Codec Editor Codec Management =m

—-End

1.4.2 Offline Development

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 64

IoT Device Management
Development Guide 1 Product Development

1.4.2.1 Preparing the Development Environment

Downloading Eclipse

Download the Eclipse installation package and decompress it to a local directory. You can use
the software without installation.

Eclipse is available on the official website at http://www.eclipse.org/downloads.

Downloading the Maven Plug-in

Download the Maven plug-in package (in .zip format) and decompress it to a local directory.

Maven is available on the official website at http://maven.apache.org/download.cgi.

Configuring the Maven Plug-in

Maven configuration involves setting environment variables on Windows and setting Maven
on Eclipse. For details on setting environment variables on Windows, see other online
resources. Maven can be configured on Eclipse as follows:

Step 1 Start Eclipse and choose Windows > Preferences. In the Preferences window, choose
Maven > Installations. On the right pane, click Add.

Figure 1-3 Configuring Maven plug-in 1

i8] Preferences = @
type filter text Installations M T
» General -

Select the installation used to launch Maven:

» Ant

» Data Management

MName Details Add...

+ Help

» Install/Update
» Java

» Java EE

» Java Persistence

» JavaScript

m

Archetypes

Biscovery

Erflrs/\Warnings

Installations
Java EE Integratio
Lifecycle Mapping
Templates

User Interface

User Settings

> Mylyn

» Plug-in Development MNote: Embedded runtime is always used for dependency

+ Remote Systems resolution

> Run/Debug =
p s o [Restore Defaultsl l Apply]
I'/‘?)I [OK l [Cancel l

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 65

http://www.eclipse.org/downloads
http://maven.apache.org/download.cgi

IoT Device Management
Development Guide 1 Product Development

Step 2 Select the path where the Maven plug-in package is stored and click Finish to import the
Maven plug-in.

Figure 1-4 Configuring Maven plug-in 2
i@ New Maven Runtime =] @

Specify attributes for a Maven installation

Installation type: @ External Workspace

Installation hame: D:Atempl\apache-maven-3.5.0-bin\apache-maven-3| |

Installation name: apache-maven-3.5.0

Additional extension libraries:

Up
Drowr
Restore Default
¥
® [Finish [Cancel I

Step 3 Select the imported Maven plug-in and click OK.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 66

IoT Device Management
Development Guide 1 Product Development

Figure 1-5 Configuring Maven plug-in 3
E Preferences IZI@

type filter text Installations e T

» General

> Ant
. Data Management MName Dretails Add...

> Help H [l EMEBE

» Install/Update] WORKSPACE [
> Java apache-maven-3.5.0 D:\templapache-maven-3.5.0 | Remove
> Java EE

» Java Persistence

Select the installation used to launch Maven:

> JavaScript

m

4 Maven
Archetypes
Discovery
Errors/Warnings
Installations
Java EE Integratiol
Lifecycle Mapping

Templates
User Interface

User Settings

1| 1 +

> Mylyn
» Plug-in Development Mote: Embedded runtime is alyays used for dependency

> Remote Systems resolution

» Run/Debug % IRestore Qe{aults] l Apply]

€| 1 2

@ [ok ||| cancel |

MnoTe

For details about how to install JDK and configure Java environment variables, see Installing JDK 1.8
and Configuring Java Environment Variables (Windows OS).

—End

1.4.2.2 Importing the DEMO Project of the Codec

Step1 Download the DEMO project, obtain the codecDemo.zip file from the source_code folder,
and decompress the file to a local directory.

Figure 1-6 Position of the DEMO project of the codec

+ source_code -

Include in library = Share with + Kew Folder

Mame * Date modified

B codechema.zip 2017/10/27 14:26

Step 2 Open Eclipse, right-click the blank area in Project Explorer on the left of Eclipse, and
choose Import > Import....

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 67

https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/devicecodec.zip

IoT Device Management
Development Guide

1 Product Development

Figure 1-7 Importing DEMO project 1

8] Java €€ - Eclipse

File
-

e
w

Edit MNavigate Search Project Run Window Help

w1 A O G T G (M (A N | B

Progect Explorer I L

PMew 3
Shaw In AlrsShift+W &
Copy Cerl«C

Copy Qualifed Nams

T Paste Cerl4V
X Delete Delete
tmipart — v B App CEent JAR file
Py Bport. T~ [EAR fle
B ks x i a, EJD JAR e
- B Java EE Unlity lar
s & RAR file
--H“'x L WAR Ba
ik,

5 [impers- |

Step 3 Expand Maven, select Existing Maven Projects, and click Next.

Figure 1-8 Importing DEMO project 2

p .
o Import o [@) 5]
Select \J
Import Exrsting Maven Projects H

Select an import source:

type flter text

= CVS -
v = EJB
v S (Gt
o [Install

2= Java EE -

4 = Maven
&, Check out Maven Projects fram SCM
| £5 Existing Maven Projects
L, Install or deploy an artifact to a Maven repository
L Materialize Maven Projects from SCM
v & Plug-in Development
4 % Remote Systems

SR TR TR

e

L?J < Back Faarh [ﬂ

Step 4 Click Browse, select the codecDemo folder obtained in Step 1, select /pom.xml, and click

Fin

ish.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

68

IoT Device Management
Development Guide 1 Product Development

Figure 1-9 Importing DEMO project 3

) Import Maven Projects = -
Maven Projects

Select Maven projects

Boot Directary: Di\temphcodecDemo w ' Browse...
Projects
R foamsxn] & S : { [5elect All
Lherelecr Al
|
| Refrach

Add progect{s) to warkding set

F Advanced

7 < Rack Fanish Concel

—End

1.4.2.3 Developing a Codec

The Maven project architecture in the DEMO project does not need to be modified. To
develop a codec, modify the DEMO project by following the instructions provided in decode
API Description.

1.4.2.4 Packaging the Codec

This topic describes how to package the codec and prepare the package.

Packaging the Codec Using Maven

After the codec is programmed, use Maven to package the codec. On the Windows OS,
perform the following steps:

Step1 Open the DOS window and access the directory where the pom.xml file is located.
Step 2 Run mvn package.

Step 3 After BUILD SUCCESS is displayed in the DOS window, open the target folder in the same
directory as the pom.xml file to obtain the .jar package.

The naming rule of the .jar package is as follows: device type-manufacturer ID-device
model-version.jar, for example: WaterMeter-Huawei-NBIoTDevice-version.jar.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 69

IoT Device Management
Development Guide 1 Product Development

Figure 1-10 Structure of the .jar file

= ¥ |& WaterMeter-Huawei-MBIoTDevice-1.0.0,jar

+ MName Size
| com 7.66 KB

. META-INF 1KB

| OSGI-INF 1KB
|&] json-lib-2.4-jdk15,jar 155.39 KB

® The com directory stores class files.

® The META-INF directory stores description files of .jar packages under the OSGi
framework, which are generated based on configurations in the pom.xml file.

® The OSGI-INF directory stores service configuration files and is used to register the

codec as a service for the platform to call. (Only one .xml file can be called.)

® Other .jar packages are .jar packages referenced by codecs.

—--End

Preparing a Codec Package
Step 1 Create a folder named package, which contains the preload/ sub-folder.

Step 2 Place the packaged .jar package in the preload/ folder.

Figure 1-11 Structure of the codec package

Mame Modified Type

| preload 201772713 15:31 Folder

|&] package-infsjson 2017/2/13 15:31 File json

|| waterMeter-Huawei-MBIoTDevice-1.0.0.jar

Step 3 In the package folder, create the package-info.json file. The fields and templates in this file
are described as follows:

MnoTe

The package-info.json file is encoded using UTF-8 without BOM. Only English characters are
supported.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 70

IoT Device Management
Development Guide

1 Product Development

Table 1-2 Description of fields in the package-info.json file

Field

Description

Mandatory
or
Optional

specVersion

Specifies the version of the description file. The
value is fixed at 1.0.

Mandatory

fileName

Specifies the name of the software package. The
value is fixed at codec-demo.

Mandatory

version

Specifies the version number of the software
package. The version of the package.zip file must
be the same as the value of bundleVersion.

Mandatory

deviceType

Specifies the device type, which must be the same
as that defined in the profile file.

Mandatory

manufacturerName

Specifies the manufacturer name, which must be
the same as that defined in the profile file.
Otherwise, the package-info.json file cannot be
uploaded to the IoT platform.

Mandatory

model

Specifies the product model, which must be the
same as that defined in the profile file.

Mandatory

platform

Specifies the platform type, which is the operating
system of the IoT platform on which the codec
package runs. The value is fixed at linux.

Mandatory

packageType

Specifies the software package type. This field is
used to describe the IoT platform module where
the codec is deployed. The value is fixed at
CIGPlugin.

Mandatory

date

Specifies the time when a packet is sent. The
format is as follows: yyyy-MM-dd HH-mm-ss.
For example, 2017-05-06 20:48:59.

Optional

description

Specifies the self-defined description about the
software package.

Optional

ignoreList

Specifies the list of bundles to be ignored. The
default value is null.

Mandatory

bundles

Specifies the description of a bundle.

NOTE
A bundle is a .jar package in a compressed package.
Only one bundle needs to be described.

Mandatory

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

71

IoT Device Management
Development Guide

1 Product Development

Table 1-3 Description of the bundles field

Field Description Mandatory
or
Optional
bundleName Specifies the bundle name, which is consistent Mandatory
with the value of Bundle-SymbolicName in the
pom.xml file.
bundleVersion Specifies the bundle version, which must be the Mandatory
same as the value of version.
priority Specifies the bundle priority. This parameter can Mandatory
be set to the default value 5.
fileName Specifies the codec file name. Mandatory
bundleDesc Describes the bundle function. Mandatory
versionDesc Describes the functions and features of different Mandatory
versions.

Template of the

{

package-info.json file

"specVersion":"1.0",
"fileName":"codec-demo",

"version":

"1.0.0",

"deviceType":"WaterMeter",
"manufacturerName" : "Huawei",
"model" :"NBIoTDevice",
"description":"codec",
"platform":"linux",
"packageType" :"CIGPlugin",
"date":"2017-02-06 12:16:59",

"ignoreList":[],

"bundles": [

{
"bundleName": "WaterMeter-Huawei-NBIoTDevice",
"bundleVersion": "1.0.0",

"priority":5,

"fileName": "WaterMeter-Huawei-NBIoTDevice-1.0.0.jar",
"bundleDesc":"",
"versionDesc":""

}]
}

Step 4 Select all files in the package folder and compress them into a package.zip file.

(MnoTe

The package.zip file cannot contain the package directory.

—--End

1.4.2.5 Inspecting the Quality of the Codec

After the codec is packaged, quality inspection is performed to check whether the codec is
functioning properly.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

72

IoT Device Management
Development Guide 1 Product Development

Step 1 Obtain the codec detection tool from the IoT platform service provider.

Step 2 Save the pluginDetector.jar file, the devicetype-capability.json file in the profile file, and
the package.zip and tool folders to be checked to the same directory.
Figure 1-12 Placing the files in the same directory

| toaol

B package.zip
| pluginDetector.jar

| 7| devicetype-capability,json

Step 3 Obtain a stream of reported device data, and enter the stream in hexadecimal format on the
data report tab page of the detection tool, for example, AA72000032088D0320623399.

Step 4 Click start detect to view the decoded JSON data.

The log text box displays the decoded data. If report data is success is displayed, the
decoding is successful. If ERROR is displayed, an error occurs during decoding.

Figure 1-13 Successful decoding of reported data

| £/ pluginDetector EI@

"senviceld™ "Temperature”, —
"seniceData™ {
“temperature™ 25
H
H
1

H
[2017-02-21 14:45:05] INFO decode report data success
[2017-02-21 14:45:05] INFO input encode ack paras is:
{

“identifier” "123,

"msgType™ "cloudRsp”,

Tequest” "AAT2000032088D0320623399°,
"errcode™ 0,

“hasMore™ D|

} .

[2017-02-21 14:45:05] i 0o
[2017-02-21 14:45:05] INFO encode ack result success! | encods ack success ||

l’ data report r send command |

Flease enter hexadecimal stream:

AAT2000032088D0320623399 —

1]

start detect | | clear log

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 73

https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/Encodingintl.zip

IoT Device Management
Development Guide 1 Product Development

Figure 1-14 Failed decoding of reported data

| £ pluginDetector [=E]rE=]

[2017-08-21 15:10:36] INFO — begin detecting — —
[2017-08-21 15:10:36] ERROR CODE = 3001,

decode data failed: input binary data is invalid,data is agasdf

[2017-06-21 15:10:36] ERROR detect data failed - java lang NullPointerException

4]

data report | send command

Please enter hexadecimal stream:

agasdf |

startdetect || clearlog

Step 5 After the decoding is successful, the detection tool continues to call the encode method of the
codec package to encode a response.

If encode ack result success is displayed, the response is encoded successfully.

Step 6 Obtain a command delivered by the application server. (The application server calls the API
for creating device commands on the IoT platform to deliver the command.) Then, enter the
command on the data report tab page of the detection tool.

Step 7 Click start detect of the detection tool. Then, the detection tool calls the encode API to
encode a control command.

If encode cmd result success is displayed, the command is successfully encoded. If ERROR
is displayed, an error occurs during the command encoding.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 74

IoT Device Management

Development Guide 1 Product Development

Figure 1-15 Successful encoding control command delivery

| £ pluginDetector == =]

[2017-06-21 15:17:30] INFO — begin detecting — ol
[2017-06-21 15:17:30] INFO input encode command paras is:
{
“identifier”: "1237,
"msgType™ “cloudReq”,
“cmd™. "SET_DEVICE_LEVEL",
"mid™ 2016,
“paras™ {
“value™: "10"
3

“hasMore™ 0

[2017-06-21 15:17:30] INFO encode command result is AA720A07ED
[2017-06-21 15:17:30] INFO encode cmd result success!

data report | send command

Please enter Json message format:
{
“identifier”: "123",

"msgType": "cloudReq",
"cmd": "SET_DEVICE_LEVEL",
"mid": 2016,

"paras" { "valug™ "10"}.
"hasMore™ 0

1 -

[T»

| start detect H clear log

Order example:

{
"identifier": "123",
"msgType": "cloudReq",
"serviceId": "NBWaterMeterCommon",
"cmd": "SET DEVICE LEVEL",
"mid": 2016,
"paras": |

"value": "10"

} ’
"hasMore": 0

}

Step 8 Obtain a stream of reported device command execution results, and enter the stream in

hexadecimal format on the data report tab page of the detection tool, for example,
AA7201000107EO.

Step 9 Click start detect to view the decoded JSON data.

The log text box displays the decoded data. If report command result success is displayed,
the decoding is successful. If ERROR is displayed, an error occurs during decoding.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 75

IoT Device Management
Development Guide 1 Product Development

Figure 1-16 Successful decoding of the command execution result

B ==

[2017-02-21 15:17:41] INFO — begin detecting — =
[2017-02-21 15:17:41] INFO encode report resultis
{
“identifier™ "123",
"msgType" “deviceRsp",
“errcede” 0,
"body™ {
“result” 0

}

}
[2017-02-21 15:17:41] INFO report command result success errcode = 0

veport command result success

data report | send command
Please enter hexadecimal stream.

AAT2010032088D0320623399 —

——-End

1.4.2.6 Signing the Codec Package with an Offline Signature

After the codec is developed, sign the codec package before installing it on the IoT platform.
To sign the package, download Huawei Offline Signtool.

Step1 Log in to the Management Portal.

Step 2 Choose System Management > Tools, and click Offline signature tool to obtain the tool.

Figure 1-17 Downloading the offline signature tool

l O T.D latform System Management | v

Welcome

Home

¥ Offline signature too

Application Management

Function Description

. After a developer completes device integration, the package must be signed with an ¢

Enterprise Management L
following functions:

1. Generates a digital signature public-private key pair.

System Configuration 2. Digitally signs the package.

3. Verifies the digit signature of the package.

Rights

Disclaimer

Public keys are managed by the loT platform, and private keys are stored and manag

Logs

tool forcibly requires the encryption password and private key during the generation ¢
device manufacturers shall be responsible for the security problems caused.
Tools

Step 3 Decompress the signtool.zip file and double-click signtool.exe to run Huawei Offline
Signtool.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 76

IoT Device Management
Development Guide 1 Product Development

Figure 1-18 Running Huawei Offline Signtool
% Offline Signtoal @

Huawei Offline Signtoal

Generate Public and Private Key

Signature Algorithm Passward of Private Key

|

Generate Key

Software Package Sign

Private Key File

Insert Private Key File

Software Package to be Signed

Do Signature

Software Package Verify
Public Key File

Insert Public Key File

Software Package to be Verified

Do Verify

Step 4 In the Generate Public and Private Key area, select a value for Signature algorithm, set
Password of Private key, and click Generate Key. In the dialog box displayed, select the
directory to save the key files and click OK.

Set Signature Algorithm as required. Currently, two signature algorithms are available:
® ECDSA 256K1+SHA256
® RSA2048+SHA256
When setting Password of Private Key, ensure that the password complexity meets the
following conditions:
® The password must contain at least six characters.
® The password must contain at least two types of the following characters:
- AZ
- az
- 09
o~ @HSY N &F()- =<1}, 1"

The public and private key files are generated in the storage directory.

® Public key file: public.pem
® Private key file: private.pem

Step 5 In the Software Package Sign area, import the private key file, enter the password, and click
OK. The password is the value of Password of Private Key set in Step 4.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 77

IoT Device Management
Development Guide 1 Product Development

Step 6 Select the software package to be signed and click Do Signature.

If the digital signature is successful, the software package named xxx_signed.xxx with a
digital signature is generated in the directory where the original software package is located.

(MnoTe

The offline signature tool can sign only the packages in .zip format with a digital signature.
Step 7 In the Software Package Verify area, import the public key file and click OK.

Step 8 Select the software package (generated in Step 6) that requires signature verification and click
Do Verify.

® [f Verify Success! is displayed, the signature verification is successful.

® If Verify Error! is displayed, the signature verification fails.
(OnoTe

During software package verification, the path for storing the signed software package must not
contain Chinese characters.

——End

1.4.3 Codec Development Examples

1.4.3.1 Codec for Data Reporting and Command Delivery

Scenarios

A smoke detector provides the following functions:

® Reporting smoke alarms (fire severity) and temperature
® Remote command, which can enable the alarm function remotely

For example, the smoke detector can report the temperature on the fire scene and
remotely trigger the smoke alarm for evacuation.

Defining the Profile File

Define the profile file in the development space of the smoke sensor.
® Jevel: indicates the fire severity.
® temperature: indicates the temperature at the fire scene.

® SET ALARM: indicates whether to enable or disable the alarm function. The value 0
indicates that the alarm is disabled, and the value 1 indicates that the alarm is enabled.

Smoke

Attribute List

S level

& temperature

Command List

(& SET_ALARM

Command Fields

value

Response Command Fields

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 78

IoT Device Management
Development Guide 1 Product Development

Developing a Codec

Step 1 In the development space of the smoke sensor, click Codec Development.
° »

Step 2 Configure a data reporting message.

Add Message X

Basic Information

ame *

Command delivery

Add response fields

Filed

“ Cancel

Add alevel field to indicate the fire severity.

® Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot
start with a digit.

® Data Type is configured based on the data reported by the device and must match the
type defined in the profile file.

® The values of Length and Offset are automatically filled based on Data Type.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 79

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagaoed as address fisld ()

* Mame

level

Description

Data Type

int8u(8 bit unsigned integer)

Length (&

1

Default Value (7)

Offset (%)

0-1

X

Add the temperature field to indicate the temperature at the fire scene. In the profile file, the
maximum value of temperature is 1000. Therefore, set the data type of the temperature
field to int16u in the codec to meet the value range requirement of temperature.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

80

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagoed as address figk

* Name

temperature

Description

Data Type

intl6u(l6 bit unsigned integer)

* Length

2

Default Value (3)

Offset

1-3

Step 3 Configure a command delivery message.

X

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

81

IoT Device Management
Development Guide

1 Product Development

Add Message

Basic Information

Name *

Data reporting ~ [(a) Command delivery|

Add response fields

Filed

+ Add Filed

Cancel

Add the value field to indicate the parameter value of the delivered command.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 82

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagged as address fisld (3)

* Mame

value

Description

Data Type

int8u(8 bit unsigned integer)

* Length (3)

1

Default Value (7)

Offset (@

0-1

X

Step 4 Map the property fields and command fields in Device Model on the right with the fields in

the data reporting message and command delivery message.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

83

IoT Device Management

Development Guide 1 Product Development
Device Model
73N = evel Smoke A

smokeinfo Attributes Commands

ype: deviceReq

ained: No temperature
Description: — Smoke

Data Reporting Fields

LN level

LN temperature

level

temperature

value
SET_ALARM

[y
-
i)
B

Details

Command Delivery Fields Smoke

value

Step 5 Click Save and then Deploy to deploy the codec on the IoT platform.

@ Codec Development - Self-Senvice Testing

Online Codec Editor Codec Management

—End

Testing the Codec

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device
to test the codec.

Device List @
Status Device Name Device ID Product Model Type Operation
No devices found.
Select No for Is Physical Device Available and click OK.
Add Test Device e

Is Physical Device Available

wr it
Yes | (e) Mo

You are registering a virtual device

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 84

IoT Device Management
Development Guide 1 Product Development

Step 2 Use the device simulator to report data. For example, a hexadecimal code stream (02013A) is
reported. In this code stream, 02 indicates the fire severity and its length is one byte. 013A
indicates the temperature and its length is two bytes.

View the data reporting result ({level=2, temperature=314}) in Application Simulator. 2 is
the decimal number converted from the hexadecimal number 02 and 314 from the
hexadecimal number 013A.

Command
R)) Delivery P
& Application Simulator e > @9 loT Platform
L o
m Data Receive = Command Send Data Report T
N DataReport ' !
Data Receive [
2015-09-24 14:44:33 | | Command Delivery
o7

|{Ieve|:2 tempe'at.re:BM}l

{<)} NB-loT Device Simulator

B Datasending Command Receiving
Data Sending

2018-09-24 14:44:33

02013A

Service Smoke v
Comman SET_ALARM v
alue * Enter an integer range[0 , 3]
Enter a hexadecimal code stream.
02013A
Set Time -

e Senl:: m

Step 3 Use the application simulator to deliver a command ({ "serviceld": "Smoke", "method":
"SET _ALARM", "paras": "{\"value\":1}" }).

View the command receiving result in Device Simulator, which is 01. 01 is the hexadecimal
number converted from the decimal number 1.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 85

IoT Device Management

Development Guide

1 Product Development

& Application Simulator

EQ} Data Receive

Command Send: 2012-00-24 14:46:33

Command Send

RequestHeader: { "time™. "Mon Sep 24 14:46:38
GMT+08:00 20187, “requestld™ "5 ¢-db38-49a6-
00bd-cdb2cb23ef20_0796", "callbackUrl™: null,
‘expireTime": 0, "command": { "serviceld™: "Smoke",
‘method"™: "SET_ALARM", "paras™ "[\"value\"1}" } }

RequestBody: { "serviceld" "Smoke", "method”
"SET_ALARM", "paras™ "{\"value\"1}" }

Sernvice Smoke v

Comman

SET_ALARM v

—-End

1.4.3.2 Codec for Multiple Data Reporting Messages

Scenarios

A smoke detector provides the following functions:

Command
Delivery

Data Report

@9 10T Platform

Data Report

Command Delivery

o———-—»

-----9d

(.} NB-loT Device Simulator

B Data sending

Command Receiving

Command Receiving
2018-09-24 14:46:38

Enter a hexadecimal code stream.

Smoke alarms (fire severity) and temperature reporting

Remote command, which can enable the alarm function remotely

For example, the smoke detector can report the temperature on the fire scene and

remotely trigger the smoke alarm for evacuation.

Reporting smoke alarms (fire severity) and temperature simultaneously, or reporting the

temperature separately.

Defining the Profile File

Define the profile file in the development space of the smoke sensor.

level: indicates the fire severity.

temperature: indicates the temperature at the fire scene.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

86

IoT Device Management
Development Guide 1 Product Development

® SET ALARM: indicates whether to enable or disable the alarm function. The value 0
indicates that the alarm is disabled, and the value 1 indicates that the alarm is enabled.

Smoke

Attribute List

S level e

© temperature

Command List

(s SET_ALARM

Command Fields

value

Response Gommand Fields

Developing a Codec

Step 1 In the development space of the smoke sensor, click Codec Development.

Step 2 Configure a data reporting message to report the fire severity and temperature.

Add Message X
Basic Information

Add response fields

Filed

“ Cancel

Add the messageld field to indicate the message type.

® In this scenario, there are two types of data reporting messages. Therefore, the
messageld field must be defined to identify the message type.

® Data Type is configured based on the number of data reporting message types. In this
scenario, only two types of data reporting messages are available. Therefore, the value
int8u will suffice.

® Default Value can be changed but must be in hexadecimal format. In addition, the
corresponding field in data reporting messages must be the same as the default value. In
this scenario, the value 0x0 is used to identify the message that reports the fire severity
and temperature.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 87

IoT Device Management
Development Guide 1 Product Development

Add Field X

Tagged as address field (3)

*MName ‘When the field is tagoed as address field, the field name is fixed at messageld. The names of other fields cannot be set to messageld.

messageld

Description

[w]
@
o
=
)
@

)

)

0x0

Offset (@

0-1

“ Cance‘

Add a level field to indicate the fire severity.

® Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot
start with a digit.

® Data Type is configured based on the data reported by the device and must match the
type defined in the profile file.

® The values of Length and Offset are automatically filled based on Data Type.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 88

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagaoed as address field ()

* Name

level

Description

Data Type

int8u(d bit unsigned integer)

Length (%)

1

Default Value (3)

Offset ()

1-2

X

Add the temperature field to indicate the temperature at the fire scene. In the profile file, the
maximum value of temperature is 1000. Therefore, set the data type of the temperature
field to int16u in the codec to meet the value range requirement of temperature.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

&9

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagoed as address fisld ()

* Name

temperature

Description

Data Type

int16u(16 bit unsigned integer)

* Length (@

2

Default Value (7)

Dffset (@)

2-4

Step 3 Configure a data reporting message to report only the temperature.

X

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

90

IoT Device Management
Development Guide 1 Product Development

Add Message X

Basic Information

Message Name = Description

* Message Type

(#) Data reporting Command delivery

Add response fields

Filed

+ Add Filed

“ Cancel

Add the messageld field to indicate the message type. In this scenario, the value 0x1 is used
to identify the message that reports only the temperature.

Add Field X

Tagged as address field (3

*MName When the field is tagoed as address field, the field name is fixed at messageld. The names of other fields cannot be set fo messageld.

messageld

Description

Data Type

int8u(8 bit unsigned integer) v

* Length (@

* Default Value (@)

Ox1

Offset (3

0-1

“ Cance'

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 91

IoT Device Management
Development Guide 1 Product Development

Add the temperature field to indicate the temperature at the fire scene.

Add Field X

Tagged as address field (%)

* Name

temperature

Description

Data Type

intlou(l6 bit unsigned integer) v

Length (&

P

Default Value (@)

Offset ()

1-3

Step 4 Configure a command delivery message.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 92

IoT Device Management
Development Guide

1 Product Development

Add Message

Basic Information

Name *

Data reporting ~ [(a) Command delivery|

Add response fields

Filed

+ Add Filed

Cancel

Add the value field to indicate the parameter value of the delivered command.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 93

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagged as address fisld (3)

* Name

value

Description

Data Type

int8u(8 bit unsigned integer)

* Length (3)

Default Value (7)

Offset (@

0-1

X

Step 5 Drag the property fields and command fields in Device Model on the right to set up a
mapping with the fields in the data reporting message and command delivery message.

The level and temperature fields are mapped to the corresponding properties in the profile
file. The messageld field is used to identify message types and does not need to be mapped.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

94

IoT Device Management
Development Guide 1 Product Development

Device Model

E3 | a P rever smoke ~
Smoke
smokeinfo Attributes Commands
, P temperature level
. Smoke
Data Reporting Fields +
messageld
level
temperature
3 | = P temperature
Smoke
temperature
Details
Smoke
Data Reporting Fields +
messageld
temperature
C3 | a value
3
< SET_ALAR
SET_ALARM
Command Delivery Fields
value

Step 6 Click Save and then Deploy to deploy the codec on the IoT platform.

Online Codec Editor Codec Management [Save

—-End

Testing the Codec

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device
to test the codec.

© o]
Device List ©

Status Device Name Device ID Product Model Type Operation

No devices found.

Select No for Is Physical Device Available and click OK.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 95

IoT Device Management

Development Guide 1 Product Development

Add Test Device b4

Is Physical Device Available

Yes | (@) No

al'= «_,-':|.._ in = I'-'I- '-.'--:E
You are registering a virtual devi

Step 2 Use the device simulator to report data.

For example, a hexadecimal code stream (000100F1) is reported. In this code stream, 00
indicates the messageld field and specifies that this message reports the fire severity and
temperature. 01 indicates the fire severity and its length is one byte. 00F1 indicates the
temperature and its length is two bytes.

View the data reporting result ({level=1, temperature=241}) in Application Simulator. 1 is
the decimal number converted from the hexadecimal number 01 and 241 from the
hexadecimal number 00F1.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

96

IoT Device Management
Development Guide

1 Product Development

@9 loT Platform

Command
. . . Delivery
&b Application Simulator S »
- o
m Data Receive =~ Command Send Data Report

Data Receive
2018-09-24 15:59:11
Jilevel=1, temperature=241}

Service Smoke

Comman SET_ALARM

value * Enter an integer range[0 , 3]

-

F Y
1

Data Report :
: Command Delivery
o

4-----d

{.) NB-loT Device Simulator

Il Datasending Command Receiving
Data Sending

)-25 05:59:11
000100F1

Enter a hexadecimal code stream.

Take another hexadecimal code stream (0100F1) as an example. 01 indicates the messageld
field and specifies that this message reports only the temperature. 00F1 indicates the

temperature and its length is two bytes.

View the data reporting result ({temperature=241}) in Application Simulator. 241 is the
decimal number converted from the hexadecimal number 00F1.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 97

IoT Device Management

Development Guide 1 Product Development
Command
) .) Delivery .
& Application Simulator S ») loT Platform
- o
m Data Receive =~ Command Send Data Report

. Data Report
Data Receive

2013-09-24

4

o-—---
N-----d

Command Delivery

{.) NB-loT Device Simulator

I Datasending Command Receiving

Data Sending

Senvice Smoke v

Comman SET_ALARM v

value * Enter an integer range[0 , 3]

Enter a hexadecimal code stream.

Auto Send m
Step 3 Use the application simulator to deliver a command ({ "serviceld": "Smoke", "method":
"SET_ALARM", "paras": "{\"value\":1}" }).

View the command receiving result in Device Simulator, which is 01. 01 is the hexadecimal
number converted from the decimal number 1.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 98

IoT Device Management

Development Guide 1 Product Development

Command
) .) Delivery P
& Application Simulator O e e m » @9 10T Platform
- o
) -]
m Data Receive = Command Send Data Report o
Data Report : :
Command Send: 2012-00-24 14:46:33 [N L
y 1 Command Delivery
RequestHeader: { "time™: "Mon Sep 24 14:46:33 - H 4
GMT+08:00 20187, ™ ‘Be 3c-db38-49a6- .
00bd-cdb2cb23ef20_0796", "callbackUr™: null, {-} NB-loT Device Simulator
"expireTime": 0, "command": { "serviceld": "Smoke"
‘method”: "SET_ALARM", "paras™ “{\'valugt1}" }} I Datasending Command Receiving
RequestBody: { "serviceld" "Smoke", "method” Command Receiving

2018-09-24 14:46:33

"SET_ALARM", "paras
01

f'value\" 13"}

Sernvice Smoke v

Comman SET_ALARM v

Enter a hexadecimal code stream.

—-End

1.4.3.3 Codec for Strings and Variable-Length Strings

Scenarios
A smoke detector provides the following functions:
® Reporting smoke alarms (fire severity) and temperature simultaneously, or reporting the

temperature separately.

® Reporting description. The data type of description can be string (string type) or
varstring (variable-length string type).

LnoTeE

This scenario describes how to develop a codec for data in strings and data in variable-length
strings. The data reporting and command delivery codecs are developed in the same way.
Therefore, data reporting is used as an example and command delivery is not described.

Defining the Profile File

Define the profile file in the development space of the smoke sensor.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 99

IoT Device Management

Development Guide 1 Product Development
S level :: » a prresvee
& temperature . o i;mm n R..;:: ode
D ofher_in; Jgr) » a s e

Developing a Codec

This section describes only the procedure for developing the codec for reporting the
description (other_info). For details on how to develop the codec for reporting the smoke
alarms (level) and temperature (temperature), sce Codec for Multiple Data Reporting
Messages.

Step 1 In the development space of the smoke sensor, click Codec Development.
e »

Step 2 Configure a data reporting message to report the fire severity and temperature. For details, see
Step 2.
Step 3 Configure a data reporting message to report only the temperature. For details, see Step 3.
Step 4 Configure a data reporting message to report the description of the string type.
Add Message %
Basic Information
A responsa s

Filed

“ Cance

Add the messageld field to indicate the message type. In this scenario, the value 0x0 is used
to identify the message that reports the fire severity and temperature, 0x1 is used to identify
the message that reports only the temperature, and 0x2 is used to identify the message that
reports the description (of the string type).

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 100

IoT Device Management
Development Guide 1 Product Development

Add Field X

Tagged as address field (2

*Mame When the field is tagged as address field, the field name is fixed at messageld. The names of other fizlds canncot be =et 1o messageld

messageld

Description

Data Type

intBu(8 bit unsigned integer) v

* Length (@

* Default Value (3@

0x2

Offset (@

0-1

“ Cance'

Add the other_info field to indicate the description of the string type. In this scenario, set
Length to 6.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 101

IoT Device Management
Development Guide 1 Product Development

Add Field X

Tagaoed as address fisld (%)

* Name

other_info

Description

Data Type

| string(string type)| v

* Length (2

L6 |

Default Value (3)

Offset (%)

1-7

Step 5 Configure a data reporting message to report the description of the variable-length string type.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 102

IoT Device Management

Development Guide 1 Product Development
Add Message X
Basic Information
Message Name *

Command delivery

Add response fields

Filed

“ Cancel

Add the messageld field to indicate the message type. In this scenario, the value 0x0 is used
to identify the message that reports the fire severity and temperature, 0x1 is used to identify
the message that reports only the temperature, and 0x3 is used to identify the message that
reports the description (of the variable-length string type).

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 103

IoT Device Management
Development Guide 1 Product Development

Add Field %

Tagged as address field (2

*Name When the field is tagged as address field, the field name is fixed at messageld. The names of other fields cannot be set to messageld.

messageld

Description

Data Type

int8u(8 bit unsigned integer) v

* Length @

* DefaultValue (%)

0x3

“ cance'

Add the length field to indicate the length of a string. Data Type is configured based on the
length of the variable-length string. If the string contains 255 or fewer characters, set this
parameter to int8u.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 104

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagoed as address fisld (7

* Mame

length

Description

Data Type

int8u(8 bit unsigned integer)

* Length (2)

1

Default Value (3)

Offset (3)

1-2

X

Add the other_info field to indicate the description of the variable-length string type. Set
Length Correlation Field to length. The values of Length Correlation Field Difference

and Length are automatically filled.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

105

IoT Device Management

Development Guide 1 Product Development

Add Field X

Tagged as address field (7)

* Mame

other_info

Description

Data Type

varstring(variable-length string type) v

Length Correlation Field * Length Correlation Field Difference (2

@

0
length v

Length (=) * DefaultValue (@

Mask (&

Ouxff

Offset (3)

2-3

Step 6 Drag the property fields in Device Model on the right to set up a mapping with the fields in
the data reporting messages.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 106

IoT Device Management
Development Guide

1 Product Development

Data Reporting Fields

messageld

level

temperature

Data Reporting Fields

messageld

temperature

Data Reporting Fields

messageld

other_info

Data Reporting Fields

messageld

length

other_info

o

level
3
Smoke
P cemperature
Smoke

o

P cemperature
Smoke

=]

other_info
o i
Smoke

o

NN)

other_info
3 i
Smoke

Step 7 Click Save and then Deploy to deploy the codec on the IoT platform.

Online Codec Editor

—End

Testing the Codec

@ Codec Development -

Codec Management

Device Model

Smoke ~

Attributes Commands

level

other_info

Details

Smoke

SelfSenvice Testing

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device

to test the codec.

Device List ©

Status

Device ID Product

No devices found.

@ Online Testing

B4 Seif-Service Testing

+Add

Operation

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

107

IoT Device Management
Development Guide 1 Product Development

Select No for Is Physical Device Available and click OK.

Add Test Device »

Is Physical Device Available

Yes |i(®No

ou are registering a virtual device

Step 2 Use the device simulator to report the description of the string type.

For example, a hexadecimal code stream (0231) is reported. 02 indicates the messageld field
and specifies that this message reports the description of the string type. 31 indicates the
description and its length is one byte.

View the data reporting result ({other_info=null}) in Application Simulator. The length of
the description is less than six bytes. Therefore, the codec cannot parse the description.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 108

IoT Device Management

Development Guide 1 Product Development

Command
))) Delivery P
& Application Simulator O e e » @2 loT Platform
LEE P o

m Data Receive | Command Send Data Report =

Data Report ' !

1 1
: : Command Delivery

[« 4

() NB-loT Device Simulator
B Daiasending Command Receiving
Data Sending

2018-09-25 05:25:34

0231

Service v

Comman v

Enter a hexadecimal code stream.

’*v-:I Senc m

In the second hexadecimal code stream example (02313233343536), 02 indicates the
messageld field and specifies that this message reports the description of the string type.
313233343536 indicates the description and its length is six bytes.

View the data reporting result ({other_info=123456}) in Application Simulator. The length
of the description is six bytes. The description is parsed successfully by the codec.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 109

IoT Device Management

Development Guide 1 Product Development
Command
) . . Delivery P
& Application Simulator S » @9 loT Platform
- o
m Data Receive =~ Command Send Data Report == ?
) Data Report ! !
Data Receive 11
09-24 16 |} Command Delivery

[T 4

Data Receive
2015-09-24 16:25:34 {=) NB-loT Device Simulator
{other_info=null}
B Daiasending Command Receiving
Data Sending
2018-00-25 05:27-43
02313233343536
Data Sending

2018-09-25 06:25:34

0231

Service v

Comman v

Enter a hexadecimal code stream.

02313233343536

In the third hexadecimal code stream example (023132333435363738), 02 indicates the
messageld field and specifies that this message reports the description of the string type.
3132333435363738 indicates the description and its length is eight bytes.

View the data reporting result ({other info=123456}) in Application Simulator. The length
of the description exceeds six bytes. Therefore, the first six bytes are intercepted and parsed

by the codec.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

110

IoT Device Management

Development Guide

1 Product Development

Command
L . Delivery P
&b Application Simulator S » @9 loT Platform
- o
i o
m Data Receive Command Send Data Report i
. Data Report ' !
Data Receive 1
[. R
1 1 Command Delivery
o ¥
Data Receive
2018-09-24 16:27:43 {2} NB-loT Device Simulator

{other_info=12345
Data Receive

Bl Data sending

Command Receiving

2018-09-24 16:25:34
{other_info=null} Data Sending
2018-09-25 06:29:39
02313233
Data Send
2018-09-2
i 02313233343
Senvice v Data Sending
2018-009-25 06:25:34
Comman v 0231
Enter a hexadecimal code stream.
023132333435363738
Set Time -

In the fourth hexadecimal code stream example (02013132333435), 02 indicates the
messageld field and specifies that this message reports the description of the string type.

013132333435 indicates the description and its length is six bytes.

View the data reporting result ({other info=\u000112345}) in Application Simulator. In the
ASCII code table, 01 indicates start of headline which cannot be represented by specific

characters. Therefore, 01 is parsed to \u0001.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

111

IoT Device Management
Development Guide

1 Product Development

Command
) .) Delivery P
& Application Simulator O e e m » @9 10T Platform
- o

m Data Receive = Command Send Data Report)

. Data Report ! !
Data Receive 1o
2018-09-24 16:31:13 |} Command Delivery
lother_inf 112345 (-3 4

Data Receive

2018-09-24 16:29:39

{other_info=12345
Data Receive
2018-09-24 16:27:
{other_info=12345
Data Receive
2018-09-24 16:2
{other_info=null}

52

Senvice

Comman

Step 3 Use the device

g {3} NB-loT Device Simulator

3
6

43 I Datasending Command Receiving
=31

o Data Sending

. 2018-00 06:31:13

34 02013132333435

Data Sending

2018-00-25 D6:25:34

0231

Enter a hexadecimal code stream.

02013132323435

simulator to report the description of the variable-length string type.

For example, a hexadecimal code stream (030141) is reported. In this code stream, 03
indicates the messageld field and specifies that this message reports the description of the
variable-length string type. 01 indicates the length of the description (one byte) and its length

is one byte. 41

indicates the description and its length is one byte.

View the data reporting result ({other_info=A}) in Application Simulator. A corresponds to
41 in the ASCII code table.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 112

IoT Device Management
Development Guide

1 Product Development

& Application Simulator

I} DataReceive Command Send

Data Receive
2018-09-24 16:38:52
——

Service

Comman

Command
Delivery P
_______ » @9 loT Platform
------- o
r -]
Data Report i
Data Report ' !
1 1
: : Command Delivery
ov

{5} NB-loT Device Simulator

I Datasending Command Receiving

Data Sending
2018-09-25 06:38:52
030141

Enter a hexadecimal code stream.

’:\v-:I Senc m

In the second hexadecimal code stream example (03024142), 03 indicates the messageld field
and specifies that this message reports the description of the variable-length string type. 02
indicates the length of the description (two bytes) and its length is one byte. 4142 indicates

the description and its length is two bytes.

View the data reporting result ({other info=AB}) in Application Simulator. A corresponds
to 41 and B corresponds to 42 in the ASCII code table.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 113

IoT Device Management
Development Guide

1 Product Development

& Application Simulator

I} DataReceive Command Send

Data Receive

Data Rec
2018-09-24 16:38:52
{other_info=A}

Service

Comman

Command
Delivery —
....... » @9 loT Platform
------- [-]
Data Report T
Data Report : :
: : Command Delivery
- 4

{.) NB-loT Device Simulator

B Daiasending Command Receiving

Data Sending
2 5 06:40:57

Data Sending
2018-00-25 06:38:52

030141

Enter a hexadecimal code stream.

e Senl:: m

In the third hexadecimal code stream example (030341424344), 03 indicates the messageld

field and specifies that this message reports the description of the variable-length string type.
The second 03 indicates the length of the description (three bytes) and its length is one byte.

41424344 indicates the description and its length is four bytes.

View the data reporting result ({other_info=ABC}) in Application Simulator. The length of
the description exceeds three bytes. Therefore, the first three bytes are intercepted and parsed.
In the ASCII code table, A corresponds to 41, B to 42, and C to 43.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 114

IoT Device Management
Development Guide

1 Product Development

Command
. .) Delivery
& Application Simulator O e e o » /10T Platform
- — - o
m Data Receive Command Send Data Report e
. Data Report ! !
Data Receive [
2018-09-24 7 |} Command Delivery
or

Data Receive
2018-09-24 16:40:57
{other_info=AB}
Data Receive
2018-09-24 16:38:52
{other_info=A}

{2} NB-loT Device Simulator

B Data Sending

Data Sending

Command Receiving

Service
Comman v
Enter a hexadecimal code stream.
030341424344
SetTime

In the fourth hexadecimal code stream example (0304414243), 03 indicates the messageld

field and specifies that this message reports the description of the variable-length string type.

04 indicates the string length (four bytes) and its length is one byte. 414243 indicates the

description and its length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The length of
the description is less than four bytes. The codec fails to parse the description.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

115

IoT Device Management

Development Guide

1 Product Development

Summary

d Application Simulator

Bl Data Receive

Data Receive

Data Receiv
2018-09-24 1
{other_info=ABC}
Data Receive
20158-09-24 16:40:57
{other_info=AB}
Data Receive
2018-09-24 16:38:52
{other_info=A}

Service

Comman

——End

Command Send

Command
Delivery

Data Report

@9 loT Platform
F 3
i
E

{<)NB-loT Device

Il Data sending

Data Sending

Data Report

M-----0

Data Sending

09-25 06:38:52

Enter a hexadecimal code stream.

0304414243

Command Delivery

Simulator

Command Receiving

® When data is a string or a variable-length string, the codec processes the data based on
the ASCII code. When data is reported, the hexadecimal code stream is decoded to a
string. For example, 21 is parsed to an exclamation mark (!), 31 to 1, and 41 to A. When
a command is delivered, the string is encoded into a hexadecimal code stream. For
example, an exclamation mark (!) is encoded into 21, 1 into 31, and A into 41.

® When the data type of a field is varstring(variable-length string type), the field must
be associated with the length field. The data type of the length field must be int.

® For variable-length strings, the codecs for command delivery and data reporting are
developed in the same way.

® Online developed codecs encode and decode strings and variable-length strings using the
ASCII hexadecimal standard table. During decoding (data reporting), if the parsing
results cannot be represented by specific characters such as start of headline, start of text,
and end of text, the \u+2 byte code stream values are used to indicate the results. For
example, 01 is parsed to \u0001 and 02 to \u0002. If the parsing results can be
represented by specific characters, specific characters are used.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

116

IoT Device Management
Development Guide 1 Product Development

1.4.3.4 Codec for Arrays and Variable-Length Arrays

Scenarios

A smoke detector provides the following functions:
® Reporting smoke alarms (fire severity) and temperature simultaneously, or reporting the
temperature separately.

® Reporting description. The data type of description can be array (array type) or variant
(variable-length array type).

MnoTe

This scenario describes how to develop a codec for data in arrays and data in variable-length
arrays. The data reporting and command delivery codecs are developed in the same way.
Therefore, data reporting is used as an example and command delivery is not described.

Defining the Profile File

Define the profile file in the development space of the smoke sensor.

Smoke

Attribute List

< temperature . 0001 - R
5 omerme ws o "
Developing a Codec

This section describes only the procedure for developing the codec for reporting the
description (other_info). For details on how to develop the codec for reporting the smoke
alarms (level) and temperature (temperature), scc Codec for Multiple Data Reporting
Messages.

Step 1 In the development space of the smoke sensor, click Codec Development.

Step 2 Configure a data reporting message to report the fire severity and temperature. For details, see
Step 2.

Step 3 Configure a data reporting message to report only the temperature. For details, see Step 3.

Step 4 Configure a data reporting message to report the description of the array type.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 117

IoT Device Management
Development Guide 1 Product Development

Add Message X

Basic Information

Name *

|

Command delivery

Add response fields

Filed

“ Cancel

Add the messageld field to indicate the message type. In this scenario, the value 0x0 is used
to identify the message that reports the fire severity and temperature, 0x1 is used to identify
the message that reports only the temperature, and 0x2 is used to identify the message that
reports the description (of the array type).

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 118

IoT Device Management
Development Guide 1 Product Development

Add Field X

Tagged as address field (2

*Mame When the field is tagged as address field, the field name is fixed at messageld. The names of other fizlds canncot be =et 1o messageld

messageld

Description

Data Type

intBu(8 bit unsigned integer) v

* Length (@

* Default Value (3@

0x2

Offset (@

0-1

“ Cance'

Add the other_info field to indicate the description of the array type. In this scenario, set
Length to S.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 119

IoT Device Management
Development Guide 1 Product Development

Add Field X

Tagoed as address fizld (3

* Name

other_info

Description

Data Type

| array(array type)| -

* Length (3)

[5 |

Default Value

Offset ()

1-6

Step 5 Configure a data reporting message to report the description of the variable-length array type.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 120

IoT Device Management

Development Guide 1 Product Development
Add Message X
Basic Information
Message Name *

Command delivery

Add response fields

Filed

“ Cancel

Add the messageld field to indicate the message type. In this scenario, the value 0x0 is used
to identify the message that reports the fire severity and temperature, 0x1 is used to identify
the message that reports only the temperature, and 0x3 is used to identify the message that
reports the description (of the variable-length array type).

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 121

IoT Device Management
Development Guide 1 Product Development

Add Field %

Tagged as address field (2

*Name When the field is tagged as address field, the field name is fixed at messageld. The names of other fields cannot be set to messageld.

messageld

Description

Data Type

int8u(8 bit unsigned integer) v

* Length @

* DefaultValue (%)

0x3

“ cance'

Add the length field to indicate the length of an array. Data Type is configured based on the
length of the variable-length array. If the array contains 255 or fewer characters, set this
parameter to int8u.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 122

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagoed as address fisld (7

* Mame

length

Description

Data Type

int8u(8 bit unsigned integer)

* Length (2)

1

Default Value (3)

Offset (3)

1-2

X

Add the other_info field to indicate the description of the variable-length array type. Set
Length Correlation Field to length. The values of Length Correlation Field Difference

and Length are automatically filled.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

123

IoT Device Management

Development Guide 1 Product Development

Add Field X

Tagoed as address fisld ()

* Name

other_info

Description

Data Type
variant{variable-length array type) r

Length Correlation Field * Length Correlation Field Difference (@)

@

0
length v

Length * Default Value (@)

1

Mask

Oxcff

Offset (3)

2-3

Step 6 Drag the property fields in Device Model on the right to set up a mapping with the
corresponding fields in the data reporting messages.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 124

IoT Device Management
Development Guide

1 Product Development

Data Reporting Fields

messageld

level

temperature

Data Reporting Fields

messageld

temperature

Data Reporting Fields

messageld

other_info

Data Reporting Fields

messageld

length

other_info

o

level
3
Smoke
P cemperature
Smoke

o

P cemperature
Smoke

=]

other_info
o i
Smoke

o

NN)

other_info
3 i
Smoke

Step 7 Click Save and then Deploy to deploy the codec on the IoT platform.

Online Codec Editor

—End

Testing the Codec

@ Codec Development -

Codec Management

Device Model

Smoke ~

Attributes Commands

level

other_info

Details

Smoke

SelfSenvice Testing

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device

to test the codec.

Device List ©

Status

Device ID Product

No devices found.

@ Online Testing

B4 Seif-Service Testing

+Add

Operation

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

125

IoT Device Management
Development Guide 1 Product Development

Select No for Is Physical Device Available and click OK.

Add Test Device »

Is Physical Device Available

Yes |i(®No

ou are registering a virtual device

Step 2 Use the device simulator to report the description of the array type.

For example, a hexadecimal code stream (0211223344) is reported. In this code stream, 02
indicates the messageld field and specifies that this message reports the description of the
array type. 11223344 indicates the description and its length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The length of
the description is less than five bytes. Therefore, the codec cannot parse the description.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 126

IoT Device Management
Development Guide

1 Product Development

& Application Simulator

I} DataReceive Command Send

Data Receive

Service

Comman

Command
Delivery

Data Report

@9 loT Platform

Data Report

- - ———}
N-----d

Command Delivery

(.Y NB-loT Device Simulator

B Daiasending Command Receiving

Data Sending
2018-00-25 071021

0211223344

Enter a hexadecimal code stream.

0211223344

In the second hexadecimal code stream example (021122334455), 02 indicates the messageld
field and specifies that this message reports the description of the array type. 1122334455

indicates the description and its length is five bytes.

View the data reporting result ({other info=ESIzRF=}) in Application Simulator. The
length of the description is five bytes. The description is parsed successfully by the codec.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

127

IoT Device Management
Development Guide

1 Product Development

Command
Delivery

d Application Simulator Ommmm——- »

B Data Receive

Data Receive
20158-09 17

{other _info=|

Data Receive
2018-09-24 17:10:21
{other_info=null}

Senvice

Comman

4171204

Command Send Data Report

@9 loT Platform

Data Report

-----9d

Command Delivery

o-—-——»

{3} NB-loT Device Simulator

Bl Daiasending Command Receiving

Data Sending
2018-09-25 07:12:04
021122334455

Data Sending

2018-09-25 07:10:21
0211223344

Enter a hexadecimal code stream.

021122334455

In the third hexadecimal code stream example (02112233445566), 02 indicates the messageld
field and specifies that this message reports the description of the array type. 112233445566

indicates the description and its length is six bytes.

View the data reporting result ({other info=ESIzRF=}) in Application Simulator. The
length of the description exceeds six bytes. Therefore, the first five bytes are intercepted and

parsed by the codec.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

128

IoT Device Management
Development Guide

1 Product Development

Command
R)) Delivery P
d Application Simulator Qe > @9 loT Platform
- o
m Data Receive =~ Command Send Data Report T
) Data Report ! !
Data Receive [
l : : Command Delivery
[T 4

BEJERSEET
2018-09-24 17:12:04
{other_info=ESIzRF=}

(L) NB-loT Device Simulator

Data Receive
2013-09-24 17:10:21 m Data Sending =~ Command Receiving
{other_info=null}
g
Service v
Comman v
Enter a hexadecimal code stream.
02112233445566
Set Time -

Step 3 Use the device simulator to report the description of the variable-length array type.

Fo

indicates the messageld field and specifies that this message reports the description of the

r example, a hexadecimal code stream (030101) is reported. In this code stream, 03

variable-length array type. The first 01 indicates the length of the description (one byte) and

its

length is one byte. The second 01 indicates the description and its length is one byte.

View the data reporting result ({other_info=AQ==}) in Application Simulator. AQ==is the
encoded value of 01 using the Base64 encoding mode.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

129

IoT Device Management

Development Guide 1 Product Development

Command

o . Delivery P
d Application Simulator Qe » @9 10T Platform
- -]
m Data Receive =~ Command Send Data Report o
. Data Report ' !
Data Receive 1o
1 1 .
1 1 Command Delivery
or

{<)NB-loT Device Simulator

B Datasending Command Receiving

Data Sending
2018-00-25 07:23:27
030101

Sernvice

Comman

Enter a hexadecimal code stream.

SetTime .
.A.‘-.:I Senl:: m

In the second hexadecimal code stream example (03020102), 03 indicates the messageld field
and specifies that this message reports the description of the variable-length array type. 02
indicates the length of the description (two bytes) and its length is one byte. 0102 indicates

the description and its length is two bytes.

View the data reporting result ({other _info=AQI=}) in Application Simulator. AQI= is the
encoded value of 01 using the Base64 encoding mode.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 130

IoT Device Management
Development Guide

1 Product Development

Command
o . Delivery P
d Application Simulator Qe > @9 loT Platform
- o

m Data Receive = Command Send Data Report .

. Data Report ' |
Data Receive 1o

1 1 -
: 1 1 Command Delivery

i [T 4
Data Receive _
2018-09-24 17:23:28 {.} NB-loT Device Simulator

{other_info=AQ==}
BT Daiasending Command Receiving

Data Sending
2018-09-25 07:25:56
03020102

Data Sending

2018-09-25 07:23:27

030101
Service A
Comman A
Enter a hexadecimal code stream.
03020102
Set Time -

In the third hexadecimal code stream example (03030102), 03 indicates the messageld field

and specifies that this message reports the description of the variable-length array type. 03

indicates the length of the description (three bytes) and its length is one byte. 0102 indicates

the description and its length is two bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The length of

the description is less than three bytes. The codec fails to parse the description.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

131

IoT Device Management

Development Guide 1 Product Development

Command
. . . Delivery P
d Application Simulator O e » @9 loT Platform
- o
m Data Receive =~ Command Send Data Report = ?
. Data Report ' !
Data Receive (|
2018-09-24 17:25:24 | | Command Delivery
-3 4
Data Receiv
2018-09-24 17:25:56 {-) NB-loT Device Simulator
{other_info=AQI=}
Data Receive
2018-09-24 17:23:28 m Data Sending =~ Command Receiving
{other_info=AlI==}
12824
07:25:56
Service v
Comman v
Enter a hexadecimal code stream.
03030102
SetTime .

In the fourth hexadecimal code stream example (0303010203), 03 indicates the messageld
field and specifies that this message reports the description of the variable-length array type.
The second 03 indicates the length of the description (three bytes) and its length is one byte.
010203 indicates the description and its length is three bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. AQID is the
encoded value of 010203 using the Base64 encoding mode.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 132

IoT Device Management

Development Guide

1 Product Development

EQ} Data Receive

Data Receive

Command
- . . Delivery .
& Application Simulator O e e m » @9 10T Platform
- o

Command Send Data Report o

Data Report ! !

]]
: : Command Delivery

[T 4

2013-09-24 17:28:24 (.Y NB-loT Device Simulator
{other_info=null} -

Data Receive

2018-09-24 17:25:56 m Data Sending ~ Command Receiving

{other_info=AQI=}
Data Receive
2018-09-24 17:23:28
{other_info=AQ==}

Senvice

Comman

Data Sending
2018-09-25 07:30:22
0303010203
Data Sending
2018-00-25 07:28:24
03030102
Data Sending
2018-09-25 07:25:56
v 03020102
Data Sending
2018-09-25 07:23:27
030101

Enter a hexadecimal code stream.

0303010202

In the fifth hexadecimal code stream example (030301020304), 03 indicates the messageld
field and specifies that this message reports the description of the variable-length array type.
The second 03 indicates the length of the description (three bytes) and its length is one byte.
01020304 indicates the description and its length is four bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. The length of
the description exceeds three bytes. Therefore, the first three bytes are intercepted and parsed.
AQID is the encoded value of 010203 using the Base64 encoding mode.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 133

IoT Device Management

Development Guide

1 Product Development

d Application Simulator

Data Receive

Data Receive

2018-09-24 17:30:22
{other_info=AQID}
Data Receive
2018-09-24 17:28:24
{other_info=null}
Data Receive
2018-09-24 17:25:56
{other_info=AQI=}
Data Receive

Senvice

Comman

—--End

Description of Base64 Encoding Modes

Command Send

Command
Delivery

Data Report

©9 10T Platform

Data Report

Command Delivery

{2} NB-loT Device Simulator

Bl Data Sending

Data Sending
2018-09-25 07:33:01
030301020304

Data Sending

Command Receiving

2018-09-25 07:30:22
0303010203

Data Sending
2018-00-25 07:28:24
03030102

Data Sending

20 5 07:25:56
03020102

Data Sending
2018-00-25 07:23:27

030101

Enter a hexadecimal code stream.

030301020204

In the Base64 encoding modes, three 8-bit bytes (3 x 8 =24) are converted into four 6-bit
bytes (4 x 6 = 24), and 00 are added before each 6-bit byte to form four 8-bit bytes. If the
code stream to be encoded contains less than three bytes, fill the code stream with 0. The byte
that is filled with 0 is displayed as an equal sign (=) after it is encoded.

Developers can encode hexadecimal code streams as characters or values using the Base64
encoding modes. The encoding results obtained in the two modes are different. The following

uses the hexadecimal code stream 01 as an example:

Use 01 as characters. It contains fewer than three characters. Therefore, add one 0 to
obtain 010. Query the ASCII code table to convert the characters into an 8-bit binary
number, that is, 0 is converted into 00110000 and 1 into 00110001. Therefore, 010 can
be converted into 001100000011000100110000 (3 x 8 = 24). The binary number can be
split into four 6-bit numbers: 001100, 000011, 000100, and 110000. Then, pad each 6-bit
number with 00 to obtain the following numbers: 00001100, 00000011, 00000100, and
00110000. The decimal numbers corresponding to the four 8-bit numbers are 12, 3, 4,
and 48, respectively. You can obtain M (12), D (3), and E (4) by querying the Base64
coding table. As the last character of 010 is obtained by adding 0, the fourth 8-bit

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 134

IoT Device Management
Development Guide 1 Product Development

number is represented by an equal mark (=). Finally, MDE= is obtained by using 01 as
characters.

® Use 01 as a value (that is, 1). It contains fewer than three characters. Therefore, add 00 to
obtain 100. Convert 100 into an 8-bit binary number, that is, 0 is converted into
00000000 and 1 is converted to 00000001. Therefore, 100 can be converted to
000000010000000000000000 (3 x 8 = 24). Then, convert the binary number into four 6-
bit numbers: 000000, 010000, 000000, and 000000. Pad each 6-bit number with 00 to
obtain 00000000, 00010000, 00000000, and 00000000. The decimal numbers
corresponding to the four 8-bit numbers are 0, 16, 0, and 0, respectively. You can obtain
A (0) and Q (16) by querying the Base64 coding table. As the last two characters of 100
are obtained by adding 0, the third and fourth 8-bit numbers are represented by two equal
marks (==). Finally, AQ==is obtained by using 01 as a value.

Summary

® When the data is an array or a variable-length array, the codec encodes and decodes the
data using Base64. For data reporting messages, the hexadecimal code streams are
encoded using Base64. For example, 01 is encoded into AQ==. For command delivery
messages, characters are decoded using Base64. For example, AQ==is decoded to 01.

® When the data type of a field is variant(variable-length array type), the field must be
associated with the length field. The data type of the length field must be int.

® For variable-length arrays, the codecs for command delivery and data reporting are
developed in the same way.

® When the codecs that are developed online encode data using Base64, hexadecimal code
streams are encoded as values.

1.4.3.5 Codec for Containing Command Execution Results

Scenarios

A smoke detector provides the following functions:

® Reporting smoke alarms (fire severity) and temperature
® Remote command, which can enable the alarm function remotely

For example, the smoke detector can report the temperature on the fire scene and
remotely trigger the smoke alarm for evacuation.

® Reporting command execution results

Defining the Profile File

Define the profile file in the development space of the smoke sensor.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 135

IoT Device Management
Development Guide 1 Product Development

Smoke 2019/01/07 14:56:25
Attribute List
S level

Data Type

« temperature int 0~ 10000 -

<5
x

Command List

(s SET_ALARM

Command Fields

Data Type Range Step Unit Mandatory
int 0-~3 - -

value

Response Command Fields

result

Developing a Codec

Step 1 In the development space of the smoke sensor, click Codec Development.
OFme]

Step 2 Configure a data reporting message to report the fire severity and temperature.
Add Message X

Basic Information

Message Name *

smokeinfo

() Data reporting Command delivery

Add response fields

Filed

“ Cancel

Add the messageld field to indicate the message type.

® In this scenario, there are two types of data reporting messages. Therefore, the
messageld field must be defined to identify the message type.

® Data Type is configured based on the number of data reporting message types. In this
scenario, only two types of data reporting messages are available. Therefore, the value
int8u will suffice.

® Default Value can be changed but must be in hexadecimal format. In addition, the
corresponding field in data reporting messages must be the same as the default value. In
this scenario, the value 0x0 is used to identify the message that reports the fire severity
and temperature.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 136

IoT Device Management
Development Guide 1 Product Development

Add Field X

Tagged as address field (3)

*MName ‘When the field is tagoed as address field, the field name is fixed at messageld. The names of other fields cannot be set to messageld.

messageld

Description

[w]
@
o
=
)
@

)

)

0x0

Offset (@

0-1

“ Cance‘

Add a level field to indicate the fire severity.

® Name can contain only letters, digits, underscores (_), and dollar signs ($) and cannot
start with a digit.

® Data Type is configured based on the data reported by the device and must match the
type defined in the profile file.

® The values of Length and Offset are automatically filled based on Data Type.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 137

IoT Device Management
Development Guide

1 Product Development

Add Field

Tagaoed as address field ()

* Name

level

Description

Data Type

int8u(d bit unsigned integer)

* Length (%)

1

Default Value (3)

Offset ()

1-2

X

Add the temperature field to indicate the temperature at the fire scene. In the profile file, the
maximum value of temperature is 1000. Therefore, set the data type of the temperature
field to int16u in the codec to meet the value range requirement of temperature.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

138

IoT Device Management
Development Guide 1 Product Development

Add Field p4

Tagoed as address fisld

* Name

temperature

Description

Data Type

int16u(16 bit unsigned integer) v

* Length (@

2

Default Value

Dffset

2-4

Step 3 Configure a command delivery message.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 139

IoT Device Management
Development Guide 1 Product Development

Add Message X

Basic Information

Add respense fields

Filed

Add Filed

Response Field

“ Cancel

Add the messageld field to indicate the message type. If there is only one type of command
delivery message, this parameter does not need to be set.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 140

IoT Device Management
Development Guide 1 Product Development

Add Field X

Tagged as address field ()

Tagged as response 10 field ()

*Mame When the field is tagged a2 address field, the field name is fixed 3t messageld. The names of other figlds cannot be =et to messageld.

messageld

Description

Data Type

int8u(8 bit unsigned integer) v

* Lengih @

* Default Value (@

Ox1

Offset (3)

0-1

“ Cance'

Add the mid field to associate the delivered command with the command execution result.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 141

IoT Device Management
Development Guide 1 Product Development

Add Field *

Tagoed as addrass fisld (5)

Tagoed as response 1D fisld ()

*Mame When the field is tagged as response D figld, the fisld name must be fixed at mid. The names of other fislds cannot be set to mid.

mid

Description

Data Type

int16u(16 bit unsigned integer) v

* Length (@

2

Default Value (@)

Offset (@

1-3

“ Cance'

Add the value field to indicate the parameter value of the delivered command.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 142

IoT Device Management
Development Guide 1 Product Development

Add Field x

Tagged as address fisld ()

Tagged as response 1D fisld (3

* Mame

value

Description

Data Type

int8u(8 bit unsigned integer) v

Length (&)

1

Default Value ()

Offset (@)

3-4

Step 4 Configure a command response.

Add the messageld field to indicate the message type. The command execution result is an
upstream message, which is differentiated from the data reporting message by the messageld
field.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 143

IoT Device Management
Development Guide 1 Product Development

Add Field %

Tagged as address field (7)
Tagged as response D field (5

Tagged as command execution status field (2

*MName ‘When the field is tagoed as address field, the field name is fixed at messageld. The names of other fields cannot be set to messageld.

messageld

Description

Data Type

intBu(8 bit unsigned integer) v

* Lengih @

1

* Default Value (@

0x2

Offset (D

0-1

“ Cance'

Add the mid field to associate the delivered command with the command execution result.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 144

IoT Device Management
Development Guide 1 Product Development

Add Field *
Tagoed as address field (2

Tagoed as response 1D fisld (2)

Tagged as command execution status field (@)

*Mame When the field is tagged as response 1D field, the field name must be fixed at mid. The names of other fields cannot be set fo mid.

mid

Description

Data Type

int16u(16 bit unsigned integer) v

* Length (3

Default Value (@)

Offset @)

1-3

“ Cance'

Add the errcode field to indicate the command execution status. 00 indicates success and 01
indicates failure. If this field is not carried, the command is executed successfully by default.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 145

IoT Device Management
Development Guide 1 Product Development

Add Field X

Tagoed as address field (5)
Tagged as response 1D figld (2

Tagged as command execution status field (3

*MName When the field is tagged as errcode field, the field name is fixed at Errcode. The names of other figlds cannot be set to Errcode.

errcode

Description

Data Type

int8u(8 bit unsigned integer) v

* Length (@

1

Default Value (@)

“ Cance'

Add the result field to indicate the command execution result.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 146

IoT Device Management
Development Guide 1 Product Development

Add Field *

Tagged as address fisld (%)
Tagoed as response 10 fisld (3

Tagaoed as command execution status field (2

* Mame

result

Description

Data Type

int8u(8 bit unsigned integer) v

Length (3

1

Default Value (7

Offset (3

4-5

Step 5 Drag the property fields and command fields in Device Model on the right to set up a
mapping with the fields in the data reporting message and command delivery message.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 147

IoT Device Management

Development Guide 1 Product Development

Device Model

T E Smoke N

W tevel
Smoke

P cemperature
Smoke

Attributes Commands

other_info

L level

Lcl temperature

Data Reporting Fields

messageld

level

temperature

Response Fields
messageld
mid

ercode

% m a
&
SET_ALARM
SET_ALARM
Details
result
on SET_ALARM smoke
Command Delivery Fields t
messageld
mid
value

result

Step 6 Click Save and then Deploy to deploy the codec on the IoT platform.

Online Codec Editor Codec Management

—-End

Testing the Codec

Step 1 In the development space of the smoke sensor, click Online Testing and add a virtual device
to test the codec.

© o]
Device List @

Type Operation

Status Device Name Device ID Product Model

No devices found.

Select No for Is Physical Device Available and click OK.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 148

IoT Device Management

Development Guide 1 Product Development

Add Test Device b4

Is Physical Device Available

Yes | (@) No

ou are registering a virtual device.

Step 2 Use the application simulator to deliver a command ({ "serviceld": "Smoke", "method":
"SET_ALARM", "paras": "{\"value\":0}" }).

View the command receiving result in Device Simulator, which is 01000100. 01 indicates the
messageld field, 0001 indicates the mid field, and 00 indicates the value field.

Command
Delivery

& Application Simulator R »

) loT Platform

m Data Receive Command Send Data Report
Data Report

Command Send: 2018-08-25 07:58:15
RequestHeader: { "time": "Mon Sep 24 17:58:15 C5T
2018", "requestld”: "cd660b20-d247-0544-1731-
f4550e27e8ac_0416", "callbackUrl"™: null, "expireTime":
0, "command": { "serviceld™ "Smoke", "method":
"SET_ALARM", "paras™ "{\'value\"0}" } } B Datasending | Command Receiving

Command Delivery

o—--—-)
4-----d

(L) NB-loT Device Simulator

RequestBody: { "serviceld" "Smoke”, "method™ Command Receiving

'SET_ALARM", "paras™ "{\'value\":0}" } 2018-00-25 07:58:15
01000100

Sernvice Smoke v

Comman SET_ALARM v

value * Enter an integer range[0 |, 1]

0

Enter a hexadecimal code stream.

[=1]

Auto Send

Step 3 Use the device simulator to report data.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 149

IoT Device Management
Development Guide 1 Product Development

For example, a hexadecimal code stream (0200010000) is reported. In this code stream, 02
indicates the messageld field and specifies that this message reports the command execution
result. 0001 indicates the mid field and its length is two bytes. 00 indicates the command
execution status and its length is one byte. The second 00 indicates the command execution
result and its length is one byte.

Choose Device Management and select the device that reports the command execution result.
On the page displayed, click the Historical Commands tab to view the command execution
status. In this case, the status is SUCCESSFUL.

O Refresh

SUCCESSFUL|

{ "serviceld": "Smoke", "method": "SET_ALARM", "paras”: { "value™: 0} } { "result™: 0 }

—End

Summary

® [fthe codec needs to parse the command execution result, the mid field must be defined
in the command and the command response.

® The length of the mid field in a command is two bytes. For each device, mid increases
from 1 to 65535, and the corresponding code stream ranges from 0001 to FFFF.

® After a command is executed, the mid field in the reported command execution result
must be the same as that in the delivered command. In this way, the loT platform can
update the command status.

1.4.4 Reference

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 150

IoT Device Management
Development Guide 1 Product Development

1.4.4.1 Message Processing Flow
Data Reporting

Figure 1-19 Data reporting flow

loT Codec
platform plug-in

Upstream message
msgT YLIBZ::IEUIEBHEE]_F

-

Parses the CoAF message to obtain the payload.

4%

Queres the correspondin

=]

codec plug-in.

t

Decode 1
Input: payload »
I
—Qutput: JSON data—
I

1
L—Sends a device data reporting notification. —jpe
|

Encode 1 >
Input: JEOM data |
e — ~Output: payload — —

A

L;;:— Response o |
msgTypa:cloudRsp

I = I I

I I

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 151

IoT Device Management
Development Guide 1 Product Development

Order Delivery

Figure 1-20 Order delivery flow

Codec loT
plug-in platform

|

Lownstream message

:‘t msgType: devicaReq

I

I

I

I I

| Clueries the corresponding codec plug-in.
I
I

I
E | ¢
Encode 2

I
I
I
I
I
I
| = Tlnput: JSOM data™ 1
| | |
|
|
|
|
|
|

F—Cutput: binary data—pel
I (-
I
| Encapsulates the data to a CoAP packet.
I =
I I
= — — — -Sends the packet to the UE.- — — — —

I | I
1

|—Repn"rs the order result execution res;I.IT.—p:
I

- _ Decode 2]

™ Input: binary data |

I

Dutput: JSOM data—pel

I
I
I
I
|
|
|
|
I
I
I
I
I
I
I
I
I
[I
[I
I I
I I
| |—ﬂ’.e ports a "Dliﬁ:;ﬂliun.b]
I I I
I I

1.4.4.2 decode API Description

The input parameter binaryData over the decode API is the payload in the CoAP message
sent by a device.

Upstream packets of a device can be classified into the following types: data reported by
device and responses of the device to the [oT platform (corresponding to messages 1 and 5 in
the following figure). Message 4 is the protocol ACK message returned by the module. No
plug-in processing is required. The decoding output fields vary depending on the upstream
packet.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 152

IoT Device Management
Development Guide 1 Product Development

Figure 1-21 Upstream packet

Applicatione IoT Flatforme Devices
T T T T 4
! DataReport {deviceReq) (T '
] -
]
: Pushmessages cloudRsp @ N Process 1¢
| (deviceDataChanged)« g T
i 1
| B !
T e e 2
i Post commandse . !
[} Lt
; Post commands (cloudBeq) ®':. ,'
¥ L 1
! Pushmessages (command
: Delivereds - ACK &0 Process2«
| < T
1
| ;
1
] Push message§ {command evierat) :
1 _ Buccessful/Failed)y < !
1 el
| S | L S 1
Table 1-4 Data reported by the device
Field Type Description Mandato
ry or
Optional
identifier | String Specifies the identifier of the device in the Optional
application protocol. The [oT platform obtains
the parameter over the decode interface,
encodes the parameter over the encode
interface, and places the parameter in a stream.
msgType | String This field has a fixed value of deviceReq, Mandator
which indicates that the device reports datato |y
the IoT platform.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 153

IoT Device Management

Development Guide 1 Product Development
Field Type Description Mandato
Iy or
Optional
hasMore Int Specifies whether the device has subsequent Optional

data to report.
® (: The device has subsequent data to report.

® 1: The device has no subsequent data to
report.

Subsequent data indicates that a piece of data
reported by a device may be reported in
multiple times. After the data is reported in the
current time, the [oT platform determines
whether there are subsequent messages using
the hasMore field. The hasMore field is valid
only in PSM mode. When the hasMore field
of reported data is set to 1, the IoT platform
does not deliver cached commands until it
receives reported data whose hasMore field is
set to 0. If the reported data does not contain
the hasMore field, the IoT platform processes
the data assuming that the hasMore field is set

to 0.
data ArrayNode Specifies content of data reported by the Mandator
device. For details, see Table 1-5. y

Table 1-5 Definition of ArrayNode

Field Type Description Mandato
Iy or
Optional
serviceld String Identifies a service. Mandator
y
serviceData | ObjectNode | Specifies the data of a service. Detailed fields | Mandator
are defined in the profile file. y
eventTime String Specifies the data collection time, which is in Optional

the format of yyyyMMddTHHmmssZ, for
example, 20161219T114920Z.

Example:

{
"identifier":"123",
"msgType" :"deviceReq",
"hasMore":0,
"data": [{"serviceId":"NBWaterMeterCommon",
"serviceData": {
"meterId":"xxxx",

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 154

IoT Device Management
Development Guide 1 Product Development

"dailyActivityTime":120,
"flow": "565656",
"cellId":"5656",
"signalStrength":"99",
"batteryVoltage":"3.5"
}
"eventTime":"20160503T1215402"} ,
{"serviceId":"waterMeter",
"serviceData":{"internalTemperature":256},
"eventTime":"20160503T121540Z"}
1

Table 1-6 Response sent by the device to the IoT platform

Field Type Description Mandato
ry or
Optional

identifier String Specifies the identifier of the device in the Optional

application protocol. The [oT platform obtains
the parameter over the decode API, encodes
the parameter over the encode API, and places
the parameter in a stream.

msgType String This field has a fixed value of deviceRsp, Mandator
which indicates that the IoT platform sends a y
response to the device.

mid Int Specifies a 2-byte unsigned command ID. If Mandator
the device must return the command execution |y

result (deviceRsp), this field is used to
associate the command execution result
(deviceRsp) with the corresponding command.

When the IoT platform delivers a command
over the encode API, the IoT platform places
the MID allocated by the IoT platform into a
stream and delivers the stream to the device
together with the command. When the device
reports the command execution result
(deviceRsp), the device returns the MID to the
[oT platform. Otherwise, the IoT platform
cannot associate the delivered command with
the command execution result (deviceRsp). As
a result, the IoT platform cannot update the
command delivery status (success or failure)
based on the command execution result

(deviceRsp).
errcode Int Specifies the request processing result code. Mandator
The [oT platform determines the command y

delivery status based on this field.
® (: success
® 1: failure

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 155

IoT Device Management

Development Guide 1 Product Development
Field Type Description Mandato
ry or
Optional
body ObjectNode | Specifies the response to the command sent by | Optional
the IoT platform. Detailed fields are defined in
the profile file.
NOTE
The body is not an array.
Example:
{
"identifier": "123",
"msgType": "deviceRsp",
"mid": 2016,
"errcode": O,
"body": {
"result": O

}

1.4.4.3 Description of encode API

Input parameters of the encode API are commands or responses in JSON format delivered by
the IoT platform.

Downstream packets of the [oT platform are classified into commands sent by the IoT
platform and responses sent by the IoT platform for data reported by devices (corresponding
to messages 2 and 3 in the following figure). The encoding output fields vary depending on
the downstream packet.

Figure 1-22 Downstream packet

Applicatione

IoT Flatforme

Deviced

Data Report (deviceReq) T

Pushmessages

F 3

cloudRsp @«

(deviceDataChanged)e

Y

Post commandse

h 4

Pushmessages (command
Deliverad)e

Post commands (cloudBeq) ®':.

ACE @0

Process 2+

I Y

Y

Push messages (command
BSuccessful/Failed)«

deviceRsp B

b=

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

156

IoT Device Management

Development Guide

1 Product Development

Table 1-7 Definition of input parameters of the encode API over which the [oT platform
delivers commands

Field Type Description Mandato
ry or
Optional
identifier String Identifier of the device in the application Optional
protocol. The IoT platform obtains the
parameter over the decode API, encodes the
parameter over the encode API, and places the
parameter in a stream.
msgType String This field has a fixed value of cloudReq, Mandator
which indicates that the IoT platform delivers a | y
request.
serviceld String Identifier of a service. Mandator
y
cmd String Name of a service command. For details about | Mandator
the service command definition, see the profile |y
file.
paras ObjectNode | Command parameters. Detailed fields are Mandator
defined in the profile file. y
hasMore Int Whether the IoT platform has subsequent Mandator
commands to deliver. y
® (: The [oT platform does not have
subsequent commands to deliver.
® 1: The IoT platform has subsequent
commands to deliver.
Subsequent commands indicate that the [oT
platform still needs to deliver commands, and
the hasMore field is used to tell the device not
to sleep. The hasMore field is valid only in
PSM mode with the downstream message
indication function enabled.
Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 157

IoT Device Management

Development Guide

1 Product Development

Field

Type

Description

Mandato

ry or
Optional

mid

Int

A 2-byte unsigned command ID that is
allocated by the IoT platform. (The value
ranges from 1 to 65535.)

When the IoT platform delivers a command
over the encode API, the IoT platform places
the MID allocated by the IoT platform into a
stream and delivers the stream to the device
together with the command. When the device
reports the command execution result
(deviceRsp), the device returns the MID to the
IoT platform. In this way, the IoT platform
associates the delivered command with the
command execution result (deviceRsp) and
updates the command delivery status
accordingly.

Mandator
y

Example:

{

"identifier":
"msgType":
"serviceId":
"mid": 201le6,

"123",
"cloudReq",
"NBWaterMeterCommon",

"cmd" : "SET_TEMPERATURE_READ_PERIOD" 0
"paras": {
"value": 4

}I

"hasMore": 0}

Table 1-8 Definition of input parameters of the encode API over which the IoT platform

responds to data reported by a device

Field Type Description Mandato
ry or
Optional
identifier String Identifier of the device in the application Optional
protocol. The IoT platform obtains the
parameter over the decode API, encodes the
parameter over the encode API, and places the
parameter in a stream.
msgType String This field has a fixed value of cloudRsp, Mandator
which indicates that the IoT platform sends a y
response for data reported by a device.
request byte[] Data reported by the device. Mandator
y
Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 158

IoT Device Management
Development Guide

1 Product Development

Field

Mandato

ry or
Optional

Type Description

errcode

Mandator
y

int Request processing result code. The IoT
platform determines the command delivery

status based on this field.
® (: success
® 1: failure

hasMore

Mandator
y

int Whether the IoT platform has subsequent

messages to deliver.

® (: The [oT platform does not have
subsequent messages to deliver.

® 1: The [oT platform has subsequent
messages to deliver.

Subsequent messages indicate that the [oT
platform still needs to deliver commands, and
the hasMore field is used to tell the device not
to sleep. The hasMore field is valid only in
PSM mode with the downstream message
indication function enabled.

MnoTe

If msgType is set to cloudRsp and null is returned by the codec detection tool, the codec does not
define the response to the reported data and the [oT platform does not need to respond.

Example:

{

"identifier": "123",
"msgType": "cloudRsp",
"request": [

1l

2
]I
"errcode": O,
"hasMore": 0

1.4.4.4 getManufacturerld Interface Description

This interface is used to return the vendor ID in the format of a character string. The IoT
platform calls this interface to obtain the vendor ID to associate the codec plug-in with the
profile file. The association is successful only when the vendor ID and device model are
consistent.

Example:

@Override
public String getManufacturerId() {

return

}

"TestUtf8ManuId";

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 159

IoT Device Management
Development Guide 1 Product Development

1.4.4.5 getModel Interface Description

This interface is used to return the device model in the format of a character string. The IoT
platform calls this interface to obtain the device model to associate the codec plug-in with the
profile file. The association is successful only when the vendor ID and device model are
consistent.

Example:

@Override

public String getModel () {
return "TestUtf8Model";

}

1.4.4.6 Precautions on Interface Implementation

Support for Thread Security Required

The decode and encode functions must ensure thread security. Therefore, member or static
variables cannot be added to cache intermediate data.

Incorrect example: When multiple threads are started at the same time, the status of thread A
is set to Failed while the status of thread B is set to Success. As a result, the status is
incorrect, and the program running is abnormal.

public class ProtocolAdapter {
private String status;

@Override

public ObjectNode decode (finalbyte[] binaryData) throws Exception ({
if (binaryData == null) ({

status = "Failed";

return null;

}

ObjectNode node;
status = "Success";
return node;

}

@Override
public byte[] encode(finalObjectNode input) throws Exception {
if ("Failed".equals(status)) {

status = null;
return null;

}

byte[] output;
status = null;
return output;
}

}

Correct example: Encoding and decoding are performed based on the input parameters, and
the encoding and decoding library does not process services.

public class ProtocolAdapter {

@Override

public ObjectNode decode (finalbyte[] binaryData) throws Exception {
ObjectNode node;

return node;

}

@Override

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 160

IoT Device Management

Development Guide

1 Product Development

public bytel]
byte[]

output;

.o

return output;

}
}

Explanation of

the mid Field

encode (finalObjectNode input)

throws Exception ({

The IoT platform delivers orders in sequence. However, the loT platform does not respond to
the order execution results in the same sequence as the delivered orders. The MID is used to
associate the order execution result response with the delivered order. On the IoT platform,
whether the MID is implemented affects the message flow.

When the MID is implemented:

Figure 1-23 Message flow with the MID implemented

“deviceld” : "xx”,

commandld” o,

NA server

"deviceld" : "xx",

commandld” :xx,
“result” : {
“resultCode” D *SENT",
“resultDetail” : }

\

HTTP response

loT platform

Delivers an order.

Sent notification

“deviceld” : "xx”,

commandld” :xx,

“result” : {
“resultCode” : “*DEUVERED",
“resultDetail” : }

/Delivered notification

“deviceld” : "xx”,

commandld” :xx,

“result” : {
“resultCode” : *“SUCCESSFUL",
resultDetail” : }

/NOTWIC&UO“ of the order execution result

CoAP ACK

Delivers an order.
(mid = 1)

Response carrying the order execution result
(mid = 1)

Updates the status of the
order execution result to

the |oT platform database.

Queries the order.

/

“deviceld” : "xx”,

commandid : xx,

“result™ {

“resultCode™ " SUCCESSFUL",
“resultDetai™ {}

HTTP response

If the MID is implemented and the order execution result is reported successfully:

1.

record of the order in the IoT platform database.

contains commandId.

SUCCESSFUL/FAILED.

When the MID is not implemented:

The status (SUCCESSFUL/FAILED) in the order execution result is updated to the

The order execution result notification sent by the IoT platform to the NA server

The query result of the NA server indicates that the status of the order is

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

161

IoT Device Management

Development Guide

1 Product Development

Figure 1-24 Message flow with the MID unimplemented

“deviceld” : "xx",
“commandld” : xx,

= plaﬁorm

“deviceld” : "xx",
“commandld” :xx,
“result” : {
“resultCode” : “SENT",
“resultDetail” : }

Delivers an order.

\ — — -Sent notification

"deviceld" : "xx",
“commandld” ;o
“result” : {
“resultCode” : “DEUVERED",
“resultDetail” : }

“deviceld” : "xx",
“result” - {

“resultCode” : *“SUCCESSFUL",

“resultDetail” : }

|
Nctification of the order execution result

"deviceld" : "xx",
“commandld” ; xx,
“result™ {

“resultCode™ " DELIVERED",

“resultDetail™, §

|
|
|
|
|
|
I
|
I
|
|
'(_‘_‘———:~t— Delivered notification
|
|
|
|
|
|
|
|
|
|

I
I
I
I
|
HTTP response :
I
|
I
l
I

|
|
|
|
|
I
Delivers an order. |
|
I
I
|
I
|

(mid = 1)
CoAP ACK

Response carrying the order execution result
I

loT platform database. |

Ifan DMerrespunseduEsnut carry the MID, the
loT platform cannot identify the order associated
with the response. Therefore, the responze
notification does not cary the command 1D and

the order execution resflt iz notupdated to the

|
Queries the order. |
|
T

command ocutput.

Az the order respnnsl‘ iz not updated to the
database, DELIVERED is displayed in the

I
|

\ f
: HTTP response |

|

|

If the MID is not implemented and the order execution result is reported successfully:

1.

record of the order in the IoT platform database.

not contain commandId.

DELIVERED.

The status (SUCCESSFUL/FAILED) in the order execution result is not updated to the

The order execution result notification sent by the IoT platform to the NA server does

The query result of the NA server indicates that the final status of the order is

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

162

IoT Device Management
Development Guide 1 Product Development

(MnoTe

® The preceding two message flows are used to explain the function of the mid field. Some message
flows are simplified in the figures.

® In scenarios where whether orders are sent to the device is concerned but the order execution is not
concerned, the device and codec plug-in do not need to process the MID.

® [fthe MID is not implemented after the vendor evaluation, the NA server cannot obtain the order
execution result from the IoT platform. Therefore, the NA server needs to implement the solution by
itself. For example, after receiving the order execution result response (without commandld), the
NA server can do as follows:

® Match the response with the order according to the sequence in which orders are delivered. In
this way, when the IoT platform delivers multiple orders to the same device at the same time,
the order execution result is matched with the delivered order incorrectly if packet loss occurs.
Therefore, it is recommended that the NA server deliver only one order to the same device
each time. After receiving the order execution result response, the NA server delivers the next
order.

® [dentify the mapping between the order execution result response and the delivered order
according to the information in the resultDetail field. The codec plug-in can add order-related
information, such as an order code, to the resultDetail field of the order response to help
identify the order.

Do Not Use DirectMemory

The DirectMemory field directly calls the OS interface to apply for memory and is not
controlled by the JVM. Improper use of the DirectMemory field may cause insufficient
memory of the OS. Therefore, the DirectMemory cannot be used in codec plug-in code.

Example of improper use: Use UNSAFE.allocateMemory to apply for direct memory.
if ((maybeDirectBufferConstructor instanceof Constructor))
{

address = UNSAFE.allocateMemory (1L) ;
Constructor<?> directBufferConstructor;

1.4.4.7 Input/Output Format of the Codec Plug-In

Table 1-9 Definition of services supported by a type of water meter

Service Attribute Name | Attribute Attribute Type (Data Type)
Type Description

Battery - - -

- batteryLevel Specifies the battery | int

level in the unit of
percent. The value
ranges from 0 to
100.

Meter - - -

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 163

IoT Device Management

Development Guide 1 Product Development
Service Attribute Name | Attribute Attribute Type (Data Type)
Type Description
- signalStrength Specifies the signal | int
strength.
- currentReading Specifies the current | int
read value.

- dailyActivityTim | Specifies the daily string
e activated
communication
duration.

The following shows the decode interface output for data reported by a device to the loT
platform.

{
"identifier": "12345678",
"msgType": "deviceReq",
"data": [
{
"serviceId": "Meter",
"serviceData": {
"currentReading": "46.3",
"signalStrength": 16,
"dailyActivityTime": 5706
}I
"eventTime": "20160503T121540Z"

"serviceId": "Battery",

"serviceData": {
"batteryLevel": 10

}I

"eventTime": "20160503T121540z"

}

The following shows the encode interface input when the IoT platform receives data reported
by the device and sends a response to the device.

{

"identifier": "123",
"msgType": "cloudRsp",
'request': [

ll

2
]I
"errcode": 0,
"hasMore": 0

}
MnoTe

The value of request can be [1,2], which is simulated data. The actual value prevails.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 164

IoT Device Management
Development Guide

1 Product Development

Table 1-10 Order definition

Basic Type Name Command | Data Type | Enumerate
Function Parameter d Value
WaterMeter Water meter | - - - -
- CMD SET TEMP | - - -
ERATURE _
READ PER
10D
- - - value int -
- RSP SET TEMP | - - -
ERATURE _
READ_PER
10D _RSP
- - - result int e (:
success
o 1:
invalid
input
o 2:
executio
n failed

The following shows the input parameters of the encode interface when the IoT platform

sends an order to the device.

{

"identifier": "12345678",
"msgType": "cloudReq",
"serviceId": "WaterMeter",
"cmd" : "SET TEMPERATURE READ PERIOD",
"paras": {
"value": 4
} 4
"hasMore": 0

}

After the IoT platform receives a response from the device, the IoT platform invokes the
decode interface for decoding. The decode interface output is as follows:

{
"identifier": "123",
"msgType": "deviceRsp",
"errcode": 0,
"body": |
"result": O

}

1.4.4.8 Implementation Sample Interpretation

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

165

IoT Device Management
Development Guide 1 Product Development

In the DEMO project of the codec (click here to obtain), an example codec is provided. The
following figure shows the sample project structure.

Figure 1-25 Sample project structure

4 = WaterMeter-Huawei-NBIoTDevice

4 (® src/mainfjava

4 [com.Huawei.NBloTDevice.WaterMeter | Codec code
> [J] ByteBufUtilsjava implementation
> 4] CmdProcess.java
> [J] ProtocolAdapterlmpljava
> 1J] ReportProcess.java
> [J] Utilty.java
4 (® src/mainfresources
4 (= OSGI-INF
I'L CodecProvideHandler.xml

l Service configuration

4 (B srcftest/java
4 8 com.Huawei.NBloTDevice.WaterMeter

> 4] ProtocolServicelmplTestjava Unit test cases
> By JRE System Library [JavaSE-1.5]

. @, Maven Dependencies
4 (= lib

& comhuawei.m2m.cigtup-1.3.1jar | Codec interface package

—_l

> 4= src

(= target
m pomxml | Maven configuration file

This project is a Maven project. You can modify the following content based on this sample
project to obtain the required codec.

(MnoTe

Use the encryption algorithms supported by the JDK. For details about these encryption algorithms, see
Appendix: Encryption Algorithms Supported by the JDK.

® Maven configuration file

In the pom.xml file, modify the name of the codec according to the naming rule.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.thrid.party</groupId>

<!-- Change it to the name of your codec. The naming rule is as follows:
device type-manufacturer ID-device model, for example: WaterMeter-Huawei-
NBIoTDevice.-—>

<artifactId>WaterMeter-Huawei-NBIoTDevice</artifactId>
<version>1.0.0</version>

<!-- Check that the value is bundle. The value cannot be jar. -->
<packaging>bundle</packaging>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<junit.version>4.11</junit.version>
<fasterxml.jackson.version>2.7.4</fasterxml.jackson.version>
<felix.maven.plugin.version>2.5.4.fixed2</felix.maven.plugin.version>

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 166

https://devcenter.huawei.com/ict/rescenter/resource/download/eresource/CMDA_FIELD_OCEAN_CONNECT/%E5%8D%8E%E4%B8%BANB-IoT%E8%AE%BE%E5%A4%87%E7%BC%96%E8%A7%A3%E7%A0%81%E6%8F%92%E4%BB%B6%E6%A0%B7%E4%BE%8B.zip

IoT Device Management
Development Guide

1 Product Development

<json.lib.version>2.4</json.lib.version>
<m2m.cig.version>1.3.1</m2m.cig.version>
<slf4j.api.version>1.7.6</slf4j.api.version>
</properties>

<dependencies>

<!-- Used by unit test -->

<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
</dependency>

<!-- Used by logs -->

<dependency>

<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j.api.version}</version>
</dependency>

<!-- Used for converting JSON; mandatory -->
<dependency>

<groupId>com. fasterxml.jackson.core</groupIld>
<artifactId>jackson-databind</artifactId>
<version>${fasterxml.jackson.version}</version>

</dependency>

<!-- Codec API provided by Huawei; mandatory -->

<!-- Replace systemPath with your local \codecDemo\lib
\com.huawei.m2m.cig.tup-1.3.1.jar -->

<dependency>

<groupId>com.huawei</groupId>

<artifactId>protocal-jar</artifactId>

<version>1.3.1</version>

<scope>system</scope>
<systemPath>${basedir}/lib/com.huawei.m2m.cig.tup-1.3.1.jar</systemPath>
</dependency>

<!-- In this example, the JAR file used for data conversion is written here.
Enter artifactId in the Embed-Dependency. -->
<dependency>

<groupId>net.sf.json-1lib</groupId>
<artifactId>json-lib</artifactId>
<version>2.4</version>
<classifier>jdkl5</classifier>
</dependency>

</dependencies>

<build>

<plugins>

<!-- The JDK1.8 version must be used. -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.8</source>

<target>1.8</target>

</configuration>

</plugin>

<!-- 0SGi packaging configuration -->

<plugin>

<groupId>org.apache.felix</groupIld>
<artifactId>maven-bundle-plugin</artifactId>
<version>${felix.maven.plugin.version}</version>
<extensions>true</extensions>

<configuration>
<buildDirectory>./target</buildDirectory>
<archive>
<addMavenDescriptor>false</addMavenDescriptor>
</archive>

<instructions>
<Bundle-RequiredExecutionEnvironment>J2SE-1.5</Bundle-

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 167

IoT Device Management
Development Guide

1 Product Development

RequiredExecutionEnvironment>

<Bundle-Activator></Bundle-Activator>
<Service-Component>0SGI-INF/*</Service-Component>

<!-- Change it to the name of your codec. The naming rule is as follows:
device type-manufacturer ID-device model, for example: WaterMeter-Huawei-
NBIoTDevice. -->
<Bundle-SymbolicName>WaterMeter-Huawei-NBIoTDevice</Bundle-SymbolicName>
<Export-Package></Export-Package>

<!-- Import packages in the code and use commas (,) to separate them. [JAR
packages that start with java.** and that are referenced in Embed-Dependency
do not need to be imported in Import-Package. Otherwise, the codec cannot be
started.] -->

<Import-Package>

org.slf4j,
org.slf4j.spi,
org.apache.log4j.spi,

com.huawei.m2m.cig.tup.modules.protocol adapter,

com. fasterxml.jackson.databind,

com. fasterxml.jackson.databind.node

</Import-Package>

<!-- For all dependency packages except junit, slf4j-api, jackson-databind,
and protocol-jar, set artifactId of each package to Embed-Dependency.
Separate artifactId values by commas (,). During Maven packaging, pack your
dependency packages into your JAR package. -->

<Embed-Dependency>

json-1lib

</Embed-Dependency>

</instructions>

</configuration>

<executions>

<execution>

<id>generate-resource</id>

<goals>

<goal>manifest</goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

Codec code implementation

- In the ProtocolAdapterImpl.java file, change the values of
MANU_FACTURERID and MODEL. The IoT platform associates the codec with

the profile file using the manufacturer ID and device model.
private static final Logger logger =
LoggerFactory.getLogger (ProtocolAdapterImpl.class) ;
//Manufacturer name

private static final String MANU_FACTURERID = "Huawei";
//Model

private static final String MODEL = "NBIoTDevice";

- Modify the code in the CmdProcess.java file so that the codec can encode

delivered commands and responses to reported data.
package com.Huaweil.NBIoTDevice.WaterMeter;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

public class CmdProcess {

//private String identifier = "123";
private String msgType = "deviceReq";
private String servicelId = "Brightness";
private String cmd = "SET DEVICE LEVEL";
private int hasMore = 0;

private int errcode = 0;

private int mid = 0;

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 168

IoT Device Management
Development Guide 1 Product Development

private JsonNode paras;

public CmdProcess () {
}

public CmdProcess (ObjectNode input) {

try {
// this.identifier = input.get ("identifier") .asText();
this.msgType = input.get ("msgType") .asText();
/*
The IoT platform receives messages reported by the device
and encodes the ACK message.
{
"identifier":"0",
"msgType":"cloudRsp",
"request": ***,//Stream reported by the device
"errcode":0,
"hasMore":0

}

‘k‘k/

if (msgType.equals ("cloudRsp")) {
//Assemble the values of fields in the ACK message.
this.errcode = input.get("errcode") .asInt();
this.hasMore = input.get ("hasMore") .asInt();

} else {

/*

The IoT platform delivers a command to the device with
parameters specified as follows:
{
"identifier":0,
"msgType":"cloudReqg",
"serviceId":"WaterMeter",
"cmd":"SET_DEVICE LEVEL",
"paras":{"value":"20"},
"hasMore":0

}
‘k‘k/
//Compatibility must be considered. If the MID is not
transferred, it is not encoded.
if (input.get ("mid") != null) {
this.mid = input.get ("mid") .intValue();
}
this.cmd = input.get ("cmd") .asText () ;
this.paras = input.get ("paras");
this.hasMore = input.get ("hasMore") .asInt();

} catch (Exception e) {
e.printStackTrace () ;

public byte[] toByte() {
try {
if (this.msgType.equals ("cloudReq")) {
/*
The NA delivers a control command. In this example,
there is only one command: SET_DEVICE_ LEVEL.

If there are other commands, determine them.

* ‘k/

if (this.cmd.equals ("SET_DEVICE LEVEL")) {
int brightlevel = paras.get ("value").asInt();
byte[] byteRead = new byte[5];
ByteBufUtils buf = new ByteBufUtils (byteRead);
buf.writeByte ((byte) O0xAA);

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 169

IoT Device Management
Development Guide

1 Product Development

buf.writeByte ((byte) 0x72);
buf.writeByte ((byte) brightlevel);

//Compatibility must be considered. If the MID is not

transferred, it is not encoded.

if (Utilty.getInstance() .isValidofMid (mid)) {
byte[] byteMid = new byte[2];
byteMid = Utilty.getInstance () .int2Bytes (mid, 2);
buf.writeByte (byteMid[0]) ;
buf.writeByte (byteMid[1]);

return byteRead;

/*
After receiving the data reported by the device, the IoT

platform encodes the ACK message as required and responds to the device.
If null is returned, the IoT platform does not need to respond.

‘k‘k/

else if (this.msgType.equals ("cloudRsp")) {
byte[] ack = new bytel[4];
ByteBufUtils buf = new ByteBufUtils (ack);
buf.writeByte ((byte) O0xAA);
buf.writeByte ((byte) O0xAA);
buf.writeByte ((byte) this.errcode);
buf.writeByte ((byte) this.hasMore)
return ack;

)
)
)
)

}
return null;

} catch (Exception e) {
// TODO: handle exception
e.printStackTrace () ;
return null;

Modify the code in the ReportProcess.java file so that the codec can decode data

reported by devices and command execution results.
package com.Huawei.NBIoTDevice.WaterMeter;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.node.ArrayNode;

import com.fasterxml.jackson.databind.node.ObjectNode;

public class ReportProcess {

//private String identifier;

private String msgType = "deviceReq";
private int hasMore = 0;
private int errcode = 0;

private byte bDeviceReq = 0x00;
private byte bDeviceRsp = 0x01;

//serviceld = Brightness
private int brightness = 0;

//serviceld = Electricity
private double voltage = 0.0;

private int current = 0;
private double frequency = 0.0;
private double powerfactor = 0.0;

//serviceld = Temperature
private int temperature = 0;

private byte noMid = 0x00;

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 170

IoT Device Management
Development Guide 1 Product Development

private byte hasMid = 0x01;
private boolean isContainMid = false;
private int mid = 0;

/**

* @param binaryData: Payload of the CoAP packet sent by the device
to the IoT platform

* Input parameters in this example: AA 72 00 00
32 08 8D 03 20 62 33 99

£ byte[0]--byte[1l]: AA 72 command header

* byte[2]: 00 mstType: 00 represents deviceReq,
which indicates that data is reported by the device.

£ byte[3]: 00 hasMore: 0 indicates that there

is no subsequent data and 1 indicates that there is subsequent data. If
the hasMore field is not contained, the value 0 is used.
£ byte[4]--byte[1l1l]: indicates service data,
which is parsed as required.//If the service data is deviceRsp, byte[4]
indicates whether the MID is carried and byte[5] to byte[6] indicate the
short command ID.
* Q@return
=/
public ReportProcess (byte[] binaryData) {
//The identifier parameter can be obtained based on the input
parameter stream. In this example, the default value is 123.
// identifier = "123";

/*
If the data is reported by the device, the return value is in
the following format:
{

"identifier":"123",

"msgType" :"deviceReq",
"hasMore":0,
"data":[{"serviceId":"Brightness",

"serviceData":{"brightness":50},
{
"serviceId":"Electricity",
"serviceData":{"voltage":218.9,"current":
800, "frequency":50.1, "powerfactor":0.98},
{
"serviceId":"Temperature",
"serviceData": {"temperature":25},
1
}

=/
if (binaryDatal[2] == bDeviceReq) {
msgType = "deviceReq";
hasMore = binaryDatal3];
//serviceld = Brightness
brightness = binaryDatal4];
//serviceld = Electricity
voltage = (double) (((binaryDatal5] << 8) + (binaryDatal6] &
OxFF)) * 0.1f);
current = (binaryData[7] << 8) + binaryDatal[8];
powerfactor = (double) (binaryDatal[9] * 0.01);
frequency = (double) binaryData[l0] * 0.1f + 45;
//serviceld = Temperature
temperature = (int) binaryData[ll] & OxFF - 128;
}
/*

If the data is a response sent by the device to a command of the
IoT platform, the return value is in the following format:
{
"identifier":"123",
"msgType" :"deviceRsp",
"errcode":0,

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 171

IoT Device Management
Development Guide

1 Product Development

"body"

=/
else if (binaryDatal2]
msgType "deviceRsp
errcode binaryData
//Compatibility must

it is not encoded.
if (binaryDatal4]
mid

if

transferred,

isContainMid

}
} else {
return;

public ObjectNode toJdsonNode
try {
//Assemble the body.
ObjectMapper mapper
ObjectNode root

// root.put("identifier",
this.msgType) ;

root.put ("msgType",

Utilty.getInstance () .bytes2Int (binaryData,
(Utilty.getInstance () .isValidofMid (mid)) {

:{****} Note that the body is a JSON structure.

== bDeviceRsp) {

".
’

[31;

be considered. If the MID is not

hasMid) {

5, 2);

true;

0 A

new ObjectMapper () ;

mapper.createObjectNode () ;

this.identifier);

//Assemble the message body based on the msgType field.

if

//serviceld
ObjectNode
brightNode
ObjectNode
brightData
brightNode

(this.msgType.equals ("deviceReqg")) {
root.put ("hasMore",
ArrayNode arrynode

this.hasMore) ;
mapper.createArrayNode () ;

Brightness
brightNode
.put ("serviceId",
brightData
.put ("brightness",
.put ("serviceDbata",

mapper.createObjectNode () ;
"Brightness") ;
mapper.createObjectNode () ;
this.brightness);
brightData) ;

arrynode.add (brightNode) ;

//serviceld

electricityData
electricityData
electricityData
electricityData
electricityNode

Electricity
ObjectNode electricityNode
electricityNode.put ("serviceId",
ObjectNode electricityData
.put ("voltage",
.put ("current",
.put ("frequency",
.put ("powerfactor",
.put ("serviceDbata",

mapper.createObjectNode () ;
"Electricity");
mapper.createObjectNode () ;
this.voltage);
this.current);
this.frequency) ;
this.powerfactor);
electricityData);

arrynode.add(electricityNode) ;

//serviceld

Temperature
ObjectNode temperatureNode
temperatureNode.put ("serviceId",
ObjectNode temperatureData
temperatureData.put ("temperature",
temperatureNode.put ("serviceData",

mapper.createObjectNode () ;
"Temperature") ;
mapper.createObjectNode () ;
this.temperature);
temperatureData) ;

arrynode.add (temperatureNode) ;

//serviceld

Connectivity
ObjectNode ConnectivityNode

mapper.createObjectNode () ;

ConnectivityNode.put ("servicelId", "Connectivity");
ObjectNode ConnectivityData = mapper.createObjectNode () ;
ConnectivityData.put ("signalStrength", 5);
ConnectivityData.put ("linkQuality", 10);
ConnectivityData.put ("cellId", 9);

ConnectivityNode.put ("serviceData", ConnectivityData);

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

172

IoT Device Management

Development Guide

1 Product Development

arrynode.add (ConnectivityNode) ;

//serviceld = Battery

ObjectNode batteryNode = mapper.createObjectNode () ;
batteryNode.put ("serviceId", "battery");
ObjectNode batteryData = mapper.createObjectNode () ;

batteryData.put ("batteryVoltage", 25);
batteryData.put ("battervlevel”, 12);

batteryNode.put ("serviceData", batteryData);

arrynode.add (batteryNode) ;
root.put ("data", arrynode);

} else {
root.put ("errcode", this.errcode);

//Compatibility must be considered. If the MID is not

transferred, it is not encoded.

if (isContainMid) {
root.put ("mid", this.mid);//mid
}

//Assemble the body. The body must be an ObjectNode

object.

ObjectNode body = mapper.createObjectNode () ;

body.put ("result", 0);
root.put ("body", body) ;
}
return root;
} catch (Exception e) {
e.printStackTrace () ;
return null;

1.4.4.9 Appendix: Encryption Algorithms Supported by the JDK

Digest Algorithm

Algorith | Algorithm Hash Length Remarks

m Name

MD MD2 128 -
MD5 128 -

SHA SHA-1 160 -
SHA-256 256 -
SHA-384 384 -
SHA-512 512 -

HMAC HmacMD5 128 -
HmacSHAI 160 -
HmacSHA256 256 -
HmacSHA384 384 -
HmacSHAS512 512 -

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

173

IoT Device Management

Development Guide 1 Product Development

Symmetric Encryption Algorithm

Alg | Key D | Work Mode Padding Mode Remarks
orit | Length ef
hm a
Na ul
me t
L
e
n
gt
h
DES | 56 56 | ECB, CBC, PCBC, CTR, NoPadding, -
CTS, CFB, CFB8 to 128, PKCS5Padding,
OFB, and OFB8 to 128 and
ISO10126Padding
3DE | 112 or 16 | ECB, CBC, PCBC, CTR, NoPadding, -
S 168 8 | CTS, CFB, CFBS to 128, PKCS5Padding,
OFB, and OFBS8 to 128 and
ISO10126Padding
AES [128,192, | 12 | ECB, CBC, PCBC, CTR, NoPadding, The 256-
or 256 8 | CTS, CFB, CFBS8 to 128, PKCS5Padding, bit key
OFB, and OFBS& to 128 and needs to
ISO10126Padding | obtain the
permission
file without
policy
restriction.
Asymmetric Encryption Algorithm
Algorith | Key Defau | Work Mode Padding Mode | Remarks
m Name | Length It
Lengt
h
DH 512-1024 (a | 1024 N/A N/A -
multiple of
64)
Base64 is also supported by the JDK.
1.5 Developing an Application
Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 174

IoT Device Management
Development Guide 1 Product Development

1.5.1 Application Connection to the IoT Platform

Overview
An NA needs to call the authentication API to connect to the IoT platform. For details about
the authentication API, see the API reference document.
This topic describes how to call the authentication API based on the Java code sample of the
APL
Prerequisites
® The codec has been deployed on the [oT platform. If Data Type of the device is JSON,
codec development is not required.
® [fHTTPS is used for API calling, related certificates have been uploaded to the [oT
platform. For details, see Resources.
® You have obtained the Java code sample for calling the APIs. You have also
configured the development environment and imported the code sample by following the
instructions provided in Preparing the Java Development Environment.
Procedure

Step 1 Prepare the Java development environment by following the instructions provided in
Preparing the Java Development Environment.

This document uses the operations in Java development environment as an example.

Step 2 In the Eclipse, choose src > com.huawei.utils > Constant.java, and modify the values of
BASE_URL, APPID, and SECRET.

2 & LiteNAdemo_hitps Lo paLkage Lom e ut s
» @\ JRE System Library [JavaSE-1.8] 15 public class Constant {
a (® src 6

lease replace the IP and

£t of th ss, when you use the demo
put'l)(static final String[BASE_URL =

> # comhuawei service.appAccessSecurity i
- 8 comhuaweisenicebatchTask
please replace the appld aad secret uh the deg
public static final String [iPPID = VSﬁcPchmHZ dBQg(Q \gI "a";
i i inal String [BECRET = "hNPAYn, Lawkiiz OVZMa"

eGroupManagement.
> # comhuaweiservice deviceManagement

> 8 comhuawei.service.deviceUpgrade 1P and callbac L
please replace the P and Port of your Application deploysent cnvironment address, when you use the demo.
8 com huawe.service messagePushing 2
ribtionManagement 28 public static final String CALLBACK BASE_URL = “MEipaifisis /mw

complete callback url
plesse replace uri, when you use the deno.

public static final String OCVICE ADDED GALLBACK URL = CALLOACK_BASE_URL + "/na/locn/devliocify/vi. 1. o/addbevice”
ing DEVICE_ INFO_CHANGED CALLBACK URL = CALLBACK BASE URL ev

pubLic static finel smng DEVICE_DATA_CHANGED_ CALLBACK_URL = CALLBACK_BASE_URL +
public static final String OEVICE DELETED (ALLOACK URL = CALLBACK BASEURL "/na/,

] ing MESSAGE_CONFIRM_CALLBACK URL = CALLBACK BASE URL
> @ StreamC\usedHﬁpRewunseJava 39 public Iic e Strmg 'SERVICE_INFO_CHANGED_CALLBACK_URL = CALLBACK BASE
> [1) StreamUtiljava) public static final String COMAND RSP CALLEACK URL = CALLBACK_ BASE_URL
. [StringUtljava a public static final String DEVICE_EVENT_CALLBACK URL = CALLBACK_BASE_URL

a2 final Strmg RULE_EVENT_CALLEACK_URL = CALLBACK_BASE_URL +

ing DEVICE_DATAS_CHANGED_CALLBACK URL = CALLBACK BASE_URL +
public static final smng 'DEVICE_ SHADOW_MODIFTED_CALLBACK_URL = CALLBACK_BASE_URL

y/v1.1.9/ mf,pamape sred”

Parameters are described as follows:

® BASE URL: Set this parameter to the application address and port number.

® APPID: Set this parameter to the application ID obtained after the application (or
project) is created.

® SECRET: Set this parameter to the secret obtained after the application (or project) is
created.

Step 3 In the Eclipse, choose src > com.huawei.service.appAccessSecurity, right-click
Authentication.java, and choose Run As > Java Application.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 175

https://res-static1.huaweicloud.com/content/dam/cloudbu-site/archive/commons/web_resoure/cms/static/upload/files/sdk/LiteNAdemo.zip

IoT Device Management

Development Guide

1 Product Development

4 [LiteNAdemo_hitps

24, JRE System Ub . 3@ import java.util.HashMap;[]
> B ystem Library [JavaSE-1.8

4 (B src
4 i comhuawei service.appAccessSecurity * futh
- PP * This interface is used to authenticate third-party systems before third-party systems access open APIs

> | [J] Authent| /
New » . feats
» [J) Refresh jublic class Authentication {
)) P ———— = @Suppressharnings ("unchecked”)
‘i“‘"‘:“aw‘ (e = ety public static void main(String args[]) throws Exception {
- Hf comhuawe Show In Alt+Shift+W b
> # comhuawe Open B3 // Two-Way Authentication
» B comhuawq) HttpsUtil httpsUtil = new HttpsUtil();
e 'h Open With 4 httpsUtil.initSSLConfigForTwokay ();
> H comhuawe
» B comhuawe (5 CoPY Ctrl+C String appld = Constant.APPID;
. huawe B2 Copy Qualified Name String secret = Constant.SECRET;
x“‘m h“am o —— String urllogin = Constant.APP AUTH;
- B comhuawe [T
» H# comhuawe 3¢ Delete Delete Map(str‘in%, Str‘;ng> pa’:l)r = new Hashtap<>();
N . . param.put(“appId”, appId);
comhuawe Remove from Context Ctrl+Alt+Shift+ Down param.put("secret-, secret);
> B3 resource Build Path ,
> B resource.cq Source At Shiftss » StreamClosedHttpResponse responselogin = httpsUtil.doPostFormUrlEncodedGetStatusline (urllogin, param);
B Referenced LY o Alt+ShiftsT » System.out.println("app auth success,return accessToken:");
(= Open source ¢ System.out.println(responselogin. getStatusline());
> % south_mqtt_demd g Import... System.out.println(responselogin.getContent());
4 | Export System.out.println();
/Iresolve the value of accessToken from responseLogin.
il % Map<String, Strings data = new HashMap<>();
data = JsonUtil.jsonString2Simpledbj(responselogin.getContent(), data.getClass());
Eeteiapes 4 String accessToken = data.get("accessToken");
Declarations > System.out.println(“accessToken:" + accessToken);
Coverage As » }
» | | Java Application Alt+Shift+X, J
» .
Bebualis Run Configurations..
Validate R -~ C

Step 4 View the response log on the console. If an access token is obtained, the authentication is

successful.
Keep the access token securely. It will be used when other APIs are called.

B console 2 Rsﬁlirlu" =
<terminated > Authentication [Java Application] Ci\Program FilesJava\jdk1.8.0_45\bin\javaw.exe (2018535 148 F54:37:54)
app auth success,return accessToken:
HTTP/1.1 20@ OK{"accessToken":"8d44bc6cdb6@ed63dfdbb8ccfed4esl”, "tokenType™: "bearer”, "refreshToken™: "9e11397dT47877fe2afed4cd5c463621", "expiresIn™i3600,

|accessToken: 3d44bcscdb6Rest3dfdbbacc fed4esi|

MnoTe

® [fno correct response is obtained, check whether the global constants are modified incorrectly or a
network fault occurs. You can locate the fault by following the instructions provided in Performing
Single-Step Debugging.

® An access token expires after the period specified by expiresIn elapses. The unit of expiresIn is
seconds.

® [fan access token expires, you must obtain a new one. You can use the authentication API or the
refresh token obtained during the previous authentication to obtain another access token. For details
about the refresh token, see RefreshToken.java in the code sample and the API reference document.

® Northbound JAVA API Demo provides examples of messages for calling each API. For details, see
src > resource > demo_TCP_message.json.

——-End

1.5.2 Data Subscription

Overview

An NA calls the Subscribing to Service Data of the IoT Platform API to notify the [oT
platform of message push addresses and notification types, such as device service data and
device alarms. For details about the subscription API, see the API reference document.

In the subscription scenario, the IoT platform is the client, and the NA is the server. The IoT
platform calls the API of the NA and pushes messages to the NA. If the subscription callback
URL is an HTTPS address, a CA certificate must be uploaded to the IoT platform. The CA
certificate is provided by the NA. (For details on how to obtain the certificate, see Exporting
a CA Certificate.) To load a CA certificate, choose Applications > Interconnection, and
click Certificate Management and Add in the Push Certificate area. For details, see
Uploading a CA Certificate.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 176

IoT Device Management

Development Guide 1 Product Development

This topic describes how to call the subscription API based on the Java code sample of the
APL

Procedure
Step 1 In the Eclipse, choose sr¢ > com.huawei.utils > Constant.java, modify
CALLBACK BASE_URL, and enter the callback URL and port number.

In the same application, the callback URL and port number of all subscription types must be
the same. Subscription Test of the Developer Center checks the validity and connectivity of
callback URLs.

1P and port of callback url

.y
4 & LiteNAdemo_https please replace the IP and Port of your Application deployment environment address, when you use the demo

» B JRE System Library [JavaSE-1.5]
4 src

» # com huawei service.appAccessSecurity

public static final String|CALLBACK BASE_URL = "http

» 8 com huawei.service batchTask
» # com.huanehservice.commandDelivery

» # com.huawei senvice dataCollection

» # com.huawei service deviceGroupManagement
> # com huawei.sevice.deviceManagement

» 8 com huawei service deviceUpgrade

» 8 com huawei service messagePushing

» # com.huaweiservicesubscribtionManagement
» # com huaweitestMessagePush

conplete callback yrl.
please replace yri, when

public static final String[DEVICE_ADDED_CALLGACK URL -

public static final String|
public static final String|
public static final String|
public static final String|
public static final String|
public static final String|
public static final String|

you use the demo

CALLGACK BASE_URL + " /na/Locn/deviotity V1. 1,0/ adabevice s
|DEVICE_ INFO_CHANGED_CALLBACK_URL = CALLBACK_BASE_URL + "/na/iocm/devliotify/v1.1.6/updatebeviceInfo";
|DEVICE_ DATA_ CHANGED_CALLBACK_URL = CALLBACK_BASE_URL + " /na/iocn/devliotify/v1.1.6/updateDeviceData";
|DEVICE_DELETED_CALLBACK URL = CALLBACK BASE_URL + " /na/iocm/deviictify/vl.1.0/deletedDevice™s

[MESSAGE_CONFIRM_CALLBACK_URL = CALLBACK BASE URL + "/na/iccm/devliotify/vi.1.0/comandConfirmbata";

| SERVICE_INFO_CHANGED_CALLBACK_URL = CALLBACK_BASE_URL + */na/iocm/devliotify/vi.1.6/updateServicelnfo”;
COMMAND_RSP_CALLEACK_URL = CALLBACK_BASE_URL + "fna/iocn/devliotify/vi.1.0/commandRspData"

|DEVICE_EVENT_CALLBACK_URL =

CALEBACK_BASE_URL + "/na/iocm/deviiotify/vl.1.0/Devicecvant”s

public static final String|RULE_EVENT_CALLBACK URL = CALLBACK BASE_URL + "/na/iocm/devliotify/vl.1.6/RulEevent”;
public static final String|DEVICE DATAS_CHANGED_CALLBACK URL = CALLBACK BASE_URL + */na/iocm/devliotify/vi.1.6/updateDevicebatas”;
public static final String|DEVICE SHADOW MODIFIED_CALLBACK_URL = CALLBACK_BASE_URL + "/na/iocm/devNotify/vl.1.8/modifyDeviceDesired”;|

5 8 _comhuaweiutils

>[4 DefaulHostnameVerifierjava
» [§) ExceptionUtiljava
> [) HitpsUtiLjava

public static final String SW_UPGRADE CALEBACK URL
public static final String FW_UPGRADE CALLBACK URL

CALLBACK BASE_URL + "/na/ iocm/devliotify/vi.1.0/upgradeSk”;
CALLBACK_BASE_URL + " /na/ iocm/devliotify/vl . 1.0/upgraderi”;

> 1) JsonUtiljava sl S
> [J] StreamClosedHttpResponse java 51 Specifies the callback URL for the command execution result notification.
> 1] StreamUtiLjava 52 For details about the execution result notification definition

» 1) swingutijava sa please replace uri, when vou use the demo

Step 2 In the Eclipse, choose src > com.huawei.service.subscribtionManagement, right-click
SubscribeServiceNotification.java, and choose Run As > Java Application.

4 (2 LiteNAdemo_https
> B JRE System Library [Java
(B src

» 8 com huawei.service.appAccessSecurity

3@ import jave.util.HashMap;[]

8] 12

Subscribeservicedotification :
* This interface is used to subscribe service data of IoT platform

> # comhuaweiservice.batchTask 16 =
+ 8 comhuawei.service.commandDelivery 17 public class SubscribeServiceNotification {
g g : § 198 public static void main(string args[]) throws Exception
g com, Cuawel sem:edatz‘iCuHemun bl d h
» B8 com.huawei.service.deviceManagement 21 /] Two-Way Authentication
. P . 22 HttpsUtil httpsUtil = new HttpsUtil();
& w""h“awef‘sewfﬁ‘dwﬁu”gmdﬁ 23 httpsutil,initssLConfigForTwokay();
> # com.huawei.service.messagePushing 24
PR h i service.subscribti 25 /7 Authentication. get token
3] DeleteBatchSubscriptions java 26 string accessToken = Login(httpsUtil);
> [4) Del “N‘ ook //Please make sure that the following parameter values have been modified in the Constant file.
> [Queryg ew > String appld = Constant.APPID;
String urlSubscribeServicellotification = Constant.SUBSCRIBE SERVICE NOTIFYCATION;
> [7] Querys Open Type Hierarchy F4 - -
i % 5”:“" ShowIn AlsShifes W >
3 Subscri r~
subscribe deviceAdded notification
Open F3 bscribe deviceAdded notif
- H3 com.huawe 3 With -
pen Witk » /
> H com.huawe string callbackurl_deviceAdded = Constant.DEVICE ADDED_CALLBACK URL;
» 8 resource | [Copy Ctrl+C String notifyType_deviceAdded = Constant.DEVICE ADDED;
» B resource.c g2 Copy Qualified Name Map<String, Object> paramSubscribe_deviceAdded = new HashMap<s();
» B Referenced Ui (11 pagte Cirl+V paramSubscribe_deviceAdded . put(“notifyType”, notifyType_deviceAdded);
& Opensource | 3¢ Dologe Delete pararr:uEscrézeijev)}:e{-:je:.pu:(::cali:ickur‘lga callbackurl_deviceadded);
, 14 south_matt_dem paremSubscribe_devicedded.put("appld", appId);
- - Remove from Context Ctrl+Alt+Shift+ Down
Build Path) String jsenRequest_deviceAdded = JsonUtil.jsonObj2Sting(paransubscribe_devicendded);
Source Alt+Shift+S » Map<String, String> header deviceidded = new HashMap<>();
. header_deviceAdded.put(Constant.HEADER_APP_KEY, appld);
» = _APP_|
fiesn e header_deviceAdded. put (Constant. HEADER_APP_AUTH, "Bearer” + " " + accessToken);
P
2 | Import HttpResponse httpResponse_deviceAdded = httpsUtil.doPostIson{urlSubscribeServicelotification, header_devic
&4 Export..
String bodySubscribe _deviceAdded = httpsUtil.getHttpResponseBody (httpResponse deviceAdded);
Refresh F5
System.out.println("subscribeservicenotification: " + notifyType_deviceAdded + ", response content:");
References v System.out.println(httpResponse_deviceAdded.getStatusLine());
Declarations R System.out.println(bodySubscribe_deviceAdded);
System.out.println();
Coverage As »
» | 71 |1 Java Application Al Shift+X,)
o otification
drgls Run Configurations...
Validate T

Step 3 View the response log on the console. If all types of subscriptions receive "201 Created"
response, the subscription is successful.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 177

IoT Device Management

Development Guide

1 Product Development

app auth success,return accessToken:

HTTP/1.1 28@ OK{"accessToken":"c5166851d466226b1f1a3598d17e4a3a", "tokenType”: "hearer”, "refreshToken”:"357e88ea50a45d523b7e5ff9165cf58", "expiresIn”:36@0, "

SubscribeNotification: deviceAdded, response content
HTTP/1.1 281 Created

Subscribelotification: deviceInfoChanged, response content:

HTTP/1.1 281 Created

SubscribeNotification: deviceDataChanged, response content:

HTTP/1.1 281 Created

SubscribeNotification: deviceDeleted, response content:

HTTP/1.1 281 Created

SubscribeNotification: messageConfirm, respense content:

HTTP/1.1 281 Created

SubscribeNotification: serviceInfoChanged, response content:

HTTP/1.1 281 Created

SubscribeNotification: commandRsp, response content:
HTTP/1.1 281 Created

SubscribeNotification: deviceEvent, respense content:
HTTP/1.1 281 Created

SubscribeNotification: ruleEvent, response content:
HTTP/1.1 281 Created

SubscribeNotification: deviceDatasChanged, respense content:

HTTP/1.1 281 Created

(MnoTe

® To modify the callback URL, change the value of CALLBACK_BASE_URL in the

Constants.java file and run

SubscribeServiceNotification.java. The new callback URL replaces the original one.

® After the subscription is complete, you can choose src¢ > com.huawei.testMessagePush >
SimpleHttpServer.java to set up an NA to receive messages (for example, POST messages) pushed
by the IoT platform. If you need to perform a local test on the callback function and view the
callback content, use the class src > com.huawei.testMessagePush >
TestSubscribeAllServiceNotification.java provided in the Northbound JAVA API Demo and
refer to the operations in Data Reporting.

—End

1.5.3 Device Registration

Overview

Procedure

Step 1

The NA server calls the API for registering a directly connected device to add devices to the
IoT platform. For details about the API, see the API reference document.

This topic describes how to call the API for registering a directly connected device based on

the Java code sample of the API.

In the Eclipse, choose src > com.huawei.service.deviceManagement >
RegisterDirectConnectedDevice.java, and change the values of verifyCode, nodeld,
timeout, manufacturerld, manufacturerName, deviceType, model, and protocolType.

4 (22 LiteNAdemo_https

> m, JRE System Library [JavaSE-1.2,

4 (B sre
» B com.huawel.service.appAccessSecurity
> com.huaweiservice batchTask
» # com.huawei service.commandDelivery
> 8 com huawei service.dataCollection
> g comh

4 8 comhuawei.servicedeviceManagement

» [J) DeleteDirectConnectedDevice java
» [J) DiscoverindirectConnectedDevice java
» [ModifyDevicelnfo,ava
» [) ModifyDeviceShadow.java
> [J] QueryDeviceActivationStatus,java
» [QueryDeviceRealtimeLocation java
» [) QueryDeviceShadow.java
[J] RegisterDirectConnectedDevicejava
» @ RegisterDirectConnectedDevice

N

» [1] RemovelndirectConnectedDevice java
8 comhuaweiservce.deviceUpgrade
» 8 comhuawei senvice:messagePushing

¥} h jce.suk

/] Two-Way Authentication
HetpsUtil httpsUtil = new HetpsUtil();
httpsUtil. initsSLConfigForTwoliay();

// Authentication. get token
String accessToken = Login(hEtpsUitdl);
Please make sure that the following parameter values have been modified in the Constant file

String appld - Constant.APPID;
String urlRegisterDirectConnsctedDevice = Constant.REGISTER_DIRECT_CONNECTED_DEVICE;

ode and nodeld and timeout, when you use the demo

that have been pri
ile that already initi

IoT platform
ed to IoT platform.

String manutacturerl,
String manufacturerliane = "LiteNlAdemo”
String deviceType = "WaterMeter”;
String model = "demo138";

String protocolType = "CoAP™;

Map<string, Object> parambeviceInfo = new HashMap<s();
paranDevicelInfo.put("manufacturerld”, manufacturerld);
paramDeviceInfo.put("manufactureriame”, manufacturerlame);
paranDevicelnfo.put("deviceType"”, deviceType);

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 178

IoT Device Management
Development Guide 1 Product Development

Parameters are described as follows:

® The values of verifyCode and nodeld must be the same as the IMEI or MAC address of
a physical device. If a device simulator is used, the value of verifyCode can be a
combination of digits, letters, and special characters. The value can be user-defined but
must be unique.

® The unit of timeout is second. The values of timeout are as follows:
- 0: indicates that the device never expires.

- > 0: indicates that the device must be made online within the specified period.
Otherwise, the loT platform removes the device immediately after the period
expires. If timeout is not specified, the default interval (180 seconds) is used.

- After a device is bound, timeout becomes invalid and the device will never expire.
® The values of manufacturerld, manufacturerName, deviceType, model, and
protocolType must be the same as those in the profile file.
Step 2 Right-click RegisterDirectConnectedDevice.java and choose Run As > Java Application.

Step 3 View the response log on the console. If deviceld is obtained, the registration is successful.

Developers can check whether the newly registered device is displayed on the Product >
Device Management of the Developer Center. In this case, the registered device has only the
device ID information.

app auth success,return accessToken:
HTTP/1.1 20@ OK{"accessToken":"1f337bfaccba5f83243b99fda22d21b", "tokenType”: "bearer”, "refreshToken": "be3ccdce5390ed14b81c85F5822712b2" , "expiresIn®: 3600,

RegisterDirectlyConnectedDevice, response content:
HTTP/1.1 280 OK{"deviceld":"d@acScac-d3af-4e@c-8166-5a67elcefea?”, "verifyCode™:"9999", "timeout™ @, "psk": "5a7f@74f fdblc46edledadefcafdeage”}

—End

1.5.4 Device Access to the IoT Platform

Overview

After devices are connected to the [oT platform, data can be exchanged between the IoT
platform and NA servers.

The Developer Center provides the application test function to simulate the scenario in which
devices are connected to the [oT platform. Developers can also connect a physical device to
the IoT platform to test the application. The following describes how to simulate device
access to the [oT platform:

Procedure

Step1 Choose Applications > Application Test. Click Use Virtual Device.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 179

IoT Device Management
Development Guide 1 Product Development

Application Test

down list box for applic:

it he loT
own
Otherwise, register a new device.

Step 2 In the Add Virtual Device dialog box displayed, select a device.

Add Virtual Device X

L 4

WaterMeter01

—End

1.5.5 Data Reporting

Overview

After a device reports data, the IoT platform pushes data reported by the device to the
subscribed-to address. The Developer Center provides a device simulator to simulate the
scenario where a real device reports data. Developers can also connect a physical device to
report data.

This topic describes how to report data using the device simulator based on the Java code
sample of the data reporting API. A simple HTTP server is provided in the Java code sample
of the API to help developers test whether the IoT platform has pushed messages to the
subscribed-to address.

Procedure

Step 1 In the Eclipse, choose src > com.huawei.testMessagePush > NotifyType.java. Modify the
value of TEST_CALLBACK BASE_URL, and enter the local IP address and port number.
The port number cannot be used by other local programs.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 180

IoT Device Management

Development Guide

1 Product Development

W

4 (= LiteNAdemo_https
» Bl JRE System Library [JavaSE-1.3]

@ import java.util.Arraylist;

notifyTypes.add(DEVICE DATA_CHANGED) ;
notifyTypes.add(DEVICE_ADDED) ;
notifyTypes.add(DEVICE_DELETED);
notifyTypes.add (MESSAGE_CONFIRM);
notifyTypes.add (COMMAND_RSP);
notifyTypes.add(DEVICE_EVENT);
notifyTypes.add(RULE_EVENT);
notifyTypes.add(DEVICE_DATAS_CHANGED) ;
notifyTypes.add (DEVICE_DESIRED_MODIFY);
return notifyTypes;

» B comhuaweisenice.deviceUpgrade

5
4 (B sre 5 public class NotifyType {
> B com h“ﬁwgf'sEW‘CE'ﬁppAEEESSSEWW 5 //please replace the TP and_Port to your localhost TP and o testMessagePush.
> f# com.huawei.service.batchTask a public static final String|TEST CALLBACK BASE URL = "http:/:
. B comhuaweiservice.commandDelivery 10
. : 11 public static List<String> notifyTypes = new Arraylist<>();
B com huawei.service.dataCollection 126 public static List<String> getServiceNotifyTypes () {
] h 13 notifyTypes.add(SERVICE_INFO_CHANGED);
- huaweiservice.devi 14 notifyTypes.add (DEVICE INFO_CHANGED) ;
5

. # comhuaweiservicemessagePushing
- huawei.service.subscribti
4 H3 com.huaweitestMessagePush

NotifyType.java

pleHttpServer.java

T
TestSubscribeAllServiceNotification java

> i com.huawei.utils public static List<String> getManagementNotifyTypes () {

» B resource 27 notifyTypes.add(SW_UPGRADE_STATE_CHANGED) ;
28 notifyTypes.add(SW UPGRADE RESULT);

> 2 resource.cert 2 notifyTypes.add(FW_UPGRADE_STATE CHANGED);
. B\ Referenced Libraries 30 notifyTypes.add(FW_UPGRADE RESULT);

Step 2 Right-click src > com.huawei.testMessagePush >

Step 3

Step 4

TestSubscribeAllServiceNotification.java, and choose Run As > Java Application.

In the project space, choose Application > Application Test. Use the virtual device added in
Device Access to the IoT Platform to report data.

MnoTe

Developers can also connect a physical device to report data.

In Device Simulator, enter a hexadecimal code stream or JSON data (for example, enter a
hexadecimal code stream) and click Send. Then, view the data reporting result in IoT
Platform and Application Simulator and processing logs of the [oT platform in Message
Tracking.

Message Tracking 4 Show

{2} NB-loT Device Simulator d Application Server

[CIGIeig rece
I Daasending Command Receiving Data Report

Command Delivery 2
[CIG]eig decodes data success,
=nuil, msgType=DEVICEREQ de
South-equipment. commandSend) RaSMore=0 ctag-nul, sata—List-Dex

5 @9 loT Platform [DecodeDataDTC [serviceld =Battery
ventTime=null],]

serviceData="

B DziaReceive | Command Send
[CIG]eig get plug-in success. { key
= tb0ae23e0283c 58 & Waterheterd1}

Zhaojinyong 1537862553514

to application but callbackurl is

n Y ned to app serv
0001 . o f/_ETfé'i etoapnseEn uccess. [DeviceData(reportType=
nged, the o e =1, SignalPower=0,

anged, the appld Savier

_ZHNFTLSW2UWSFX2GJIga

Zhaojinyong1537862553314
2018-09-25 08:02:46

port data to application but callbackur is
Data is r ed to app server,

Data Report

UpdateDeviceDatasDTOGIN2Cloud [header=Header
[requestid=nul, method=POST, timestamp=nuil,hasMore
false], body=Body [services=[DeviceServiceA [s
eventTime=20130925T030246Z]]] tempiateld =

Command

m o

YTy
iang: appld
_ZHNFTLSW2UWSFx2GJIga

elo=Battery,
Engine

314

[I2CMliocm find ut there is no command in the queue.
triggered by kafka topic "CIG.DEVICE.V1.Data.ruleEngine”

In the Eclipse, choose the TestSubscribeAllNotification.java console and view the messages
pushed by the IoT platform to the NA server.

Developers can also test the subscription result. For example, if deviceAdded is subscribed
to, developers can view messages pushed by the [oT platform on the
TestSubscribeAllNotification.java console after performing the operations described in
Device Registration.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 181

IoT Device Management
Development Guide 1 Product Development

[2! Markers [[] Properties i Servers [¥8 Data Source Explorer [E Snippets Bl Consele 52 | 47 Search M 2 LIS E ™ -
TestSubscribeAllNotification [Java Application] C:\Fl' M1 TestSubscribeAIINotiﬂcaticnl[Java Application] CAProgram Files\)avaljdk1.8.0_45\kin\javaw.exe (20
[T12 =terminated = ModifyDevicelnfo [lava Application] C\Program FilesiJavatjdkl.8.0_ 45 \bintjavaw.ex

{“notifyType™:"devicefdded” ,"deviceld™:"d:
{"notifyType" :"deviceDeleted”,"deviceld" :"708 {851 -9462 -47d5 -8050-8c3dB8EFacs T, "gateway Id" : " 708 F 1881 - 2162 -4 7d5 -8050-Bc 3dBREFacs ™
{"notifyType™:"deviceDeleted”,"deviceld™ :"dfha7@22-b4d2-49f@-9cFc -993a5dcfbage™, "gateway Id™ 1 "dfha7@92 -b4d9-49f@-9c Fc -993a5dc fhase™
{"notifyType" :"devicefdded”,"deviceld" :"PesesfEa-e96c -4baa-acl5-718cc@ld776a" , "gateway Id" : "Bes8e3 fEa-e96c -4baa-acl5-718cc@1d 77Ea" "

1"notifyType™:"devicelnfoChanged”, "deviceld"”:"5514c3b3-5chc -4@d7-a8@d - fedabf26cR95™, "gateway Id™ :"5514c3b3-5chc -4Qd7-a82d - fedabf6C

—End

1.5.6 Command Delivery

Overview

The NA server calls the device command creation API or device service calling API of the
IoT platform to deliver control instructions to devices. For details about the APIs, see the API
reference document.

® When the access protocol at the application layer is LWM2M, the Creating Device
Commands API is called to deliver commands.

® When the access protocol at the application layer is MQTT, the Calling Device Services
API is called to deliver commands.

This topic describes how to deliver commands with the Calling Device Services API and the
Java code sample of the API.

Procedure

Step 1 In the Eclipse, choose src > com.huawei.service.commandDelivery >
CreateDeviceCommand.java, and change the values of deviceld, serviceld, method, and
paras.

+ & LeNAdemo_hitps 23 public static void main(String[] args) throws Exception {
B\ JRE System Library [JavaSE-1.8] 0-Way Auth ication

HttpsUtil httpsl new HetpsUtil();

httpsUtil. initssLConfigForTwollay();

4 (B src
com huswei.senice. appAccessSecurity
8 com huaweisenice batchTask Authentication. get token
4 f comhuaweiservice.commandDelivery String accessToken = Login(httpsutil);
[J] CreateDeviceCmdCancelTaskjava
[3) InvokeDeviceServices,java
[ModifyDeviceCommand java
[3) QueryDeviceCmdCancelTaskjava

//Please make sure that the following parameter values have been modified in the Constant file.
String urlCreateDeviceCommand = Constant.CREATE_DEVICE CHD;
String appId = Constant.APPID;

[[plesse replace the deviceld, when you use the demo.
String deviceld = "22ed9124-b429-4daa-a7ch-ceabb707cc1s’ s

[3) QueryDeviceCommandsijava €K_URL
comhuaweisenice dataCollection
he i

comhuaweiservice.deviceManagement

shen you use the demo.
the content of profile that have been pre:
the waterpeter profile that already init

to IoT platform
ized to ToT platform.

comhuaweisenvice deviceUpgrade

H comhuaweiservice.messagePushing F‘tring method =

#® h i.service.sub: i 16 objectiode paras = JsonUtil.convertobject20bjectNode(”{\"value\":\"12
com.huawei testMessagePush “
comhuaweiutils

£ resource

£ resource.cert

Map¢string, Object> paramCommand =
paranComnand . put(”servic
paramCommand . put(“method”, method);
paranComnand . put(“paras”, paras);

new Hashtiapes ()5
ce1dy;

Parameters are described as follows:

® The value of deviceld is obtained when a device is registered.

® The values of serviceld, method, and paras are the same as those defined in the profile
file.

Step 2 Right-click CreateDeviceCommand.java and choose Run As > Java Application.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 182

IoT Device Management

Development Guide

1 Product Development

Step 3

View the command delivery log on the console. If the 201 Created response is received, the
command is delivered to the IoT platform.

app auth success,return accessToken:
HTTP/1.1 280 OK{ accessToken":"49b9b60d439d9fe18a23c2c25d9e71", "tokenType” : "bearer”, "refreshToken” : "51762486bb4d2142F984696a8Ffb743", "expiresIn”: 3680, "scope

PostAsynCommand, response content:
HTTP/1.1 281 Created{"commandId":"7e7ed2fd17c2449582c71adblefalsb5”, "appId”: "pQINoCHoUBMBOT7anA7FkwA71uOAa ", "deviceTd" : "85eF387c-49¢cd-455d-9F70-a1bf1a990854" ,

If the application test function of the Developer Center is used to simulate device access and
data reporting, developers can select the virtual device created in Device Access to the IoT
Platform to view the received commands by choosing Application > Application Test.

After the NA server delivers a command, view the received command (for example, a
hexadecimal code stream) in Device Simulator and view processing logs of the IoT platform
in Message Tracking.

Message Tracking «sno
{2} NB-loT Device Simulator @ Application Server

m Data Send

mmand Rec

Data Report

Command Delivery

89 loT Platform

Bl DaiaReceive | Command Send

zhaojinyong1537862675885
2018-09-25 08:04:57

expireTime=0
d", resultCode:

Data Report

Command

4
Delivery callbackUrl="null

=" 1
c DffE4783e07042,
maxRetransmit=null};

—End

1.5.7 Development of Other APIs

For details about how to develop other APIs, see the API reference document.

1.5.8 Reference

1.5.8.1 Preparing the Java Development Environment

This section uses Java as an example to describe the methods to install JDK, set environment
variables, and install Eclipse.

1.5.8.1.1 Installing JDK 1.8

Download the JDK 1.8 installation package (for example, jdk-8ul61-windows-x64.exe), and
double-click it for installation.

The package is available at http://www.oracle.com/technetwork/java/javase/downloads/
jdk8-downloads-2133151.html.

1.5.8.1.2 Configuring Java Environment Variables (Windows OS)

Step 1

Right-click Computer and choose Properties.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 183

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

IoT Device Management
Development Guide

1 Product Development

Figure 1-26 Properties

Carnput;

Open

'@' Manage

@ TortoisesyN

Map network drive. ..
Disconnect netwaork, drive., .,

Create shortcut
Delete
R.ename

Froperties

Step 2 Select Advanced system settings.

Figure 1-27 System

QQ I;Bj__l - Zonkral FPanel

-

eed

Step 3 In the System Properties dialog box, choose Advanced > Environment Variables.

"oarmkral Parmnesl Hame

C=wrice Managasr
F.=mokbks ==kking=

Sodwvanced sw=kem =s=ekkinag=

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

184

IoT Device Management
Development Guide 1 Product Development

Figure 1-28 System Properties dialog box

System Properties E

Cornputer Namel Hardware Advanced | Hemntel

'ou mugt be logged on az an Adminiztrator bo make most of these changes.

— Performance
Wizual effects, proceszor scheduling, memary uzage, and wirkual rmemaony

Settings. ..

— U=zer Prafiles

Dezktop zettings related ta your logon

Settings. ..

I f

— Startup and R ecovern

Syztem startup, spstem fallure, and debugging information

Settings. .. |

Envirnnmeq& Yanables... |

g

0k, Cancel | Spply |

Step 4 Configure the system variables. Configure the following three variables: JAVA_ HOME, Path,
and CLASSPATH (where the variable names are case-insensitive). If a variable name exits,
click Edit. If a variable name does not exist, click New to create one. Generally, the Path
variable exists, and the JAVA_ HOME and CLASSPATH variables need to be added.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 185

IoT Device Management
Development Guide 1 Product Development

Figure 1-29 Environment Variables dialog box

nyironment Yariables

—User variables For 200293999

Yariable | Walue |
TEMP % USERPRIOFILE%:\ApphatatLlocali Temp
THP %% USERPROFILE%: apphatatLocali Temp

e, ., Edit... | Delete |

—System variables

Yariable | Walue | -
Com3pec o indowst system32icmd exe —
FP MO _HOST ... MO

LDMS_LOCAL_DIR CiProgram Files (xGa)LANDeskILDClien, ..
MUMBER_CF P... 4 ~|

K I Cancel |

JAVA HOME indicates the JDK installation path and is set to C:\ProgramFiles\Java
\jdk1.8.0_45. This path contains the lib and bin files.

Figure 1-30 Creating JAVA HOME

Mew System Yariable
Yariable name: 18w _HomE
YWariable walue: IC:'l,F'ru:ugramFiIes'l,Java'l,jdkl J5.0_45|

Ok I Cancel |

Path enables the system to recognize a Java command in any path. If the Path variable exists,
add a path at the end of the variable value. Configuration example: ;C:\Program Files\Java
\jdk1.8.0_45\bin;C:\Program Files\Java\jdk1.8.0_45\jre\bin

Two paths need to be separated by using a semicolon (;).

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 186

IoT Device Management
Development Guide 1 Product Development

Figure 1-31 Setting Path

Mew System Yariable
Yariable name: IF‘ath
Yariable value: |'|;C:'|,Pr|:u;|ram Files)Javaljdkl.8.0_45jre\bin

Ik I Cancel |

CLASSPATH specifies the path of loaded Java classes (class or lib). Java commands can be
identified only if they are contained in the class path. Configuration example: .;
%JAVA_HOME %\lib\dt.jar; % JAVA_HOME %\lib\tools.jar

(MnoTe

The path starts with a dot (.), indicating the current path.

Figure 1-32 Setting CLASSPATH

Mew System Yariable
Variable name: |cLasSPATH
Yariable value: |f1E°fo'l,IiI:|'l,u:It.jar 19 JAA_HOME:\libikaals, jad

Ik I Cancel |

Step 5 Restart the OS for the environment variables to take effect.

Step 6 Choose Start > Run, enter cmd, and run the following commands: Java -version, java, and
javac. If the commands can be run, the environment variables are set successfully.

Figure 1-33 Verifying environment variables

C:xllzers~=AR2737999>java —version
java version '1.8.8_45"

Java{THM» S5E Runtime Environment <huild 1.8.8_45-hi5>
Java HotSpot<TH>» Client UM <huild 25.45-hB2, mixed mode?>

—--End

1.5.8.1.3 Installing Eclipse

Download the Eclipse installation package and decompress it to a local directory. You can use
the software without installation.

Eclipse is available on the official website at http://www.eclipse.org/downloads.
1.5.8.1.4 Creating a Project

Step 1 In the Eclipse, and choose File > New > Project. In the dialog box displayed, select Java
Project and click Next.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 187

http://www.eclipse.org/downloads

IoT Device Management
Development Guide 1 Product Development

Figure 1-34 Creating a Java project

Lt

Select a wizard

Create a Java project

Wizards:

Itype filter text

E? EIE
ElE; lava

rom Existing Ant Buildfile

- JavaSeript

(= JAXE

5= JPA

== Maven

<= Plug-in Developrment

Step 2 Specify Project name, set the JRE version to JavaSE-1.8, and click Finish.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 188

IoT Device Management

Development Guide 1 Product Development

Figure 1-35 Setting the project name

i@ New Java Project O ﬁ

Create a Java Project —
Create a Java project in the workspace or in an external location.

Project name: |LiteNﬂ~.demo|

v Use default location

|C:\Users\wﬂﬂ23UUSE\workspace\LiteN,ﬂ.demo

IRE
{* Use an execution environment JRE: IJavaSE-l.E j
" Use a project specific JRE:]jdkl.8.0_45 J
7 Use default IRE {currently 'jdk1.8.0_45" Configure JREs...

Project layout

" Use project folder as root for sources and class files

'xfr?\' = Back Mext = Finish Cancel

——-End

1.5.8.1.5 Importing Code Example
Step1 Decompress the API calling code example in Java (click here to obtain).
Step 2 After the decompression, copy the Open source components and src folders by pressing Ctrl

+C.

Figure 1-36 Copying the folders

= LitehAdemo_https - - [‘Z_]JI Search LiteMAdemo_https
Include in library = Sharewith = Mew Folder = ~ i
Mame = | Date maodified | Tvpe
| Dpen source components 2018/6/13 1953 File Folder
| SiC 20180613 19:53 File Folder

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 189

https://devcenter.huawei.com/ict/rescenter/resource/download/eresource/CMDA_FIELD_OCEAN_CONNECT/Huawei_IoT_Platform_Demo_North_Lite.zip

IoT Device Management
Development Guide 1 Product Development

Step 3 Open the project created in the Eclipse, select the project name, and paste the copied folders
to the project directory.

Figure 1-37 Pasting the folders

I Project Explorer &2 H&|s T = 0O

|l LiteMAdemes j

-2, JRE System Library [lavaSE-1.8]
E resaurcesjar - ChProgram Files\Javaijrel.8.0_454ib

=

w rtjar - CAProgram Fileslavaijrel.8.0_45ib

=

jsse.jar - C:\Progra'; Eila et Larativad 20 AG 1
(i jeejar - CPrograr E-.] Question ﬁ

=
"

=

charsetsjar - C:Pr

LiteMAdemo/src exists. Do you wish to overwrite?

o [frjar - CA\Prograrm
i access-bridge.jar -
cldrdatagjar - C:\Pr

dnsnsjar - Ci\Prog

=

=
I

Yes To All | Mo Cancel

=

jaccessjar - CiPro
fxrtiar - Ci\Program FilesyJavayjrel.B.0_454/ibyext
o localedata.jar - CAPrograrmn Files! Javaljrel.8.0_ 45 /ib\ext

= ‘

=

=

w hashornjar - Ci\Program FilesyJavaljrel.B.0_45\/ibyext

=

w sunecjar - CiProgram FilesyJavayjrel.B.0_454/ibyext

After the paste is complete, files in the sre directory are abnormal.

Figure 1-38 Abnormal files in the src directory

5 Project Explorer i3 C|E|&® ¥ = 8

2R LiteNAdernol -l
L——_If_-'ﬁ sre

- comhuaweiservice.appAccessSecurity

-5 com.huaweiservice.dataCollection

-5 cormhuaweiservice.deviceManagerment

-5 comuhuaweiservice.messagePushing

-5 comuhuaweitestMessagePush
- cormn.huawei.utils

-FE, resource

E-=h JRE Systern Library [JavaSE-1.8]

b
=
b
- comhuaweiservicesignalingDelivery
b
=
&

Step 4 Right-click the project name and choose Properties > Java Build Path > Libraries > Add
JARs. In the dialog box displayed, select all .jar files in the Open source components
directory and click OK.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 190

IoT Device Management
Development Guide

1 Product Development

Figure 1-39 Importing .jar files

@] Properties for LiteNAdemo

Itype filter text

#- Resource

- Builders

- lava Build Path |
- Java Code Style

B Java Compiler

(- Java Editor

- lavadoc Location
- Project Facets

- Project References
- Run/Debug Settings
- Senver

- Task Repository

- Task Tags

- Walidation

- WikiText

©)

Markers Properties

=terminated= C#\Program File

[INFO] --- maven-surefir
[INFO] Tests are skipped

&) JAR Selection

(=13
‘ Java Build Path (=g =
] Sourcel = Projects % Order and Expor‘tl
JARs and class folders on the build path:
| #-=, JRE Systern Library [JawaSE-1.8] I Add JARs...

-0l x|

Choose the archives to be added to the build path:

Itype filter text

Add External JARs...

Add Wariable...

Add Library.

—'B LiteMAdermo |

[.settings

Oeen SOUrce comeonents
a

oK

Cancel |

Add Class Folder...

Add External Class Folder.,

Edit...

Remove

Migrate JAR File..

_—.

Cancel

Eearch

. heiman.sensors ---

After the jar files are imported, files in the src directory become normal.

Figure 1-40 Normal files in the src directory

4 [LiteMademo
4 B src

r HH com.huawei.service.appliccessSecurity

[»

{7 8 & 8 6 6

A T v A v T

—-End

com.huawei.service.dataCollection
com.huawei.service.deviceManagement
com.huawei.service.messagePushing
com.huawei service.signalingDelivery
com.huawei.testMessagePush
com.huawei.utils

resource

1.5.8.2 Using Postman to Test IoT Platform APIs

Prerequisites

Before using this method, you need to:

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

191

IoT Device Management

Development Guide 1 Product Development

® Obtain the IP address and port number (HTTPS-compliant) provided by the IoT platform
for applications.

® Install and run Postman.

MnoTe

The Postman installation package is available at https://www.getpostman.com.

Configuring Postman

Step 1 Choose Settings.

Figure 1-41 Choosing Settings

oCumentaton

C

@postmanclient

Step 2 Disable certificate verification so that Postman does not verify the server certificate.

Figure 1-42 Disabling certificate verification

General
e

REQUEST HEADERS

Trim keys and values in request body

S5L certificare werification

5 STs i T
Always open requests in new tab

Send no-cache header @ oN

Send Postman Token header

Retain headers when clicking on links

@ on

Step 3 Configure the client certificate. Specifically, enter the IP address and port number provided by
the IoT platform for applications in the Host input box.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

192

https://www.getpostman.com

IoT Device Management
Development Guide 1 Product Development

Figure 1-43 Configuring the client certificate

Add Client Certificate

Host hups:// ‘._"—."_"..} i [—
CRTfile = DN client.crt Choose File
KEY file | DM ———Clientkey Choose File
Passphrase

o “

——End
MnoTe

client.crt and client.key are the client certificate and the private key file.

Debugging the Authentication API

Step1 Configure the HTTP method, URL, and Headers of the authentication API.

Figure 1-44 Configuring the HTTP method, URL, and Headers of the authentication API

No Environment

htps:// ipport iocm/app/secivl.1.0/login Params Send -

Key Value Description

| Content-Type application/x-www-form-urlencoded

Step 2 Configure Body of the authentication API.

Figure 1-45 Configuring Body of the authentication API

form-data | ® . -www-form-urlencaded | raw binary
Key Value Description
appld [[+ 18] —————— - E 1) T (0
secret PxOes e BkUBEa

Step 3 Click Send. The returned code and response are displayed in the lower part of the page.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 193

IoT Device Management
Development Guide

1 Product Development

Keep the access token securely. It will be used when other APIs are called.

Figure 1-46 Viewing the response of the Auth API

application/x-www-form-urlencoded

POST heeps// ikport Ffic:cn'l.fap:ﬂse:.".'1.1.Elflogin
Headers (1) []
Key Value
Content-Type
Pretty JSON =
1+l
2 "accessToken": "1334fe5fdo5868fdal35dee23a3d337",
3 "tokenType": "bearer",
4 "refreshToken": "4356F188117b0b%9c226ecc55e367b",
5 "expiresIn": 3608,
["scope": "default"
7 &L
-——End

Debugging the API for Registering a Directly Connected Device

Params Send W

Description Bulk Edit

Time: 128 ms

%]

Step1 Configure the HTTP method, URL, and Headers of the API for registering a directly

connected device.

Figure 1-47 Configuring the HTTP method, URL, and Headers of the API for registering a
directly connected device

J hrepsy/ ipport '.-’iccn'l.fap:freg.".ﬂ 2.0/devices
I

Key

' eaders (3] 2

Value

Params Send 4

Description

app_key
Authorization

Content-Type

e S ——E U

Bearer 1334fe5fd65868fdal35d0e2] Bearer {acceSSTokell})

applicationfjson

Step 2 Configure Body of the API for registering a directly connected device.

Figure 1-48 Configuring Body of the API for registering a directly connected device

(3)
form-data O xewww-form-urlencoded ® raw binary
180
2 "werifyCode™:"321534532634",
3 "modeld":"321534532634",
4 "timeout™:1088
s L

Issue 02 (2019-08-28)

Copyright © Huawei

Technologies Co., Ltd.

194

IoT Device Management
Development Guide

1 Product Development

Step 3 Click Send. The returned code and response are displayed in the lower part of the page.

Keep the returned device ID properly. It will be used when other APIs are called.

Figure 1-49 Viewing the response of the API for registering a directly connected device

JSON = Se

"deviceId": "a@5a4eBb-91c7-4922-a928-1ef27ef@5b5F",
"wverifyCode”: "321534532634",

"timeout™: 1868,

"psk™: "clcaaba2587f52b%a5dBaafe255cagy”

—End

1.5.8.3 CA Certificate

Exporting a CA Certificate

The CA certificate on the application server can be exported as follows:

Step 1 Start a browser, and type the callback address in the address box. Internet Explorer is used as
an example.

Step 2 Check the certificate. The methods for checking a self-signed certificate and non-self-signed
certificate are different.

® [fthe callback address uses a self-signed certificate, the message "There is a problem
with this website's security certificate" is displayed. Choose Continue to this website
(not recommended). > Certificate Error > View certificates.

Figure 1-50 Self-signed certificate callback address prompt

@‘ There is a problem with this website's security certificate.

The security certificate presented by this website was not issued by a trusted certificate authority,

Security certificate problems may indicate an attempt to fool you or intercept any data you send to the
SEIVE,

We recommend that you close this webpage and do not continue to this website.

® Click here to dose this webpage.

& Continue to this website (not recommended).

® More information

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 195

IoT Device Management

Development Guide 1 Product Development

Figure 1-51 Checking the self-signed certificate

€ Download Magma - Windows Internet Explorer /-"-"'-.\

O B e b 4 Cericteror }|+f &
- > Favorites @8 Sugoested Sites » @) Web Slice Gallery v | -

i # @5 = ' al Untrusted Certificate

ﬁDuwnIoad Magma ,:I\-’ T

The secunty certificate presented by this
website was not issued by a trusted
certificate authonty.

This problem might indicate an attempt to
fool you or intercept any data you send to
the server,

We recommend that you close this webpage,

About certrficate emors

View certificates
.

® [fthe callback address is not a self-signed certificate, choose Security Report > View
certificates.

Figure 1-52 Checking the non-self-signed certificate

R

X

i

b

38 * D Vebsite Identification

¢i-Buldng aFuly ... X | @ 8larkPage
VeriSignhas identified this site as!
i, huavel. con

This connection to the server is
encrypted

Should T trust this site?

View certificates

Step 3 Check the certificate level on the Certification Path tab page. The current certificate level is
the last level of the certificate.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 196

IoT Device Management
Development Guide 1 Product Development

Figure 1-53 Certificate Directory

Certificate X
General | Details [Certification Path||

—iZertification path

Yiew Cerkificate

Certificate status:

This certificate is Ok,

Learn more about certification paths

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 197

IoT Device Management
Development Guide 1 Product Development

Figure 1-54 Common certificate information

Certificate >

General | petails | Certification Path |

ﬁ Certificate Information

This certificate is intended for the following purpose(s):
+ Ensures the identity of a remote computer

* Refer to the certification authority's skatement Far details.

Issued to: 0 e e

Issued by: oineiiGee slang Bl Snpes DA LG

valid from 2017/ 10/ 16 bo 2018 10/ 18

Inskall Certificate, .. | | Issuer Statement I

Learn more about certificates

(8].4 |

Step 4 On the Details tab page, click Copy to File, and select Base-64 encoded X.509 (.CER) to
export the certificate of the current level based on the certificate export wizard.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 198

IoT Device Management
Development Guide 1 Product Development

Figure 1-55 Detailed certificate information

Certificate E3

General Details | Certification Path I

Shiow:

[EEHD e e B T o

ST Vol Ukharite Inro Aczass! AR,

il Nek LRGN e O 7S D] et

Migical Swensklre, Kewisndphs v|

Edit Froperkies. .. | Copy ko File. .. |

Learn more about certificate details

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 199

IoT Device Management
Development Guide 1 Product Development

Figure 1-56 Selecting the certificate export format

Cettificate Export Wizard

Export File Format
Certificates can be exported in a variety of file Formats,

Select the Format wou wank ko use:

" DER encoded binary %.509 {,CER)

{¥ Base-64 encoded ¥.509 {,CER)

" Cryprographic Message Syntax Standard - PECS #7 Certificates { P7E)

I™ Include all certificates i the certbification path F possible

€ Personal Information Exchange - PRES #£12 (,PEY)

I™ | Include all certificates in the certification path if possible
™ Delete the private key if the expart is suczesskul
I™ |Export &l extended properties

' Microsoft Serjalized Certificate Store (55T

Learn more about certificate file formats

< Back I Mext = I Cancel

Step 5 Double-click the upper-level certificate. In the displayed dialog box, choose Details > Copy
to File > Base-64 encoded X.509 (.CER) to export the upper-layer certificate by following
instructions provided by the certificate export wizard.

Step 6 Repeat Step 5 until all levels of certificates are exported.

Step 7 Use the text editor to combine all the exported certificates into a file.

MnoTe

No newline character exists between the combined files.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 200

IoT Device Management
Development Guide 1 Product Development

Figure 1-57 Combining certificates

pLEJELOYWESHuxOi sCdwljwlmATSE5+44 3 fNDsgN3BAR R A FeBud xR AR RRAMAR S BE
LiA+PkSvZ0vIBmuaBlELoeHHINgH+HMers+xtENmI0]1 2ZE1QIgfVeG4xeuW rbThpoll
SmE+LStICITECwimn 3 JRE3we / £ ¥wDY TEo Z ThweNAQELBQADggEBADjriz8aTocax
h7vpyulFZ/ fiKBHETVLgfppgf3YNBoghZ 1gMegTGzdiSeZ j+tvx+EOUn38£080Rg
NZaEkag3nl3cufIXR8Y¥nthaocusz S PONSIMOnNSrZBwpZBobI ti0BEE0h S 1gHR+S
SloH/J8nDDCRgrNkcCZ AT EnUT+VaCEENxn Pmgaj B/ 02h/ kglZ2gjonPoj éElmm/ Bt
SAWWANE2T4v5Tc0fgliZlmfZolgooafesSJ15R=yENUSEBewSCZCICEYFgQC3R5280
wICjde?TMsAQiWkZS7 IE1 UM dbHManm7ER 5aWcE4WgEisr3dZEPUZYgeUS cBEEWY
aPSMzoelUeug=

MIIFODCCECCgRwIBAgIQUT+5dDhwtRAGY OwkwaZ / sANBgkghkiG9wlBALsFADCE
yiEIMAKEL 1 TEBhMCV VM F=AVEgNVEA0TD] 21 cml TaWduL.CBIThmMuMR 8wl YDVRGT.
ExIWZXIpUZ 1nbiBlenVzdCBOIXESbEJrMTowlAY DV LEZEoY yhgh) 2wli BHIXIp
U2 1nbiwgSW5) LiktIEZvoiBhdXRobs JpenVk IHV s 2 SBvbm SMUTw{wY DV QDR 2
ZXJpUZ1nbiB0bEFzcyAzIFE] Yrup Y yBReml t VXIS IEN]l cnBpZml § YXApbE 4gQH V0

Step 8 Change the file name suffix to pem.

Step 9 On the Developer Center, choose Interconnection > Application Security > Push
Certificate to upload the certificate to the IoT platform.

Figure 1-58 Uploading a Certificate

Basic Information

Products Interconnection Details

Application Information [Application Security
2VSwsyJpQEIRESIERWGHOCZAa Reset Secret

2019/08/18 13:45:32 Nona. No push certificates available. [Certificate Management

Inferconnaction
Device Access Information Industry Information [

—End

Uploading a CA Certificate

The CA certificate of the application server must be uploaded to the loT platform for the IoT
platform to push HTTPS messages to the NA server. The CA certificate can be uploaded
through the Developer Center or the SP portal.

Uploading the CA Certificate Through the Developer Center

Step1 Choose Applications > Interconnection. In the Push Certificate area, click Certificate
Management.

Basic Information

Products Interconnection Details x =

Application Information [Application Security
IoT_Device_Dev aVSwsyJpQSIRESJAEIRWGHOGCZAa Reset Secret

2019106118 13:46:32 None.

Interconnection

Device Access Information Industry Information %

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 201

IoT Device Management
Development Guide 1 Product Development

Step 2 The CA Certificate dialog box is displayed. Check whether the CA certificate has been
uploaded. If not, click Add.

CA Certificate(Application certificate has not been uploaded. The subscription function is unavailable) X
+Add

LB Check

AME
Nickname CNAME CNAME

CA Certificate Domain & Port

Mo data available

Step 3 In the displayed Upload CA Certificate dialog box, select the certificate file, set parameters,
and click Upload.

Upload CA Certificate b4

*|Upload Ceriificate

*Domain & Port

For exmaple : api.ct10649 com: 89001

Flease enter a valid domain & port

*LB Mickname

default -

Check CNAME

Cancel

-—-End
Uploading the CA Certificate on the Management Portal

Step1 Choose System Manage from the upper navigation bar, select Application Management >
Application List, select an application, and click certificate manage on the Information tab

page.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 202

IoT Device Management

Development Guide 1 Product Development

= [0 Tolatform Spemvanage ~

E Application Management A anagement > FirstApp

Application List

North Push Statistics

Accept List Grant List Enterprise Gatoway

S3mudBEGAKRIWA]S7STs0GdP0

Create Time Industry

2019-01-15 11:39 Smart Home off

App Interface
Basic API Smart Home eHealth Connected Car Utiity

Access mode: Message Push

Push Protocol

57.105.101 IQTTS), 8943 (HTTPS) HTTPS
(4808, 56 TCP), 5683

(COAP/UDP), 5684 (COAP/UDP/DTLS)

Step 2 The CA Certificate dialog box is displayed. Check whether the CA certificate has been
uploaded. If not, click Add.

CA Certificate

+ Add

CA Certificate Domain and port Ib nickname check CNNAME CNNAME

Step 3 In the displayed CA Certificate dialog box, select the certificate file, set parameters, and
click Confirm.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 203

IoT Device Management

Development Guide

1 Product Development

CA Certificate

CA Certificate

The file can not exceed 1M, and must be pem format

* Domain and port

ease enter the domain name and port

For example @ api.ct10649.com: 9001

“Ib nickname

1

check CNMNAME

L@

" CNNAME

please input

Confirm Cancel

——End

1.5.8.4 Performing Single-Step Debugging

X

>

To view requests sent by applications and responses from the IoT platform in a more intuitive
manner, use the breakpoint debugging method of Eclipse. If you use the Postman test
interface, see Using Postman to Test IoT Platform APIs.

Step 1 Set a breakpoint at the code where HTTP or HTTPS messages are sent.

For example, set three breakpoints for the executeHttpRequest method in the sample code
HttpsUtil.java. (Set the breakpoints according to the actual situation of your code.)

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

204

IoT Device Management
Development Guide 1 Product Development

Figure 1-59 Setting a breakpoint

[t Project Explorer &2 = B | [HttpsUiiljava 2
= <"===>| & v 328
4 Y LiteNAd ' L 321 private HttpResponse 'executthtpRequest HttpUriRequest request) {
g~ e ema 322 HttpResponse response = nullj
a (B src 323
> f# com.huawei.service.apphccess 324 try |
h . ice.dataColl @325 response = httpClient.execute(request);
> 4 com.huawei.service.dataCaolled 326 1} catch (Exception e) {
I 4 com.huaweiservice.deviceMan ©327 System.out.println("executeHttpRequest failed.");
> £H com.huawei.service.messagePL ggg } fi:f’l:%’ {
> H comhuawei.service.signalingDy @558 response = new StreamClosedHttpResponse(response);
I i com.huaweitestMessagePush 331 } catch (IOException e) {
4 1 com.huawei.utils 332 System.out.println("IOException: " + e.getMessage());
- . L 333 1
I 1J] Constantjava S 332 3

1 _|J] ExceptionUtiljava 335
D’m HitpsUtil.java 336 return response;
337 1

= [J] JsonUtiljava

Step 2 Right-click the class to be debugged based on the project type, for example,
Authentication.java, and choose Debug As > Java Application.

Step 3 After the program stops running at the breakpoint, click Step Over to perform single-step
debugging.

You can view the content of the corresponding variable in the Variables window, such as the
sent messages and the response messages of the IoT platform.

Figure 1-60 Performing single-step debugging

@ Debug - NaliteDemao/sro/com/huaweifutils/HttpsUtil java - Eclipse

Fle Edit Source Refactor Mavigate Search Project Run Window Help
oo e B ER e s ieOr s 0 k- 0- Q- iES 7R -
15 Debug [Resume } - Terminate) Step Over) |l =8 2’5

E [Java Application] + Name
a (B com.huawei.service.RegisgrDirectlyConnectedDevice at localhost:49933

4 @ Thread [main] (Susg€nded)
HitpsUtil.exegiteHttpRequest(HttpUriRequest) line: 323
HitpsUtil.dgPost)sonGetStatusLine(String, Map=5tring,String=, String) line: 160
RegisterfirectlyConnectedDevice.main(String[]) line: 36

4 [7] RegisterDirectlyConnectedDevi

> @ this

m

=
Ll request

| & response

[J] Authenticationjava

' HttpResponse executeHttpRequest(HttpUriRequest
ttpResponse response = null;

s

response = httpClient.execute(request);

} catch (Exception e) {
System.out.println("executeHttpRequest failed.™);

} finally {

try {
response = new StreamClosedHttpResponse

} catch (IO0Exception e) {

System.out.println("I0Exception: " + e.getMessage());
}

Step 4 Expand the request variable in the Variables window to view the content of the requests.

When the request variable is selected, the URLs of the requests sent by the applications are
displayed in the content area in the lower part of the pane, and the content the requests is
displayed in the entity area.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 205

IoT Device Management
Development Guide 1 Product Development

Figure 1-61 Expanding the request variable

[*'J=EZ§ 9 Breakpoints =

MName Value
> @ this HitpsUtil (id=24)
HttpPost (id=25)
o aborted AtomicBoolean (id=84)
> o cancellableRef AtomicReference=V= (id=86)
m config null
A UrlEncodedFarmEntity (id=88)
& chunked false
< contentEncoding null
la & contentType BasicHeader (id=108)
> o name "Content-Type" (id=110)
> o value "application/x-www-form-urlencoded”|(id=111)
» ¢ headergroup HeaderGroup (id=91)
> ¢ params BasicHttpParams (id=93)

|POST https:// {iocm/app/sec/vl.1.8/login HTTP/1.1 |

The application ID (appld) and application key (secret) are contained in the content field and
are represented by decimal ASCII codes. You need to convert them into letters and symbols
according to the ASCII code table.

Figure 1-62 Viewing the content field

*)= Variables &2
MName Value
> @ this HitpsUtil (id=24)
4 O request HitpPost (id=25)
» o aborted AtomicBoolean (id=301)
. cancellableRef AtomicReference<V= (id=303)
m config null
4 @ entity UrlEncodedFormEntity (id=303)
= chunked false
a [0] 07 |2}
a 1] 12| P)
a [2] 112 pJ
a [3] 73 1
A [4] 1001 d
A [9] lial =j
a [6] 11
a [7] 121
A [8] a8

Step 5 Expand the response variable in the Variables window to view the content of the responses.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 206

IoT Device Management
Development Guide

1 Product Development

Figure 1-63 Expanding the response variable

(x) 'x 9% Breakpoints

Mame Value
> @ this HitpsUtil (id=24)
> & request HitpPost (id=23)
4 |0 response | StreamClosedHttpResponse (id=294)
4 content "{"accessTcken":'H54TST25&bal‘fbeadd+5
@ hash 0
> o value (id=297)
4 o ariginal $Proxy0 (id=43)
4 h CloseableHttpResponseProxy (id=51)
4 of original BasicHttpResponse (id=54)
IEI code 200 |
» @ entity BasicManagedEntity (id=58)
> headergroup HeaderGroup (id=58)
@ locale Locale (id=63)
H params ClientParamsStack (id=8a)
> @ reasonCatalog EnglishReasonPhraseCatalog (id=68)
> @ reasonPhrase "OK" (id=70)
» @ statusline BasicStatusLine (id=78)
(Onote

In the code example, all classes other than Authentication.java call the Auth API in the first step.
Therefore, when performing single-step debugging on a class other than Authentication.java, view the
variable content when the program runs for the second time to the position where the breakpoint is set.

—End

1.6 Developing a Device

1.6.1 LWM2M/CoAP Device Integration

1.6.1.1 Device Integration

In CoAP or LWM2M access scenarios, devices can be connected to the [oT platform by

integrating NB-IoT modules or LiteOS SDK.

Integrating NB-IoT Modules

Devices integrated with NB-IoT modules can connect to the IoT platform through NB-IoT

networks.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 207

IoT Device Management
Development Guide

1 Product Development

Data
colle[:tion

MCU

NB-loT
module

Device

HTTPS API
interaction

Profile file

MB-loT network

Connectivity

CIG —
CakPILWIIZM management

| Data push
Codec HTTPS

plug-in

loT platform NA server

Features

® Wide coverage: The gain is 20 dB higher than that of LTE.

® [ow power consumption: The solution focuses on applications with
small data volume at a low rate.

® Massive amounts of connections: A single sector supports a maximum
of 50,000 connections.

® Low cost: NB-IoT chipsets or modules are cost-effective for its low
rate, low power consumption, and low bandwidth.

Scenarios

Low requirements on data timeliness, small data packets, fixed locations,
and power supply from batteries. For example, smart metering and smart
street lamp.

Applicable
Networks

® NB-IoT network: constructed by carriers
® NB-IoT SIM card: purchased from NB-IoT network carriers

® NB-IoT module: purchased from the module manufacturers

Communica
tion
Protocols

CoAP/LWM2M

Related
Resources

Obtain more information and support from the module manufacturer.

Integrating LiteOS SDK

LiteOS SDK is a lightweight SDK integrated on the device. Its features are as follows:

Features | ® Protocols and security details are shielded. Users can focus on their

® An adaptation layer is provided. Users can migrate LiteOS SDK by

® Data reported by devices can be cached and retransmission and

® Firmware upgrade, resumable download, and integrity protection for

® Security and non-security connection modes are supported.

applications without paying attention to the implementation of protocols
and security policies.

adapting only a few interfaces.

acknowledgment mechanisms are provided to ensure data reporting
reliability.

firmware packages are supported.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 208

IoT Device Management
Development Guide

1 Product Development

AT Command

Running | RAM > 32KB

Environ | gy AgH > 128KB

ment

Requirem

ents

Applicabl | NB-IoT, 2G/3G/4G, and wired network
e

Networks

Commun | CoAP and LWM2M

ication

Protocols

Related For details about how to integrate the LiteOS SDK, see LiteOS SDK
Resource | Integration Development Guide.

S

AT commands are used to control devices. The following AT commands are for reference
only. Obtain the command set from the corresponding module manufacturer.

AT Command Function Remarks
AT+CMEE=1 To query an error. Standard AT
command.
AT+CFUN=0 To power off a device. Shut down a device Standard AT
before setting the IMEI and IP address of command.
the IoT platform.
AT+CGSN=1 To query an IMEI. The IMEI is a type of Standard AT
device ID. When an NA server calls an APl | command.
to register a device, nodeld and verifyCode
must be set to the IMEL
AT xxxx indicates an IMEI If an IMEI is not Proprietary AT
+NTSETID=1,xxxx | found, you can set an IMEI that is unique. command of the
The IMEI is a type of device ID. When an H1$1hc0n chipset,
NA server calls an API to register a device, wh1ch'stores the
IMEI in the flash

nodeld and verifyCode must be set to the
IMEI if the device uses a HiSilicon chipset.
If the device uses a Qualcomm chipset,
nodeld and verifyCode must be set to
urn:imei:IMEIL.

memory. This
parameter is used
when the NA server
registers with the
IoT platform. Other
chipset or module
manufacturers can
refer to this
parameter.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

209

IoT Device Management
Development Guide

1 Product Development

encrypted port.

AT Command Function Remarks

AT Set the IP address and port number of the Proprietary AT

+NCDP="IP","port" [IoT platform connected to the device. 5683 | command of the
is a non-encrypted port and 5684 is a DTLS | HiSilicon chipset,

which stores the IP
address and port
number in the flash
memory. This
parameter is used
when the NA server
registers with the
IoT platform. Other
chipset or module
manufacturers can
refer to this
parameter.

AT+CFUN=1

To power on a device.

Standard AT
command.

AT+NBAND=
frequency band

To set the frequency band.

Proprietary AT
command of the
HiSilicon chipset,
which stores the
frequency band in
the flash memory.
This parameter is
used when the
device is connected
to a network. Other
chipset or module
manufacturers can
refer to this
parameter.

AT
+CGDCONT=1,"IP"
,"CTNB"

To set the APN of the core network. The
APN is related to the sleep and keep-alive
modes of a device and must be confirmed
with the carrier.

Standard AT
command.

AT+CGATT=1

To access a network.

Standard AT
command.

AT+CGPADDR

To obtain the IP address of a device.

Standard AT
command.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

210

IoT Device Management

Development Guide 1 Product Development
AT Command Function Remarks
AT+NMGS=x,xxxx | To send downstream data. The first Proprietary AT
parameter indicates the number of bytes, command of the
and the second parameter indicates the HiSilicon chipset.
reported hexadecimal stream. Data transmitted for
the first time is used
for device

registration, and
after a device is
registered, only data
is sent. Other chipset
or module
manufacturers can
refer to this
parameter.

AT+NQMGR To receive downstream data. Proprietary AT
command of the
HiSilicon chipset. It
is used to query the
amount of data that
can be received in
the receive buffer,
the total number of
received messages,
and the number of
discarded messages.
Other chipset or
module
manufacturers can
refer to this
parameter.

AT+NMGR To read data. Proprietary AT
command of the
HiSilicon chipset.
The command is
used to read data
received from the
IoT platform
(LWM2M server).
Other chipset or
module
manufacturers can
refer to this
parameter.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 211

IoT Device Management
Development Guide

1 Product Development

1.6.1.2 Device Testing

Overview

Online test supports device simulation and application simulation. It offers scenarios such as
data reporting and command delivery to test devices, profiles, and plug-ins.

Developers can use physical or virtual devices for online test.

® When the device development is complete but the application development is not,
developers can add physical devices and use the application simulator to test devices,
profiles, and plug-ins. The structure of physical device testing interface is as follows:

@Application Simulator

Bl otz Receive

Application Simulator:
|+ Simulates command delivery by the NA server.
* Displays data received and commands delivered
by the NA server.

Command Send

Command

SwitchBulb

ON_OFF

Command

“

DataReport Data Rep

loT Platform

@Physical Device

: Message Tracking: i
| Displays logs of the loT platform generated !
‘ during data reporting and command delivery Q—t
| for developers to demarcate and locate |
| faults. i

Message Tracking

Gettil
Starl

® When both device development and application development are not completed,
developers can create virtual devices and use the application simulator and device
simulator to test profiles and plug-ins. The structure of virtual device testing interface is

as follows:

d@Application Simulator

Application Simulator:

|« Simulates command delivery

| by the NA server.

i« Displays data received and
commands delivered by the
NA server.

BinarySwitch

TOGGLE

Command
Delivery

loT Platform

‘ Device Simulator :
i+ Simulates data reporting |
from the device. o—ri
+ Displays data reported and !
commands received by the ‘
device. i

iThls pane is displayer when Data ‘
| Format is set to Binary code stream |
‘ during product creation. |

Using a Physical Device for Online Test

Step 1 In the product development space, click Perform Online Test.

Message Tracking

‘ Message Tracking:

| Displays logs of the IoT platform generated
¥ during data reporting and command delivery
§ for developers to demarcate and locate faults.

o
Gettin
Start

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

212

IoT Device Management
Development Guide 1 Product Development

Product Development > WaterMeter01 () View Defails @How o develop products

WaterMeter0 1 Industry: B

%)

Protocol Type: LWM2M

D, 2a5080905134407497 280185401 11a7d

Device List) +Add

Status Device Name Device ID Product Model Type Operation

Step 2 Click Add at the row where Device List resides.

Device List

Status Device Name Device ID Product Model Type Operation

Step 3 In the Add Test Device dialog box displayed, select Yes, set the parameters, and click OK.

® Device Name can contain only letters, digits, and underlines (_) and must be unique in
the product.

® Device Indentity must be set to a unique value, such as the IMEI or MAC address of the
device.

® Choose Unencrypt or Encrypt based on site requirements.

Add Test Device »

Is Physical Device Available

(®)Yes No

*Device Name

testdevice001

*Node ID
111111111

Device Registration Mode

(®)Unencrypted Encrypted

After the device is added, Device ID and PSK are returned. Keep the PSK securely as it
is required when the device uses DTLS to connect to the IoT platform.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 213

IoT Device Management
Development Guide 1 Product Development

Success W

Power on the device and configure the network by following the device
u=er guide. If the device status is onling, the device successfully connects
to the platform and the platform can receive data from the device. Keep
the following device information securely:

Device D
TcadashT-e65e-4516-a549-c210fc1445fa

PSK (required when DTLS is used)
23837 Taflfee73d903565docedld89e

Step 4 In the device list, select the newly added physical device to enter the Online Test page.

Device List + Add

Status Device Name Device ID Product Model Type Operation

WaterMeter | (= |

| @ Offine testdevice001 Tcabadb7-e65e-4816-3549-09 101¢ 144572

Step 5 Connect the device to the IoT platform and report data. View the data reporting result in
Application Simulator and processing logs of the IoT platform in Message Tracking.

Message Tracking 4show

@ Application Simulator

B DataReceive | Command Send
5633
Command
Delivery - .
[— » €9 10T Platform [1OCMJiocm receive bind message from cig.
_______ BindDeviceByNodeldDTOGW2Cloud [nodeld=12"+'89,
Data Report =T isSecure=false, requestid=null]
Data Report | 1
Service Battery v |} Command Delivery 3
ev [1OCMJiox not notify event, callbackUrl is null, Event
cannot be pushed to app server, callbackUr s nul. the appld
Comman CHANGE_STATUS v @ Physical Device VVIBRYS_ZHNFTLSW2UWSFX2G.I82, the event
UpdateD: DTOCIoud2NA [deviceld=7cag™"451a,
. et oatewayld=7cas" " 45fa, devicelnfo=Devicelnfo
value " Enleran nteger rangeld, 1 [nodeld=12"89, name=testdeviced01. description=null
manufacturerld=e0aac2b7703549¢ 784c bae23eD283¢5,
, mac=null,
device 3 1,
fVersion=nul, hwersion=null, profocolType=CoAP,
bridgeld=null, status=null, statusDetail=null, mute=FALSE
sigversion=null serialNumber=null, batteryLevel=null,
notify Type=deviceinfoChangea]
cannot be pushed to app server, callbackUrl is null. the appld
VIWIERYE_ZHNFTLSW2UWSFX2G.Iga, the event
UpdateDevicelnfoNotity DTOCloud2NA [deviceld=7c a6 =45t
457a, Devicelnfo
[nodeld=12"*"89, name=testdevice001, description=null,
SetTime manufacturerig=e09ac 2077033490 7840 00ae23e0233¢5,
. mac=nul,
device : . 1
fwVersion=null,_ hwersion=null, protocolType=CoAP,

Step 6 Deliver a command in Application Simulator. View processing logs of the IoT platform in
Message Tracking and check the received command on the device.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 214

IoT Device Management

Development Guide

1 Product Development

Using a Virtual Device for Online Test

@ Application Simulator

I bata Receive

Command Send: 2013-09-25 10:41:03

Command Send

Header: { “time
+03:00 2018, "requestid

55a4-54970 "callbackUr™ nul.

‘expireTime”. 0, ficeld”; "Battery

274750-03b1

Servics | Battery v

Comman CHANGE_STATUS M

value * Enter an integer range{0, 1

[

End

Command
Delivery

Data Report

oT Platform
=0

Data Report

Command Delivery
o v

@ Physical Device

Step 1 In the product development space, click Perform Online Test.

Product Development > WaterMeter01

N WaterMeter01 Industry
~ vl
Device List)
Status Device Name

wEE

NBloTDevice

Manufacturer Name: ofo

e Type,: WalerMeter

Product

Step 2 Click Add at the row where Device List resides.

Device List &

Status Device Name

Product

No devices found.

Data Type: Binary

Message Tracking 4show

03

[IOCMlioem starts to send command to cig by kafka using

[id=5b832a3a1b50ecGaTid3eadd, user=zhaojinyong,
subUser=zhaojinyong, name=Quick_Start, createTime=2018-09-
08709:49:30.699+02:00, description=null, indusiry=nblot,
apiPackage=ApiPackage{common="on’, home="nulr",
medical="null, car="ulf, nblot="null}, lock=False, certiicate=nuil,
status=lest. proxyServeradarList=null,

TimeConfig=null,
serviceConfig=ServiceConfig [dataSenvice=DataService
[historyD: Time=7], ice=Mail

subService=null, access Type=nul, ipWnite ListRequestinfo=null
key=VWis™**Iga, test=Talse], deviceData=nul,
commandName="null’, serviceld="null", timeout=0, hasMore=false,
callbackUri=nulr, commandDTO=CommandDTO

[serviceld=Battery, method=CHANGE_STATUS, paras="""""],
expireTime=0, maxRefransmit=null, deviceld="bdce"***343p,
resultCode=null}

the command will be posted to CIG module. command:
PostCommandDTOCkud2Cigi, command=CemmandDTO
[serviceld=Battery, method=CHANGE_STATUS, paras="""""],

commandid="307e518474bc4264350 1460 15¢a1 0500,
maxRetransmit="null’;

(I0CMjiocm push command to kafka. Platform get ane command,

@ VewDetails @Howtoa

Protocol Lwh2m

Manufacture 1D, 2a593d9051944074972801854dT1a7d

@ Perform Online Test

Model

Model

Type Operation

Type Operation

Step 3 Inthe Add Test Device dialog box displayed, select No and click OK.

Start Self-Service Test

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

215

IoT Device Management
Development Guide 1 Product Development

Add Test Device e

Is Physical Device Available

Yes | (@ No

ou are registering a virtual device

Cancel

Step 4 In the device list, select the newly added virtual device to enter the Online Test page. The
name of the virtual device is in the format of Product Name+Simulator. Only one virtual
device can be added for each product.

Device List + Add
Status Dsvice Name Device ID Produc Model Type Operation
@ Oniine WaterMeter01NBSimulator Waterleterd Waterlsterd Waterliete I (= |
@ Offine testdevice001 WaterMeter01 WaterMeterD1 Waterheter (=]

Step 5 In Device Simulator, enter a hexadecimal code stream or JSON data (for example, enter a
hexadecimal code stream) and click Send. Then, view the data reporting result in Application
Simulator and processing logs of the IoT platform in Message Tracking.

Command Message Tracking 4 Show
o Delivery P
d Application Simulator O-oooooo > @9 10T Platform
-
Data Receive | Command Send Data Report T
. BEEEETR Y [CIGIbind request have reached platform, ueid = zhao™ 9130
| Command Delivery
o v
- e A y 1 Ueld = Zhac™=g
(23 Non-NB-loT Device Simulator [CIGHig send bind-message to iocmt ueld = zhao™2180, port
Bl Datasending Command Receiving
Data S+
[I0CMjiocm receive bind message from cig.
BindDeviceByNodeldDTOGW2Cloud 180,
isSeture=true, requestio=nul]
Serice Battery v
[ICCMiocm return 2000K to ¢ig.
. . BindDeviceByNodeldDTOCIoud2GW =-+<0805,
Comman CHANGE_STATUS applo=wwie™JIga
alue * Enter an integer rangef0 , 1
jocm find out there IS N0 command in the queue.
processed in kafka handler “IOCM.DEVICE V1 fegisterRoute”
Enter a hexadecimal code stream
[ICCMiocm fetch command ffom queus. triggered by kafka
topic I £V1 registerRoute”
0001
[CIGIcig received message from device. veld = zhao****2150
[CIGIcig get plug-n success. { key
=e08ac 2077034 26230028258 8Valerhleterd)
SetTime

[CIGleig decodes data success. DTO [identifier

=null, msgType=DEVICEREQ, i

Step 6 Deliver a command in Application Simulator. View the received command (for example, a
hexadecimal code stream) in Device Simulator and processing logs of the IoT platform in
Message Tracking.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 216

IoT Device Management

Development Guide

1 Product Development

1.7 Self-Service Testing

& Application Simulator

B paar

Command

Service | Battery

Comman CHANGE STATUS

—End

23 o T Platform

Data Report

Command Delivery

{z) Non-NB-loT Device Simulator

aSending Command Receiving

Enter a hexadecimal code stream.

0001

1.7.1 Self-Service Testing Guide

Overview

Prerequisites

Procedure
Step1
Step 2

Message Tracking

hed piatform, ueid = Zhao™**3180

lessage to iocm! ueld = zhao™="8180, port

d message from cig.
W2Cloud [nodeld=zhao****3180,

K to cig.
OCIoud2GW [deviceld=ece2~0805

2nd from queve. triggered by kafka
1 registerRoute’

age from device, ueld = zhao™*=*9180

c588WaterheterD)

deReportDTO [identifier

Self-service testing provides end-to-end test cases to help developers test basic device
capabilities, such as data reporting and command delivery. It aims to help you find product
defects or problems and shorten the time to market (TTM). After the testing is complete, a test
report is generated by the Developer Center for product release certification.

You have defined the product profile, developed the codec, and deployed the codec.

In the product development space, click Self-Service Testing.

The Select Test Case page is displayed. You can select test cases as needed. The system
automatically checks whether the selected test cases meet the test requirements and returns the

check results.

® [fall selected test cases pass the check, click Next to proceed to the next phase.

® [fa test case fails to pass the check, click Information Missing on the right of the test

case and modify the profile file or codec as prompted.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

217

IoT Device Management
Development Guide 1 Product Development

LnoTe

- To initiate the self-service testing, in addition to the mandatory test case, either Data Reporting
or Command Delivery must be selected.

- The more cases of a product pass the test, the higher the pass rate of the product release to the
Product Center. It is recommended that either Software Upgrade or Firmware Upgrade be
selected and all other test cases be included.

Back to Development 4 P Y ———— »
Select Test Case Update: m
C’c Device

Device Registration and Access Ability of physical devices to connect to the IoT platiorm
Data Reporting Ability of the test device 1o report data
Wireless parameters test report Ability of the test device 1o report maintenance data Test (@)
Command Delivery Ability of the test device 1o receive commands from the loT platform
Response to Delivered Commands Ability of the test device fo report execution results after receiving commands from the oT platform
Software Upgradel:l
Profile: 08M properties You ha e. Enable the service firs
Firmware Upgrade Avility of the test device 1o Upgrade firmware =D
e Application [Avaiiavie JETERIE
Application Event Subscription Abilty of an application to call APIs of the 10T platform to subscrive to device data change notification
Application Data Push Avility of an application to properly receive the device data pushed by the 10T piatform

Step 3 Perform the self-service testing as prompted. After the testing is complete, you can preview
the test report or apply for releasing the product.

—End

1.7.2 Device Registration and Access Test

Overview
The device registration and access test verifies the capability of the device to connect to the
10T platform. This test includes device registration and device access.
(Lnote
This test case is the prerequisite for other tests. If it fails, other tests cannot be performed.
Procedure

Step 1 On the device registration and access test page, click Next. The device registration page is
displayed.

Step 2 Enter the test page according to the wizard, select the device type, enter the device node ID
and module name, and then click Next.

If Device Type is set to Encrypted, PSK needs to be set.
(Cnote

If no module is used for the test, set Module Name to Null.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 218

IoT Device Management
Development Guide 1 Product Development

1. Register a device. -

Enter the device message.

*Secure type Encrypted (s) Mon-encrypted

111

o6

Module name null

Step 3 Register a physical device on the IoT platform according to the wizard, and view the test
result.

® [fthe test is successful, click Next to proceed to the next phase.
® [fthe test fails, rectify the fault and click Retest.

1. Register a device. > 2. Connect the device to the loT platform.

The device is online successful.

Device mark 2222222272
Device Id 20900b02-af69-4c99-88af-9c6e9cH5ff8d
Bound 2019-06-24 19:29:55
Test Completion Time 2019-06-24 19:29:57

Log [CIG]Bind request have reached platform. Bind request have reached
platform, IMEI = 2222222222, coapMID = 62148, coapToken = [-50], s
niircelfddrecs = 10 A1 32131 cnurcePart = GN270

TUIU I SIS DAL AU 10 B T B WL NINI | — S S S E

REt ==t

—End

1.7.3 Data Reporting Test

Overview
The data reporting test verifies the data reporting capability of a device. The purpose is to test
whether the property fields defined in the profile file are correct. If the data format for the IoT
platform interacting with the device is binary code stream, the test also verifies whether the
mapping between the codec and the profile file is correct.

Procedure

Step1 On the Data Reporting page, click Next to start the test.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 219

IoT Device Management

Development Guide

1 Product Development

Step 2

1.7.4 Radio

Overview

Enter the test page according to the wizard, operate a physical device to report the property
data defined in the profile file. If all the data is reported, you can click Stop Testing and view
the test result.

® [fthe test is successful, click Next to proceed to the next phase.
® [fthe test fails, rectify the fault and click Retest.
(Lnote

The platform will verify all attribute data that has been successfully reported and record it in the test
report. The repeative attributes will only be recorded once.

1. Enable a device to report data. > 2. Check the test report.

Data reported successfully
Reported data: Reported data: {“toggle":35}
Reported: 2019-06-25 15:56:46
Unreported parameters: luminance
swWersion
SNR

fwVersion
CelllD

Remest “

—--End

Parameter Reporting Test

This test case checks the radio signal data (signal strength, coverage level, signal to noise
ratio, and cell ID) reported by the device.

To execute this test case, you need to define the following radio signal parameters in the
profile file and set up the mapping in codec.

Parameter Type Description

RSRP/rsrp/ int Signal strength. The value ranges from

signalStrength/ -140 to -40.

SignalPower

ECL/signalECL int Coverage level. The value ranges from 0
to 2.

SNR/snr/SINR/sint/ int Signal to noise ratio. The value ranges

signalSNR from -20 to 30.

CellID/cellld int Cell ID. the value ranges from 0 to
2147483647.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 220

IoT Device Management
Development Guide 1 Product Development

Procedure

Step1 On the Radio Singnal Parameter Reporting page, click Next to start the test.
Step 2 Enter the test page according to the wizard. Use the physical device to report the radio signal
parameters defined in the profile file, and view the test result.
® [fthe test is successful, click Next to proceed to the next phase.
® [fthe test fails, rectify the fault and click Retest.
(Lnote

The reported radio signal parameter values must be within the ranges.
1. The device reports wireless parameter data > 2. Check the test report.

Data reported successfully.

Reported data: Reported data: {"SignalPower":-86,"ECL":0,"SNR™:3,"CelllD":1117199
2}

: 2019-06-24 11:54:20

Reported

ed parameters: Null

Test Completion Time 2019-06-24 11:54:43

Log [CIG]Cig received message from device. IMEL = 1111111111, regMID
= 73102 rnanTaken = 121 -71 -120 R1 -AR 05 -A4 71 renMIn = 41

SRR UMNLTAULI TR — I LT 1 UL — 1T

—End

1.7.5 Command Delivery Test

Overview

The command delivery test verifies the capability of a device to receive and process
commands. The purpose is to test whether the command fields defined in the profile file are
correct. If the data format for the IoT platform interacting with the device is binary code
stream, the test also verifies whether the mapping between the codec and the profile file is
correct.

If a service application is used for the test, the test also verifies whether the service
application can correctly call the Creating Device Commands API of the IoT platform to
deliver commands to the device.

Procedure

Step1 On the Command Delivery page, click Next to start the test.

Step 2 Enter the test page according to the wizard. Deliver a command defined in the profile file to
the device on the [oT platform. After the physical device responds to the command, view the
test result.

® [fthe test is successful, click Next to proceed to the next phase.
® [fthe test fails, rectify the fault and click Retest.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 221

IoT Device Management

Development Guide

1 Product Development

(MnoTe

If a service application is connected to the IoT platform, the application server delivers a command to
the device. After the physical device responds to the command, the page for uploading the screenshot
about the successful application command delivery is displayed. Click + on the interface to upload
the screenshot. The screenshot is a credential for the service application to correctly call the Creating
Device Commands API of the [oT platform.

1. Enable the loT platform to deliver a command. > 2. Check the test resuit.

Command received successfully.

Delivered Command Command Content {"led™:"OFF"}

Command Status Delivered

Test Completion Time 2019-06-24 11:55:57

Log [CIG]Cig received the command from cmdh. CIG get command from ¢
mdh successfully, commandld = cdfbecbfe5aadb9884e672bc16618c1b,
callbackUrl = null, serviceld = LED
[CIG]Cig get protocol interpreter successfully. Have found Plugin, ready
to encode. Manufacturerld = b651245873h54e06R27afce@h%aR7ede. M

—End

1.7.6 Command Response Test

Overview

Procedure
Step 1

Step 2

The command response test verifies the capability of a device to report the execution result
after receiving a command from the IoT platform. When the command delivery response
fields have been defined in the profile file (the device is required to return a command
execution result), test the command response.

On the Command Response page, click Next to start the test.

Enter the test page according to the wizard. Deliver a command to the device on the IoT
platform according to the profile file. If the physical device can automatically return a
command execution result, you can directly view the test result when it receives the
command. If the physical device cannot automatically return a command execution result,
manually enable the physical device to report the result based on the command received, and
then view the test result.

® [fthe test is successful, click Next to proceed to the next phase.
® [fthe test fails, rectify the fault and click Retest.
(Onote

If a service application is connected to the IoT platform, enable the application server to deliver a
command to the device.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 222

IoT Device Management
Development Guide 1 Product Development

1. Enable the loT platform to deliver a command. > 2. Check the test result.

Command execution results reported successfully

Delivered Command Command Content {"led":"OFF"}
Command Status Command executed successfully.
Command Result
Test Completion Time 2019-06-24 11:57:10
Log [CIG]Cig received the command from cmdh. CIG get command from ¢

mdh successfully, commandld = 7163b0191e914772bdddaded4acd9642
d, callbackUrl = null, serviceld = LED

REt =t “

—--End

1.7.7 Firmware Upgrade Test

Overview
The firmware upgrade test verifies whether a device supports firmware upgrade. Before
performing a firmware upgrade test, ensure that the Firmware Upgrade has been enabled
under O&M Service in the Profile Definition.

Procedure

Step1 On the Firmware Upgrade page, click Next to start the test.

Step 2 Enter the test page according to the wizard, upload the unsigned firmware upgrade package,
enter the version number, and click Next. The system automatically creates a firmware
upgrade task.

MnoTe

Ensure that the firmware upgrade package is uploaded and the file is in .ZIP format.

1. Upload an upgrade package.

Upload an unsigned firmware package and enter the firmware version.

Step 3 Enable a physical device to report property data to trigger the upgrade task. After the upgrade
task is complete, view the upgrade result.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 223

IoT Device Management
Development Guide 1 Product Development

® [fthe upgrade is successful, click Next to check whether the device works properly after
the upgrade.

® [fthe upgrade fails, rectify the fault and click Retest.

1. Upload an upgrade package. > 2. Enable the device to report data. > 3. Check the upgrade result.
> 4. Verify the upgrade capability.

The device has been upgraded successfully, version number is 2.0

fetest “

Step 4 Use the physical device to report property data to check whether the device can communicate
with the IoT platform after the upgrade. View the test result.

® [f the test is successful, click Next to proceed to the next phase.

® [fthe test fails, rectify the fault and click Retest.

1. Upload an upgrade package. > 2. Enable the device to report data. > 3. Check the upgrade result.
> 4. Verify the upgrade capability.

Data reported successfully

Upgraded: 2019-06-24 15:06:42

Data reported before upg

REt =t “

——-End

1.7.8 Software Upgrade Test

Overview
The software upgrade test verifies whether a device supports software upgrade. Before
performing a software upgrade test, ensure that Software Upgrade has been enabled under
O&M Service in the Profile Definition.

Procedure

Step1 On the Software Upgrade page, click Next to start the test.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 224

IoT Device Management

Development Guide 1 Product Development

Step 2 Enter the test page according to the wizard, upload the unsigned software upgrade package,
and click Next. The system automatically creates a software upgrade task.

MnoTe

Ensure that the software upgrade package is uploaded and the file is in .ZIP format.

1. Upload an upgrade package. > 2. Enable the device to report data. > 3. Check the upgrade result.
» 4. Verify the upgrade capability.

Upload an unsigned software package

=3

Step 3 Enable the physical device to report property data to trigger the upgrade task. View the test
result.

® [fthe upgrade is successful, click Next to check whether the device works properly after
the upgrade.

® [fthe upgrade fails, rectify the fault and click Retest.

1. Upload an upgrade package. > 2. Enable the device to report data. > 3. Check the upgrade result.
> 4. Verify the upgrade capability.

The device has been upgraded successfully, version number is OFO_TEST_V1.1.10

Retest Next

Step 4 Enable the physical device to report property data to check whether the device can
communicate with the IoT platform after the upgrade. Check the test result.

® [fthe test is successful, click Next to proceed to the next phase.

® [fthe test fails, rectify the fault and click Retest.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 225

IoT Device Management
Development Guide

1 Product Development

1. Upload an upgrade package. > 2. Enable the device to report data.
- 4. Verify the upgrade capability.

Data reported successfully.

Upgraded: 2019-06-25 14:56:29

Data reported before upgrade:

Version number after upgrade: OFO_TEST_V1.1.10

Data reported after upgrade: {"toggle":102} |

—--End

1.7.9 Application Subscription Event Test

Overview

3. Check the upgrade result.

REt =t “

The application subscription event test verifies whether the service application can correctly
call the Subscribing to Service Data of the IoT Platform API to subscribe to the device data

changes.

If the 10T platform uses HTTPS to push data to a service application, the CA certificate
provided by the service application must be uploaded to the [oT platform. To load a CA
certificate, choose Applications > Interconnection, click Certificate Management, and
Add in the Push Certificate area. For details, see How Do I Export the HTTPS Push

Certificate.

Procedure

Step 1 On the application subscription event test page, click Next.

Step 2 Enter the application name and click Next.

1. Specify the application name.

Enter the application message.

Application StreetLightAPP

Name

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

226

https://support-intl.huaweicloud.com/zh-cn/iot_faq/iot_faq_00066.html
https://support-intl.huaweicloud.com/zh-cn/iot_faq/iot_faq_00066.html

IoT Device Management
Development Guide 1 Product Development

Step 3 Enter the test page according to the wizard, subscribe to device data change messages, and
view the test result.

® The message subscription is successful. Click Next to upload the screenshot about the
successful subscription.

® [fthe message subscription fails, rectify the fault and click Retest.

Step 4 Click + on the Upload the screenshots about the subscription page and upload the
screenshot. This screenshot is a credential for the service application to correctly call the API
for Subscribing to Service Data of the IoT Platform API on the [oT platform.

After the screenshot is uploaded, click Next to proceed to the next phase.
[(Mnote

The size of the screenshot to be uploaded cannot exceed 20 MB.

—--End

1.7.10 Application Data Push Test

Overview

This test verifies whether the service application can correctly receive data pushed by the loT
platform.

Procedure

Step1 On the application data push test page, click Next.

Step 2 Enter the test page according to the wizard. Use the physical device to report property data
defined in the profile file. The IoT platform obtains the data and pushes it to the service
application. View the test result.

® [fthe data is pushed successfully, click Next to upload the screenshot about the
application ceceiving the data.

® [fthe test fails, rectify the fault and click Retest.

Step 3 Click + on the Upload the screenshot about the application receiving the data page and
upload the screenshot. This screenshot is a credential for the service application to correctly
receive data pushed by the IoT platform.

MnoTe

The size of the screenshot to be uploaded cannot exceed 20 MB.

—End

1.8 Product Release

Overview

If the Developer Center has interconnected with the Product Center, you can apply to the
Product Center for product release. You can release your product and display it in the Product
Center or set it visible only to yourself.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 227

IoT Device Management
Development Guide 1 Product Development

Applying for Product Release

Step1 Click Apply for Release after the product passes the test cases.

Step 2 The system automatically checks the integrity of the manufacturer and product information. If
no important information is missing, click Release.

® Information missing in yellow: Some information is incomplete, which does not affect
the product release. However, the product may fail to be approved for release in the
Product Center. It is recommended that the information be supplemented.

® Information missing in red: Important information is missing. The product can be
released only after the information is supplemented.

-

D 7 e
() Select Test Case () Self-Service Testin; Release
~ \Z o

Back to Development

Product Information

_
G

Name hw

N

Maodify

N

Modify
Contact

\

Modify
Information
Introduction

S

Modify

N

Introduction (OInformation Missing After the information is supplemented. click Release to release the product to t Modify

N

Features Maodify

N

Specifications (JInformation After the information is supplemented, click Release 10 release the product te t

Tissing Modify

Service

N

Modify
Suppest

S

Madify
Cases

Product Image EE

N

Moy

Step 3 Select a release mode and click Release.

Choose Release Mode
After you apply for the product release, the product will be reviewed by dedicated personnel.
If the product is qualified, it can be released publicly in the Product Center or privately for yourself.

(®) Public release (visicle to all customers) Private release (visible anly to yourself)

—End

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 228

IoT Device Management
Development Guide 2 Device Interconnection

2 Device Interconnection

Creating an Application
Importing a Product Model
Registering a Device

Connecting a Device

2.1 Creating an Application

Overview
Create an application on the Management Portal to connect physical devices and NAs to the
IoT platform for device data collection and device management.
After an application is created, the IoT platform assigns the application and device access
addresses and ports to support fast NA and device access.

Procedure

Step1 Log in to the HUAWEI CLOUD management console. Click IoT Device Management, and
click Management Portal.

Step 2 Choose Application List, and click Create Application.

Step 3 Set the parameters based on Table 2-1.

Table 2-1 Application creation parameters

Parameter Description

Basic Information

Application Specify the name of an application. It must be unique under the user
Name and cannot be changed.
Industry Select a value based on the industry attributes of the application.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 229

IoT Device Management

Development Guide

2 Device Interconnection

Parameter

Description

Message Tracing
Authorization

Specify whether the [oT platform operations administrator can trace
faulty devices.

® [f message tracing authorization is enabled, the IoT platform
operations administrator, when helping you locate faults, can trace
service data reported by devices. When authorization is enabled,
Authorization Validity must also be specified. The value of
Authorization Validity can be set to Custom or Always. To ensure
user data rights, the IoT platform operations administrator can
retain the device data for a maximum of three days.

® [f message tracing authorization is disabled, the IoT platform
operations administrator cannot trace service data reported by
devices. This may reduce fault locating efficiency. You are advised
to enable authorization.

Message Push

Protocol
Selection

Push Protocol

The push protocol is determined by the transport protocol set when a
network application (NA) subscribes to device information from the
IoT platform. If the transmission channel for data push is set to HTTP
on the NA, you can use HTTPS or HTTP to transmit data.

® HTTPS: Encrypted transmission is used between the [oT platform
and NA. A CA certificate must be uploaded to the NA.

® HTTP: Non-encrypted transmission is used between the [oT
platform and NA. This mode is relatively less secure, and data sent
between the IoT platform and NA may be disclosed.

CA Certificate

The CA certificate is provided by the NA and used by the IoT platform
to verify the NA.
NOTE

The CA certificate preconfigured on the IoT platform is used only for

commissioning. In commercial scenarios, use the CA certificate provided by the
NA.

Platform Capability

Device Data
Management

The IoT platform can store historical device data. You can enable or
disable the storage function. The default value is On.

® [f the value is On, the IoT platform stores historical data. The
storage duration is subject to that displayed.

® [fthe value is Off, the IoT platform does not store historical data.

Push Service

The NA subscribes to device information from the IoT platform, and
the IoT platform pushes messages to the NA.

Other

Description

Describe the application.

Application Icon

Specify the icon of the application.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

230

IoT Device Management

Development Guide

2 Device Interconnection

Step 4

Step 5

Select I have read and agree to the Terms of Personal Data Use, and click Confirm. After
the application is created, the Success dialog box is displayed, showing basic information
about the application, including the application ID, application secret, application access
address, and device access address.

® C(Click Save Secret to Local to save the application secret. The secret is invisible on the

application details page. Keep it secure. If you forget the secret, click % and choose
Reset Secret. Alternatively, you can open the application details page, click the
Information tab page, and click Reset under Security.

MnoTe

The application ID and application secret are used by the NA to connect to the IoT platform. If
you reset the secret, the old secret becomes invalid, and the NA server must use the new secret to
access the loT platform. Exercise caution when performing this operation.

® Click Go to Application Details to view the application details page.
® C(Click Return to Application List to display the page for creating an application. Click
the application icon to view its details.

(Optional) For an NB-IoT device, click the created application. On the Service Settings tab
page of the application details page, set the working mode of the NB-IoT device. The working
mode corresponds to the cache mode of commands delivered by the loT platform. The
working mode must be the same as the working mode used by the device.

® Pending delivery: Set the working mode to PSM. The value of expireTime in the
command delivery API is used. If expireTime is not set, the default time is 48 hours.

® Immediately delivery: Set the working mode to DRX or eDRX. Commands are not
cached and are delivered directly.

—--End

2.2 Importing a Product Model

Overview

Procedure
Step 1

Step 2

A product model (or profile file) describes the capabilities and features of a device. You can
construct an abstract model of a device type by defining a profile file on the IoT platform,
allowing it to understand the services, properties, and commands supported by the device.

After a product model is developed and released on the Product Center, import it on the
Management Portal.

Choose Product Models, and click Add.

Import the product model from the Product Center or local PC.
® Import from the Product Center.

a. Choose Import from Product Center to open the Product Center page.

b. Search for a product by product name, device type, or manufacturer name. In the
search result, click the name of the product to be imported.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 231

IoT Device Management
Development Guide 2 Device Interconnection

c. Check whether the product is a public product.

m For a public product, you can click Import to import the product model from
the Product Center to the IoT platform.

m For a private product, you must enter the verification code obtained from the
Product Center. If the verification is successful, you can view the product
details and import the product model to the IoT platform.

® [mport from your local PC.

a. Choose Import from Local.
b. In the dialog box displayed, enter the product name and upload the resource file.

c. Click Confirm and wait until the import is complete.

MnoTe

The product ID and product key are used for device registration. Click Save to Local to save the
product key. The product key is not displayed on the product model details page. Keep it secure.

Step 3 View the import result on the Product Models page.

® Import failure: You can view the cause of the import failure in the Failure Cause area.
This helps with fault locating.

® Import success: You can click Details to view product model details.

Product Models > Product Details

test TestUtiBModel b 0d23001d /aterMeter

HZYB TestUtiBManuld CoAP

2019-06-05 19:48:16

Service List Maintenance Capability Configuration

Service Type Service ID Description Last Modified
> Battery Battery Battery

> Meter Meter Meter

MnoTe

You can delete a disused product from the product list by clicking Delete. After deletion, the
devices of this product cannot be used. The functions of the devices under the product are restored
only after the product is imported to the Product Center again.

—End

2.3 Registering a Device

Overview

Register a device on the [oT platform and define device parameters. Then the device can
connect to the [oT platform if authentication succeeds.

Procedure

Step 1 Choose Devices > Registration.

Step 2 Click the Individual Registration tab, and then click Register. In the dialog box displayed,
set the parameters based on Table 2-2, and click Confirm.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 232

IoT Device Management
Development Guide 2 Device Interconnection

Table 2-2 Individual device registration parameters

Parameter Configuration Rule

Product Select a product.

You can select a product only after it is defined on the Product
Models page. If the product model has not been uploaded, upload or
create it first.

Node ID Specify the unique physical identifier of a device, such as its IMEI
or MAC address. This parameter is carried during device access and
used by the IoT platform to authenticate the device.

® For a native MQTT device, the device ID (corresponding to the
node ID) and secret generated after the registration are used for
IoT platform connection.

® For an NB-IoT device or a device integrated with the AgentLite
SDK, the node ID and pre-secret entered during the registration
are used for [oT platform connection.

Pre-secret ® For an NB-IoT device, the pre-secret is used to encrypt the
transmission channel between it and the [oT platform.

® For a device integrated with the AgentLite SDK, the pre-secret is
used by the IoT platform to authenticate its access.

® A native MQTT device does not require a pre-secret.

Confirm Pre-secret | Enter the pre-secret again.

—--End

2.4 Connecting a Device

Overview
Connect a physical device to the IoT platform to verify that the device can report data to the
IoT platform and display the data on the Management Portal.

Prerequisites
A device has been developed. For details, see Developing a Device.

Procedure

Step 1 Set the IoT platform IP address and port number on the device to the device interconnection
information of IoT Device Management. You can view the interconnection information on the
IoT Management Console.

Step 2 (Optional) If the device is an MQTT device, load the commercial CA certificate provided by
the IoT platform to the device.

Step 3 Power on the device to report data to the loT platform.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 233

IoT Device Management

Development Guide

2 Device Interconnection

Step 4

Step 5

Step 6

Log in to the Management Portal. Choose Device Management > Devices > Device List, and
check the device status on the device list. If the status is Online, the device has been
connected to the IoT platform.

Device List V Advanced Search % Export O Refresh

Click the device. On the details page, view the latest reported data. If the data can be properly
parsed and displayed, the device reports data successfully.

(Lnote
To view all reported historical data, click the Historical Data tab.

O Refresh

pressure temperature

0 25

On the Commands tab page of the device details page, click Send Command, select a
command, and issue the command to the device. Check the execution result. If the device acts
as instructed and the execution result of the command delivery task is displayed as Delivered
or Successful on the Management Portal, the device command is delivered successfully.

(MnoTe

® [fthe NB-IoT device uses the pending delivery mode, the command is delivered to the device only

after the device reports data.

If the device returns the command execution result (success or failure) to the IoT platform, the task
status is updated to Successful or Failed based on the execution result.

—End

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 234

IoT Device Management

Development Guide

3 Application Interconnection

Application Interconnection

Connecting an NA
Subscribing to Data

Commissioning an NA

3.1 Connecting an NA

Overview

Prerequisites

Procedure

Step1

Step 2

Step 3

Step 4

Connect an NA to the [oT platform to allow remote device management.

® An application has been developed. For details, see Developing an Application.

® An application has been created. For details, see Creating an Application.

Set the IoT platform IP address and port number on the NA to the application interconnection
information of IoT Device Management. You can view the interconnection information on the
IoT Management Console.

Replace the application ID and application secret on the NA with those allocated in Creating
an Application.

If the NA uses HTTPS to communicate with the IoT platform, replace the commissioning
certificate with a commercial certificate.

The unidirectional authentication mode is used when the NA connects to the IoT platform.
Therefore, obtain the CA certificate of the IoT platform and load it to the NA.

The NA calls the authentication API of the [oT platform to complete the access. For details on
the authentication APIs, see the Northbound API Reference.

—--End

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 235

IoT Device Management

Development Guide

3 Application Interconnection

3.2 Subscribing to Data

Overview

Procedure

Step 1

Step 2

Step 3

Step 4

An NA calls the subscription API of the IoT platform to inform the IoT platform where a
notification is to be pushed and the type of the notification to be pushed, such as device
service data and device alarms.

HTTPS is used for subscription push, and the certificate of the NA must be loaded.

An NA calls the subscription API of the IoT platform to subscribe to data. For details about
the subscription API, see the Northbound API Reference.

Log in to the Management Portal, and choose System Management > Application
Management > Application List. On the page displayed, click the created application.

On the Information tab page of the application details page, click Manage Certificate in the
Message Push pane.

Click Add. Set the parameters based on Table 3-1, and click Confirm.

Table 3-1 CA Certificate dialog box

Parameter | Description

CA You must apply for and purchase a CA certificate in advance. The CA

Certificate certificate is provided by the NA.

Domain/IP | Specify the domain name or IP address and port number used by the IoT

and Port platform to push messages to the NA. Set this parameter to the domain
name or [P address and port number in the callback URL in the subscription
API. Example values are api.ct10649.com:9001 and 127.0.1.2:8080.

LoadBalanc | Nickname of the LoadBalance to which the certificate is loaded. Retain the

e Nickname | default value Default.

Check Specify whether the common name of the CA certificate is verified to

Common ensure that the loaded certificate matches the applied certificate. It is

Name recommended that the common name be verified.

Common This parameter is displayed when Check Common Name is set to ON.

Name This parameter specifies the common name of the CA certificate. Obtain the

value from the certificate applicant.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 236

IoT Device Management
Development Guide 3 Application Interconnection

Parameter | Description

Use Device | Enable this function if the NA needs to verify the validity of the IoT
Certificate platform.

® [f this function is enabled, one-way authentication is used (the loT
platform verifies the server corresponding to callback URL). In this case,
unidirectional authentication must also be configured on the server.

® [f this function is turned on, the server corresponding to the callback
URL must apply for the corresponding certificate file and upload the
device certificate on the IoT platform.

Device A device certificate, also called public key certificate, is a digital certificate
Certificate that contains a public key. The device certificate is provided by the NA.

Private Key | Specify the private key file contained in the user key pair. You can set a
File password to protect a private key file, preventing access by anyone without
the password.

Private Key | Specify the password used to encrypt a private key file.
Password

—End

3.3 Commissioning an NA

Overview
After connecting a device and an NA to the [oT platform, verify that the NA can receive data
reported by the device and that the device can receive and execute commands delivered by the
NA.

Procedure

Step 1 Power on the device to report data to the IoT platform.

Step 2 Log in to the Management Portal. Choose Device Management > Devices > Device List, and
check the device status on the device list. If the status is Online, the device has been
connected to the IoT platform.

Coap

Step 3 Click the device. On the details page, view the latest reported data. If the data can be properly
parsed and displayed, the device reports data successfully.

MnoTe

To view all reported historical data, click the Historical Data tab.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 237

IoT Device Management
Development Guide 3 Application Interconnection

O Refresh

Operations Message Tracing Alarms Device Shadow Settings Commang s, Sub Devices

temperature

25

Step 4 On the server corresponding to callback URL, check whether it has received data from the
IoT platform. If so, the IoT platform has successfully pushed the message.

Step 5 Enable the NA to issue a command to the device. Check the execution result. If the device
acts as instructed and the execution result of the command delivery task on the Management
Portal is displayed as Delivered or Successful, the NA successfully delivers the command to
the device.

MnoTe

® Ifthe NB-IoT device uses the pending delivery mode, the command is delivered to the device only
after the device reports data.

® Ifthe device returns the command execution result (success or failure) to the [oT platform, the task
status is updated to Successful or Failed based on the execution result.

—End

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 238

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

SDK Usage Guide on the Device Side

LiteOS SDK Integration Development Guide

4.1 LiteOS SDK Integration Development Guide

4.1.1 Overview

4.1.1.1 Background Introduction

LiteOS SDK consists of device-cloud interconnect components, FOTA, JavaScript engine,
and sensor framework.

Device-cloud interconnect components are critical to connect devices with limited resources
to OceanConnect in the Huawei IoT solution. Device-cloud interconnect components enable
device-cloud synergy and integrate a full set of [oT interconnection protocol stacks, such as
Lightweight M2M (LWM2M), Constrained Application Protocol (CoAP), mbed TLS, and
lightweight IP (IwIP). Based on LWM2M, device-cloud interconnect components provide
packaged open APIs for you to quickly and reliably connect applications to OceanConnect. In
addition, they help you improve service development efficiency and quickly build products.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 239

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

Figure 4-1 Huawei LiteOS architecture

LiteOS SDK

JavaScript engine

Device-cloud interconnect
compone nts

APls

Protocol
(LwhZIWCoAPMQTT..)

Adapter

Huawei LiteOS Basic Kernel

Sensor framework

Time manageme nt

Dynamic memory

System fime

lessage ququg

Hardware related
functions

Hardware interrupt

Device driver layer

Hardware(Cortex-M/A, DSP Cores)

4.1.1.2 System Plan

Device-cloud interconnect components provide the following two types of software

architectures.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

240

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

Figure 4-2 Architecture for single module or MCU

Sensor

Lite0S 50K

Lite0S SDK Adapter |

Heosene —M

ChipiModule/MCU

CceanConnect
-

Figure 4-3 Architecture for external MCUs + chips/modules

LiteO3 SDK

I Lire0S SOK Adapter |

Tickkess Mechanism
e e Interrupt Management

Memory Management

Chip/Module

Device-cloud interconnect components are divided into the following three layers:

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

241

IoT Device Management

Development Guide 4 SDK Usage Guide on the Device Side

® Open API layer: The device-cloud interconnect components provide open APIs for
applications. Devices quickly connect OceanConnect, report service data, and process
delivered commands by invoking these APIs. In the external MCUs + chips/modules
scenario, device-cloud interconnect components also provides the AT instruction
adaptation layer for parsing AT instructions.

® Protocol layer: Device-cloud interconnect components integrate protocols, such as
LWM2M, CoAP, Datagram Transport Layer Security (DTLS), TLS, and UDP.

® Driver and network adapter layer: This layer facilitates device integration and porting.
You can adapt to APIs related to the hardware random number, memory management,
logs, data storage, and network sockets based on the API list of the adaptation layer
provided by SDK and specific hardware platform.

LiteOS basic kernel provides RTOS features for devices.

4.1.1.3 Integration Strategies

4.1.1.3.1 Integrability

Device-cloud interconnect components can be easily integrated with various types of
communications modules, such as NB-IoT, eMTC, Wi-Fi, GSM, and Ethernet hardware
modules without considering the specific chip architecture and network hardware type.

4.1.1.3.2 Portability

The adapter layer of device-cloud interconnect components provides common hardware and
network adapter APIs. Device or module vendors can complete the porting of device-cloud
interconnect components after adapting their hardware to these APIs. The following table lists
the to-be-ported APIs and related functions.

Table 4-1 APIs to which the to-be-ported device-cloud interconnect components need adapt

API Category API Description

Creates a socket network
connection.

Network socket API atiny _net_connect

atiny_net_recv

Receives packets.

atiny_net_send

Sends packets.

atiny net recv_timeout

Receives packets in a

blocking manner.

atiny _net_close Closes a socket network

connection.
Hardware API atiny gettime ms Obtains the system time

(ms).

atiny_usleep Delay function, measured in
us.

atiny_random Hardware random number
function.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 242

IoT Device Management

Development Guide 4 SDK Usage Guide on the Device Side
API Category API Description
atiny malloc Applies for dynamic
memory.
atiny _free Releases dynamic memory.
atiny_snprintf Formats character strings.
atiny_printf Outputs logs.
API for resource exclusion atiny_mutex_create Creates a mutual exclusion
lock.
atiny_mutex_destroy Destroy a mutual exclusion
lock.
atiny mutex_lock Obtains a mutual exclusion
lock.
atiny _mutex_unlock Releases a mutual exclusion
lock.
(Onote
Device-cloud interconnect components can be ported in OS and non-OS modes. The OS mode is
recommended.

Device-cloud interconnect components support firmware upgrade. The components need to
adapt to the atiny_storage device_s object.

atiny storage device s *atiny get hal storage device (void);

struct atiny storage device tag_ s;

typedef struct atiny storage device tag s atiny storage device s;

struct atiny storage device tag s

{

//Device initialization

int (*init) (storage device s *this);

//Begin to write

int (*begin software download) (storage device s *this);

//Write software, and start from offset. buffer indicates the content, and len
indicates the length.

int (*write software) (storage device s *this , uint32 t offset, const char
*pbuffer, uint32 t len);

//Download completed
int (*end software download) (storage device s *this);
//Activate software

int (*active software) (storage device s *this);
//Activated results are obtained. O indicates successful. 1 indicates failed.
int (*get active result) (storage device s *this);

//Write update info, and start from offset. buffer indicates the content, and len
indicates the length.

int (*write update info) (storage device s *this, long offset, const char
*pbuffer, uint32 t len);

//Read update info, and start from offset. buffer indicates the content, and len
indicates the length.

int (*read update info) (storage device s *this, long offset, char *buffer,
uint32 t len);

}i

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 243

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

4.1.1.3.3 Integration Restrictions

To integrate with device-cloud interconnect components, the following hardware
specifications requirements must be met:

® Modules or chips are supported by physical network hardware and support the UDP
protocol stack.

® Modules or chips provide sufficient Flash and RAM resources to integrate with protocol
stacks for device-cloud interconnect components. The following table lists the
recommended hardware specifications.

Table 4-2 Recommended hardware specifications

RAM Flash
>32 KB > 128 KB
(MnoTe

The recommended hardware specifications are determined based on resources (including open APIs, [oT
protocol stacks, security protocols, SDK driver and network adapter layer) used by device-cloud
interconnect components and resources (including chip drivers, sensor drivers, and basic service
processes) minimally used by user service demos. The preceding specifications are for reference only.
The specific hardware specifications need to be evaluated based on user service requirements.

4.1.1.4 Security

Device-cloud interconnect components support DTLS. Currently, the pre-shared key (PSK)
mode is supported. Other modes will be supported.

After the components first complete the handshake process with OceanConnect, the
subsequent application data will be encrypted, as shown in the following figure.

Figure 4-4 DTLS interaction process

II.HD'I'Ij

Agent Tiny eanConnec

alt handshake message interaction

:ht encrypied UDP packet inte raction

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 244

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

4.1.1.5 Upgrade

Device-cloud interconnect components support the remote firmware upgrade of
OceanConnect and feature resumable data transfer and firmware package integrity protection.

The following figure shows the firmware upgrade functions and process.

Figure 4-5 Firmware upgrade Diagram

Firmw are Upgrade Diagram

Upgrade the Report the upgrade
im age.)) status.
T e Device-cloud interconnect Applications
components
Report upgrade resuls.

Execute the upgrade,
Update the image. and redirect to the ney
im age.

Flash Boatloader

4.1.2 Process for Connecting Devices to OceanConnect on the
Device Side

When connecting a device to OceanConnect, ensure that the device has been registered and
the device applications have been deployed on OceanConnect. After the device has been
connected, OceanConnect can manage it. This section describes how to connect device-side
devices to OceanConnect using device-cloud interconnect components. The following figure
shows the general diagram of connecting device-side devices to OceanConnect.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 245

IoT Device Management

Development Guide

4 SDK Usage Guide on the Device Side

Figure 4-6 General diagram of connecting device-side devices to OceanConnect

Entrypoint function
agent_tiny_entry()

.

Initialization function

atiny_init()

Feporting task creation function
creat_report_task()

Diata reporting function
atiny_data_report()

:

bain function body

atiny_bind() =iy

Unified function for executing
commands on OceanConnect
atiny_cmd_ioctl ()

atiny_quit == ture?

End

4.1.2.1 Preparations

The information to be obtained before development is as follows:

® Huawei LiteOS and LiteOS SDK source code. The general project architecture is as

follows:

F—— arch //Architecture-related files

F——arm

—— msp430

—— build

L—— Makefile

—— components //Various LiteOS components

—— connectivity
—fs

F—1ib
F——1log

F—— net

I-— ota

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

246

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

L—— security

—— demos //Sample programs

—— agenttiny Iwm2m //All sample programs listed in this chapter are from the

agent_tiny demo.c file in this directory.

—— agenttiny mqtt
—— dtls_server
—fs

F—— kernel

L—— nbiot_without_atiny

F—— doc /Documents

F—— Huawei_LiteOS Developer Guide en.md
F—— Huawei_LiteOS Developer Guide zh.md
F—— Huawei_LiteOS_SDK Developer Guide.md
F——LiteOS_Code_Info.md
F——LiteOS_Commit Message.md
F——LiteOS_Contribute_Guide GitGUIL.md
—— LiteOS_Supported board_list.md

L—— meta

F—— include //Header files required by projects

F—— at_device
F——at_frame
F——atiny lwm2m
F—— atiny mgqtt
—fs

F——1og
F——nb_iot

— osdepends
F——ota

I— sal

— sota

—— kernel /System kernels

F—— base
F—— extended

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

247

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

| F—— include
| I— los_init.c
| L—— Makefile
—— LICENSE //Licenses
—— osdepends //Dependencies
| L——liteos
F——README.md
—— targets //BSP projects
| F——Cloud STM32F4291GTx_FIRE
| —— Mini_Project
| F——NXP LPC51U68
| L——STM32F103VET6 NB_GCC
L—— tests //Test cases
F—— cmockery
F—— test_agenttiny
—— test_main.c
F—— test_sota
L—— test_suit
To obtain the source code, visit https://github.com/LiteOS/LiteOS.

® [Integration development tools:
- MDK 5.18 or later, which can be downloaded from http://www?2.keil.com/mdk5
- MDK packages

(Onote

The licenses for MDK tools can be obtained from http://www2.keil.com/mdk5.

4.1.2.2 Entrypoint Function for LiteOS SDK Device-Cloud Interconnect
Components

To connect the LiteOS SDK device-cloud interconnect component Agent Tiny to
OceanConnect, create an entrypoint function agent_tiny_entry().

Function Description

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 248

https://github.com/LiteOS/LiteOS

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

void agent_tiny_entry(void)

Entrypoint function for LiteOS SDK device-
cloud interconnect components. This
function can be used to initialize Agent
Tiny, create report tasks, and call the main
function body of Agent Tiny.

Parameter list: N/A

Return value: null

Based on the task mechanism provided by the LiteOS kernel, a developer can create a main
task main_task, and call the entrypoint function agent_tiny_entry() in the main task to

enable the Agent Tiny workflow.

UINT32 creat main task()
{
UINT32 uwRet = LOS_OK;

TSK_INIT PARAM S task init param;
task_init param.usTaskPrio = 0;
task _init param.pcName = "main task";

task _init param.pfnTaskEntry
task _init param.uwStackSize

(TSK_ENTRY FUNC)main_ task;
0x1000;

uwRet = LOS TaskCreate (&g TskHandle, &task init param);

if (LOS_OK != uwRet)
{

return uwRet;
}

return uwRet;

4.1.2.3 Initializing LiteOS SDK Device-Cloud Interconnect Components

Call the atiny_init() function in the entrypoint function to initialize Agent Tiny.

Function

Description

int atiny_init(atiny param_t*
atiny params, void** phandle);

Function for initializing device-cloud
interconnect components, which is
implemented by device-cloud interconnect
components and invoked by devices. The
parameters involved are as follows:

® atiny params. For details about the
parameter, see the description of the
atiny_param_t data structure.

@ phandle, an output parameter, which
represents the handle of the currently
created device-cloud interconnect
component.

Return value: Integer variable, indicating
that the initialization is successful or failed.

The input parameter atiny _params needs to be set based on specific services. Developers can

set the parameter by the following code:

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 249

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

fifdef CONFIG_FEATURE_ FOTA

hal init ota(); //To define the FOTA functions, perform FOTA-related
initialization.
fendif

#ifdef WITH DTLS

device info->endpoint name = g endpoint name s; //Encrypted device
verification code
#else
device info->endpoint name = g _endpoint name; //Unencrypted device
verification code
#endif
#ifdef CONFIG_FEATURE_ FOTA
device info->manufacturer = "Lwm2mFota"; //Unencrypted device
verification code
device info->dev type = "Lwm2mFota"; //Device type
#else
device info->manufacturer = "Agent Tiny";
#endif
atiny params = &g_atiny params;
atiny params->server params.binding = "UQ"; //Binding mode
atiny params->server params.life time = 20; //Life cycle
atiny params->server params.storing cnt = 0; //Number of cached data packets
atiny params->server params.bootstrap mode = BOOTSTRAP FACTORY; //Boot mode
atiny params->server params.hold off time = 10; //Waiting latency

//pay attention: index 0 for iot server, index 1 for bootstrap server.
iot_security param = &(atiny params->security params([0]);
bs security param = &(atiny params->security params[1]);

iot security param->server ip = DEFAULT SERVER IPV4; //Server address
bs security param->server ip = DEFAULT_ SERVER IPV4;

#ifdef WITH DTLS

iot_security param->server port = "5684"; //Encrypted device port number

bs security param->server port = "5684";

iot security param->psk Id = g endpoint name iots; //Encrypted
device verification

iot security param->psk = (char *)g psk iot value; //PSK password

iot security param->psk len = sizeof (g psk iot value); //PSK password
length

bs security param->psk Id = g _endpoint name bs;

bs security param->psk = (char *)g psk bs value;
bs security param->psk len = sizeof (g_psk bs value);
#else
iot security param->server port = "5683"; //Unencrypted device port number
bs security param->server port = "5683";
iot security param->psk Id = NULL; //No PSK-related parameter setting for

unencrypted devices
iot_security param->psk = NULL;
iot_security param->psk len = 0;

bs security param->psk Id = NULL;

bs security param->psk = NULL;

bs security param->psk len = 0;
#endif

After setting the atiny params parameter, initialize Agent Tiny based on the set parameter.

if (ATINY OK != atiny init(atiny params, &g phandle))
{

return;

After setting the atiny params parameter, initialize Agent Tiny based on the set parameter.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 250

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

4.1.2.4 Creating a Data Reporting Task

After initializing Agent Tiny, create a data reporting task function app_data_report() by
calling the creat_report_task() function.

UINT32 creat_ report_ task()
{
UINT32 uwRet = LOS_OK;
TSK INIT PARAM S task init param;
UINT32 TskHandle;

task init param.usTaskPrio = 1;

task init param.pcName = "app data report";

task_init param.pfnTaskEntry = (TSK_ENTRY FUNC)app_data_ report;
task init param.uwStackSize = 0x400;

uwRet = LOS_TaskCreate (&TskHandle, &task_init param);

if (LOS_OK != uwRet)

{

return uwRet;
}
return uwRet;

}

In the app_data_report() function, assign a value to the reported data structure
data_report_t, including the data buffer address buf, callback function callback called after
the ACK response is received from a platform, data cookie, data length len, and data
reporting type type (set to APP_DATA by default).

uint8 t buf[5] = {0, 1, 6, 5, 9};
data report t report data;
int ret = 0;
int cnt = 0;
report data.buf = buf;
report_data.callback = ack_callback;
report data.cookie = 0;
report data.len = sizeof (buf);
report data.type = APP DATA;

After a value is assigned to the report_data parameter, data can be reported by calling the
atiny_data_report() function.

Function Description

int Function for reporting data of device-cloud interconnect
atiny data report(v | components, which is implemented by device-cloud interconnect
oid* phandle, components and invoked by devices. This function is used to report
data_report t* device application data. The function is blocked and cannot be used
report_data) when being interrupted. The parameters involved are as follows:

Parameter list: phandle is the Agent Tiny handle obtained by calling
the initialization function atiny_init(). report_data is the reported
data structure.

Return value: Integer variable, indicating that the data reporting is
successful or failed.

The implementation method of a report task in the sample code is as follows:

while (1)
{
report data.cookie = cnt;
cnt++;
ret = atiny data report (g _phandle, &report data); //Data reporting

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 251

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

function

ATINY LOG (LOG_DEBUG,

"data report ret: $d\n", ret);

(void) LOS_TaskDelay (250 * 8);

4.1.2.5 Command Processing Function for LiteOS SDK Device-Cloud
Interconnect Components

All commands delivered by OceanConnect are executed by calling the atiny_cmd_ioctl()

function.

Function

Description

int atiny cmd_ioctl
(atiny_cmd_e cmd,
char* arg, int len);

Implemented by developers to declare and invoke device-cloud
interconnect components. This API is a unified portal for
LWM2M standard objects to deliver commands to devices. The
parameters involved are as follows:

® cmd, a specific command word, such as commands for
delivering service data and resetting and upgrade.

® arg, a specific command parameter; len, the parameter length.
Return value: null

The atiny_cmd_ioctl API is a universal extensible API defined by device-cloud interconnect
components. The command word of this API is defined by referring to the enumerated type
atiny_cmd_e. Users can implement or extend this API based on respective requirements. The
following table lists common APIs. Each API corresponds to an enumerated value of the

atiny_cmd_e APL

Callback Function

Description

int

atiny_get manufacture
r(char*
manufacturer,int len)

Obtains the vendor name. The memory specified by the
manufacturer parameter is allocated by device-cloud
interconnect components. A user can specify the parameter. The
parameter length cannot exceed the value of len.

int
atiny get dev_type(ch
ar * dev_type,int len)

Obtains the device type. The memory specified by the dev_type
parameter is allocated by device-cloud interconnect components.
A user can specify the parameter. The parameter length cannot
exceed the value of len.

int

atiny _get model num
ber((char *

model numer, int len)

Obtains the device model number. The memory specified by the
model_number parameter is allocated by device-cloud
interconnect components. A user can specify the parameter. The
parameter length cannot exceed the value of len.

int
atiny get serial numb
er(char* num,int len)

Obtains the device SN. The memory specified by the number
parameter is allocated by device-cloud interconnect components.
A user can specify the parameter. The parameter length cannot
exceed the value of len.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

252

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

Callback Function

Description

int
atiny get dev_err(int*
arg,int len)

Obtains the device status, such as used-up memory, low battery,
and low signal strength. The arg parameter is allocated by
device-cloud interconnect components. A user can specify the
parameter. The parameter length cannot exceed the value of len.

int
atiny_do_dev_reboot(
void)

Resets devices.

int
atiny_do_factory rese
t(void)

Resets vendors.

int
atiny get baterry leve
1(int* voltage)

Obtains remaining battery level.

int
atiny get memory_fre
e(int* size)

Obtains available memory size.

int
atiny _get total memo
ry(int* size)

Obtains total memory size.

int

atiny get signal stren
gth(int*

singal strength)

Obtains signal strength.

int
atiny_get cell id(long
* cell_id)

Obtains the cell ID.

int
atiny get link qualit
y(int* quality)

Obtains the channel quality.

int

atiny write_app_writ
e(void* user data, int
len)

Delivers service data.

int
atiny update psk(char
* psk_id, int len)

Updates PSKs.

A developer needs to make a command response by calling the atiny _write_app_write()
function based on site services.

int atiny write app write(void* user data, int len)

{

(void) atiny printf ("write numl9 object success\r\n");

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

253

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

return ATINY_OK;

4.1.2.6 Main Function Body for LiteOS SDK Device-Cloud Interconnect
Components

After creating the data reporting task and implementing the command processing function,
call the atiny_bind() function.

Function Description

int Main function body of a device-cloud interconnect
atiny bind(atiny _device info | component, which is implemented by device-cloud

t* device info, void* phandle) | interconnect components and invoked by devices.
However, no value is returned after the function is
successfully called. This function is the main loop body
of a device-cloud interconnect component, which
implements LWM2M processing, state machine
registration, queue retransmission, and subscription
reporting.

Parameter list: device_info is the device parameter

structure. phandle is the Agent Tiny handle obtained by
calling the initialization function atiny_init().

Return value: Integer variable, indicating the execution
status of the main function body for LiteOS SDK device-
cloud interconnect components. This value can be
returned only when the execution failed or the
deinitialization function atiny deinit() for LiteOS SDK
device-cloud interconnect components is called.

The atiny_bind() function can be used to create and register the LwM2M client based on the
LwM2M protocol, send the data reported in the data reporting task creation function
app_data_report() to OceanConnect through communication modules, receive and parse
commands delivered by OceanConnect, and submit the parsed commands to the command
processing function atiny_cmd_ioctl() for unified processing. Similar to the atiny_init()
function, the atiny bind() function does not need to be modified by developers.

MnoTe

For details about the LWM2M protocol, see the appendix.

LiteOS SDK device-cloud interconnect components continuously report data and process commands
through the main function body. When calling the deinitialization function atiny_deinit() for LiteOS
SDK device-cloud interconnect components, exit the main function body.

Function Description

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 254

IoT Device Management

Development Guide

4 SDK Usage Guide on the Device Side

void atiny deinit(void* Function for deinitializing device-cloud interconnect
phandle); components, which is implemented by device-cloud
interconnect components and invoked by devices. This
function is blocked. It cannot stop being invoking until the
main task of Agent Tiny quits and resources are
completely released.

Parameter list: phandle is the LiteOS SDK device-cloud
interconnect component handle obtained by calling the
atiny_init() function.

Return value: null

4.1.2.7 Data Structure

® Enumerated type of commands delivered by OceanConnect

typedef enum
{

ATINY GET MANUFACTURER,
ATINY GET MODEL_NUMBER,

the manufacturer.*/
ATINY GET SERIAL NUMBER,
ATINY GET FIRMWARE VER,
ATINY DO DEV_REBOOT,
ATINY DO FACTORY RESET,
ATINY GET POWER_SOURCE,
ATINY GET SOURCE_VOLTAGE,
ATINY GET POWER CURRENT,
ATINY GET BATERRY LEVEL,
ATINY GET MEMORY FREE,
ATINY GET DEV_ERR,

memory and low battery level.*/
ATINY DO RESET DEV_ERR,
ATINY GET CURRENT TIME,
ATINY SET CURRENT TIME,
ATINY GET UTC_OFFSET,
ATINY SET UTC_OFFSET,
ATINY GET TIMEZONE,
ATINY SET TIMEZONE,
ATINY GET BINDING MODES,
ATINY GET FIRMWARE STATE,
ATINY GET NETWORK BEARER,

GSM and WCDMA. */
ATINY GET SIGNAL_ STRENGTH,
ATINY GET CELL_ID,
ATINY GET LINK QUALITY,
ATINY GET LINK UTILIZATION,
ATINY WRITE APP DATA,

data.*/
ATINY UPDATE PSK,
ATINY GET LATITUDE,
ATINY GET LONGITUDE,
ATINY GET ALTITUDE,
ATINY GET_ SPEED,
ATINY GET TIMESTAMP,

} atiny cmd e;

® Enumerated type of key events

/*Obtain the manufacturer name.*/
/*Obtain device models defined and used by

/*Obtain the device SN.*/

/*Obtain the firmware version number.*/
/*Deliver device resetting commands.*/
/*Restore factory resetting.*/

/*Obtain power supplies.*/

/*Obtain device voltage.*/

/*Obtain device current.*/

/*Obtain the battery level.*/

/*Obtain idle memory.*/

/*Obtain the device status, such as used-up

/*Obtain the device resetting status.*/
/*Obtain the current time.*/

/*Set the current time.*/

/*Obtain the UTC difference.*/

/*Set the UTC difference.*/

/*Obtain the time zone.*/

/*Set the time zone.*/

/*Obtain the binding mode.*/

/*Obtain the firmware upgrade status.*/
/*Obtain the network bearer type, such as

/*Obtain the network signal strength.*/
/*Obtain the network cell ID.*/

/*Obtain network link quality.*/
/*Obtain network link usage.*/

/*Write command words delivering service

/*Update PSK command words.*/
/*Obtain device latitude.*/
/*Obtain device longitude.*/
/*Obtain device height.*/
/*Obtain device running speed.*/
/*Obtain timestamp.*/

This enumerated type is used to notify users of the statuses of LiteOS SDK device-cloud

interconnect components.

typedef enum
{

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 255

IoT Device Management

Development Guide 4 SDK Usage Guide on the Device Side
ATINY REG OK, /*Device registration successful*/
ATINY REG FAIL, /*Device registration failed*/
ATINY DATA SUBSCRIBLE, /*Starting data subscription. Devices allow to

report data */
ATINY DATA UNSUBSCRIBLE, /*Canceling data subscription. Devices stop
reporting data*/
ATINY FOTA STATE /*Firmware upgrade status*/
} atiny event e;

® [wM2M parameter structure

typedef struct
{

char* binding; /*U or UQ is currently
supported.*/

int life time; /*LwM2M protocol life cycle,
which is set to 50000 by default.*/

unsigned int storing cnt; /*Number of LwM2M cache data
packets*/

} atiny server param t;

® Security and server parameter structure

typedef struct
{

bool is bootstrap; /*Whether the bootstrap server is used.*/

char* server ip; /*Server IP address, which can be represented by
character strings and supports IPv4 and IPv6.*/

char* server port; /*Server port number.*/

char* psk Id; /*PSK ID.*/

char* psk; /*PSK*/

unsigned short psk len; /*PSK length*/
} atiny security param t;

® Enumerated type of reported data

Type of data reported by users, which can be expanded based on users' applications.

typedef enum
{
FIRMWARE UPDATE STATE = 0; /*LWM2M protocol life cycle, which is set to
50000 by default.*/
APP DATA /*User data*/
} atiny report type e;

® Server parameter structure

typedef struct
{
atiny server param t server params;
atiny security param t security params[2]; /*One IoT server and one
bootstrap server are supported.*/
} atiny param t;

® Device parameter structure

typedef struct
{

char* endpoint name; /*Device ID generated for northbound application*/

char* manufacturer; /*Manufacturer name generated for northbound
application*/

char* dev_type; /*Device type generated for northbound application*/

} atiny device info_ t;

® Reported data structure

The following enumerated values indicate user data types. For example, data is sent
successfully; data has been sent but is not acknowledged. The specific information is as
follows:

typedef enum
{

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 256

IoT Device Management

Development Guide

4 SDK Usage Guide on the Device Side

NOT_SENT = O,
SENT_WAIT RESPONSE,

/*To-be-reported
/*To-be-reported

response.*/

SENT FAIL,
SENT TIME OUT,

/*To-be-reported
/*To-be-reported

response times out.*/

SENT_SUCCESS,
SENT GET RST,

/*To-be-reported
/*To-be-reported

sends an RST packet.*/

SEND_PENDING,

/*To-be-reported

} data_send status_e;

data
data

data
data

data
data

data

has not been sent.*/
has been sent and is waiting for

sending failed.*/
has been sent and waiting for

sending successful.*/
has been sent but the receiver

is waiting for sending.*/

//Users can use the following data structure to report data:

atiny report type e type;

typedef struct data report t
{

remaining battery level.*/

int cookie;

data during ACK callback.*/

int len;

MAX REPORT DATA LEN.*/

uint8 t* buf;
atiny ack callback callback;

data_send status_e.*/
} data report t;

4.1.3 Appendix 1 LWM2M

4.1.3.1 Definition

/*Reported data type,
/*Data cookie,

/*Data length,

such as service data and

which is used to distinguish
which must be not greater than

/*First address of the data buffer.*/
/*ACK callback,

whose value is

LWM2M is a lightweight, standard, and general-purpose loT device management protocol
developed by the Open Mobile Alliance (OMA). It can be used to quickly deploy IoT services
in client or server mode.

In addition, LWM2M provides a set of standards for the management and application of IoT
devices. It supports small and portable security communications APIs and efficient data
models to implement M2M device management and service support.

4.1.3.2 Features

LWM2M supports the following features:

Simple objects based on resource models

Resource operations including creation, retrieval, update, deletion, and attribute
configuration

Resource observation or notification

Data formats including TLV, JSON, plain text, and opaque

Transport layer protocols including UDP and SMS

DTLS
NAT or firewall solution — queue mode
Multiple LWM2M Servers

Basic M2M functions including LWM2M Server, Access Control, Devices, Connectivity
Monitoring, Firmware, Location, and Connectivity Statistics

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

257

IoT Device Management

Development Guide

4 SDK Usage Guide on the Device Side

4.1.3.3 System Architecture

The following figure shows the system architecture of LWM2M.

Figure 4-7 System architecture of LWM2M

Device
M2M Web M2M Web
Management Application Application

pplication '\ I /

LWM2M Server Objects

Interfaces Stack LWM2M J

Bootstrapping Efficient Payload
Registration CoAP Protocol CoAP
Object / Resource Access DTLS Security
Reporting UDP or SMS Bearer DTLS SMS

UDP

LWM2M Client

M2M Device

4.1.3.4 Object Defined by LWM2M

Object Concept

An object is a collection of resources that are logically used for specific purposes. For
example, firmware upgrade. The object includes all resources used for firmware upgrade,
such as firmware packages, firmware URLs, upgrade execution, and upgrade results.

Before using the functions of an object, instantiate the object. An object can have multiple
instances, which are numbered from 0 in ascending order.

LWM2M has defined fixed IDs for the standard objects defined by the OMA. For example,
the ID of the firmware upgrade object is 5. The object includes eight types of resources,
which are numbered from 0 to 7. The ID of the firmware package name is 6. Therefore, URI
5/0/6 represents the firmware package name of instance 0 of the firmware upgrade object.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 258

IoT Device Management

Development Guide

4 SDK Usage Guide on the Device Side

Object Format

Name Object ID | Instance Mandatory Object URN

Object 16-bit Multiple/Single | Mandatory/Optional | urn:oma:LwM2M:

Name Unsigned {oma,ext,x}:{Object
Integer ID}

Standard Object Defined by OMA

The OMA LWM2M specifications define the following seven standard objects.

Object Object ID | description

LwM2M 0 Includes the URI and payload security mode of an

Security LWM2M bootstrap server and information about partial
algorithms or keys and short server IDs.

LwM2M Server | 1 Includes the short ID of a server, registration life cycle,
minimum or maximum period of observation, and
binding models.

Access Control 2 Includes the access control permission of each object.
Device 3 Includes the device manufacturer, model, serial number,
power, and memory.

Connectivity 4 Includes the network standard, link quality, and IP

Monitoring address.

Firmware 5 Includes the firmware package and its URI, status, and
upgrade results.

Location 6 Includes the latitude, longitude, altitude, and time
stamp.

Connectivity 7 Includes the data volume sent and received during data

Statistics collection and package size.

Device-cloud interconnect components match OceanConnect capabilities and support the
following LWM2M APPDATA with the object ID of 19.

Object Object Description
ID
LwM2M APPDATA 19 Includes application service data on LWM2M
servers, such as water meter data.
Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 259

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

(MnoTe

For details about other common objects defined by the OMA, see http://
www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html.

4.1.3.5 Resource Defined by LWM2M

Resource Model

LWM2M defines a resource model. In this resource model, all information can be abstracted
and accessed as resources. An object includes resources. An LWM2M Client can have a large
amount of resources. Like an object, a resource can have multiple instances.

The following figure shows the relationship among the LWM2M Client, objects, and
resources.

Figure 4-8 Relationship among the LWM2M Client, objects, and resources

Lwh2mM Client

Object 0

| Resource 1

| Resource 2

| Resource 3

|
|
| Resource 4 —|'|-|

Obiject 1 sl
| Resource 1 |
| Resource 2 |
| Resource 3 |
| Resource 4 |
k [
Resource Format
ID 0
Name Resource Name
Operation R (Read), W (Write), E (Execute)
Instance Multiple/Single
Mandatory Mandatory/Optional

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 260

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html

IoT Device Management

Development Guide 4 SDK Usage Guide on the Device Side

Type String,
Integer,
Float,
Boolean,
Opaque,
Time,
Objlnk none

Range or If any

Enumeration

Unit If any

Description Description

4.1.3.6 API Defined by LWM2M

Overview
The LWM2M Enabler consists of two components: LWM2M Server and LWM2M Client.
LWM2M designs the following four types of APIs for the interaction between the two
components:
® API for device discovery and registration
® Bootstrap API
® API for device management and service enablement
® [nformation reporting API
API Model

The following figure shows an API model defined by LWM2M.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 261

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

Figure 4-9 API model defined by LWM2M

LWM2M-1:
Device
Discovery and
Registration

LWM2M Enabler

LW

Server

M2M

LWM2M-3:
Device
Management
and Service
Enablement

-~

LWM2M-4:
Information
Reporting

k.

¥

LW

Cl

M2M

ient

LWM2M-2:

Bootstrap

Legend

|:| Components specified by this Enabler

—

XYZ-n

Indicates Use of an interface exposed by an Enabler/Component. The Enabler/
Component offering or exposing interface is indicated by the arrowhead.

Mame of the interface offered or exposed by EnablerfComponent XYZ
(following the interface naming convention)

Message Interaction Process

The following figure shows the message interaction process defined by LWM2M.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

262

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

Figure 4-10 Message interaction process defined by LWM2M

LWM2M
Server

ClientBootstrap |======== = s = s c == === =
(Optional) Bootstrap Object
S
Endpoint Client Name, Objects
Registration 4
Object / Resource
< Read Resource
Resource Value N
Object / Resource, Resource Value
Write Resource
Object / Resource
& Observe Resource
Resource Value N
. Resource Value N
Notify »
De-register De-register)

API for Device Management and Service Enablement

Each type of LWM2M APIs represents a type of functions. The API for device management
and service implementation is one of the four types of APIs defined by LWM2M.

The functions of the four types of APIs are implemented by the following two operations:

® Upstream operation: LWM2M Client - > LWM2M Server
® Downstream operation: LWM2M Server — > LWM2M Client
LWM2M Server accesses object instances and resources of the LWM2M Client through the

API for device management and service enablement. This API implements seven operations
including create, read, write, delete, execute, write attributes, and discover.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 263

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

Figure 4-11 Operations implemented by the API for device management and service

enablement
Read, Write, Execute, Create,
Delete, Write Atiribute, Discover
LwM2M Client |- LwM2M Server
API Operation Direction
Device Create, read, write, delete, execute, write Downstream
management attributes, and discover
and service
enablement

The following figure shows the interaction process implemented by the API for device
management and service enablement.

Figure 4-12 Interaction process implemented by the API for device management and service

enablement

LWM2ZM
Client

LWM2M
Server

GET /3/0/0
< Read
2.05 Content
Open Maobile Alliance
PUT /3/0/13
« Write
1367491215
2.04 Changed N
POST /211/5 Execute
2.04 Changed .
PUT £3/0/97pmin=1&pmax=5&It=5 Write
* Attribute
2.04 Changed -

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

264

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

Figure 4-13 Creating and deleting an object

LWM2ZM
Client

POST /2

LWM2ZM
Server

F

2.01 Created Location: /2/3

L J

POST /2/4

F

2.01 Created Location: /2/4

L

DELETE/

213

SuUCCass

4.1.3.7 Firmware Upgrade

The firmware upgrade object makes it possible for users to manage the firmware upgrade. The
firmware upgrade objects include installing the firmware package, updating the firmware, and
other actions. After the firmware is successfully upgraded, the corresponding device must be

restarted to make the new firmware take effect.

Before the device is restarted, values related to the upgrade results must be saved.

After the device is restarted, if the Packet resource contains a valid but uninstalled firmware
package, the State resource must be in the downloaded state. Otherwise, it must be in the idle

state.
Object Definition

Name Object ID | Instance | Mandatory | Object URN

Firmware Update 5 Single Optional rn:oma:LwM2M:oma:5
Resource Definition

I | Name | Operatio | Instanc | Mandato | Typ | Range or | Description

D n e Iy e Enumerat

ion
0 | Package | W Single Mandator | Opa Firmware
y que package.
Copyright © Huawei Technologies Co., Ltd. 265

Issue 02 (2019-08-28)

IoT Device Management

Development Guide

4 SDK Usage Guide on the Device Side

I | Name | Operatio | Instanc | Mandato | Typ | Range or | Description
D n e ry e Enumerat
ion
1 | Package | W Single Mandator | Strin | 0-255 URI for
URI y g bytes downloading the
firmware
package.
2 | Update | E Single Mandator | none | no Updating the
y argument | firmware.
The resource is
executable only
when the State
resource is in the
downloaded
state.
3 | State R Single Mandator | Integ | 0-3 Firmware
y er upgrade status.

The value is set
by the LWM2M
Client. 0: Four
statuses of the
firmware are as
follows: Idle,
Downloading,
Downloaded,
and Updating. If
the Resource
Update
command is
executed, the
status changes
from
Downloaded to
Updating.

If the upgrade is
successful, the
status changes to
Idle. If the
upgrade fails, the
status changes to
Downloaded.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

266

IoT Device Management
Development Guide 4 SDK Usage Guide on the Device Side

—

Name | Operatio | Instanc | Mandato | Typ | Range or | Description
D n e ry e Enumerat
ion

4 | Update | RW Single Optional | Bool The default
Support ean value is false.
ed
Objects

If the value is set
to true, the
LWM2M Client
must notify the
LWM2M Server
of the Object
parameter value
change by
sending the
upgrade message
or registration
message after
the firmware is
successfully
upgraded.

If the upgrade
fails, the Object
parameter value
change is
reported by
sending the
upgrade message
in the next
phase.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 267

IoT Device Management

Development Guide

4 SDK Usage Guide on the Device Side

—

Name

Operatio
n

Instanc
e

Mandato
ry

Typ
e

Range or
Enumerat
ion

Description

Update
Result

R

Single

Mandator
y

Integ
er

0-8

The results of
downloading or
upgrading the
firmware are as
follows:0: Initial
value. When
upgrade or
downloading
starts, the
resource value
must be set to 0.

1: The firmware
is successfully
upgraded; 2: The
space for storing
the new
firmware
package is
insufficient; 3:
The memory is
insufficient in
the downloading
process; 4: The
connection
breaks in the
downloading
process; 5:
Failed to check
the integrity of
the newly
downloaded
package; 6:
Unsupported
package types;
7: Invalid URI,

8: The firmware
upgrade fails,
and this resource
can be reported
by executing the
Observe
command.

PkgNa

Single

Optional

Strin

0-255
bytes

Name of the
firmware
package.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

268

IoT Device Management

Development Guide 4 SDK Usage Guide on the Device Side
I | Name | Operatio | Instanc | Mandato | Typ | Range or | Description
D n e ry e Enumerat
ion
7 | PkgVers | R Single Optional | Strin | 0-255 Version of the
ion g bytes firmware
package.

Status Mechanism

The following figure shows the firmware upgrade status mechanism.

Figure 4-14 Firmware upgrade status mechanism

URI Resolution Failed [Res==6 || Res==7 || Res ==9]

Y
~ N
Start/ IDLE Write to Package
: Res=0
Assertion(Res >= 0 && Res<=9) | _ Write to Package URI
State =0 ‘-
A A A A
Download Failed Y v
[Res >= 2 && Res <= 4]
DOWNLOADING |
Integrity Check Failed [Res == 5] Assertion(Res >= 0 && Res <= 9)
State=1
Integrity
Firmware Update check
Update Successful Failed
Failed [Res ==1] [Res == 5]
[Res==8] Download
Either empty string is written to the Package URI Finished
resource or the Package resource is set
to NULL (\0)
4
- s
UPDATING Executable resource Update is triggered DOWNLOADED
‘ / Initiate Firmware Update

State =3 Assertion(Res==0 | | Res ==8)
Res=0 Firmware Update Failed [Res == 8]—"6,*[333 =2

Flowchart

The following figure shows the firmware upgrade flowchart.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 269

IoT Device Management
Development Guide

4 SDK Usage Guide on the Device Side

Figure 4-15 Firmware upgrade flowchart

LWM2M LWM2M Firmware
Client Server server
PUT URI
ACK ... ~e CoAP block-
__ __, wise transfer
: I
} Repoat GET Firmware by|URI i
: I
I
E 2 ACK [carrying firmware block | |
I e s s o I
i

Notify download success

<_: ________________________

Excute Update

Updati
g pdating
| ___Update success

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

270

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

SDK Usage Guide on the Application Side

Huawei [oT Platform Java SDK Usage Guide

5.1 Huawei IoT Platform Java SDK Usage Guide

5.1.1 Before You Start

® This document describes how to use the Java SDK to connect to the IoT platform, such
as certificate configuration and callback.

® The northbound Java SDK Demo is used as an example. Each class (except the tool
class) contains a main method, which can be run independently to demonstrate how to
call SDK APIs.

5.1.2 Requirements for the Development Environment

Requirements for the development environment

Develop | Development Environment Mapping | Recommended
ment Requirem | OS
Platform ents
loT 1. J2EE for Java Developers JDK 1.8 or | Windows 7
2. Maven plug-in: m2e-Maven integration later
for Eclipse (includes incubating
components)

The SDK packages are pure Java JAR packages. They do not have any special limitations as
long as the JDK version is 1.8 or later.

5.1.3 Downloading Related Development Resources

Obtain the northbound Java SDK Demo and northbound Java SDK from Resources.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 271

https://support-intl.huaweicloud.com/en-us/devg-IoT/iot_02_1004.html

IoT Device Management
Development Guide

5 SDK Usage Guide on the Application Side

® The Java SDK is stored in the lib directory. Its JAR package dependencies are stored in
\testSDK\api-client-test_lib. You can also download the JAR packages from the maven

repository.

|4 commons-beanutils-1.8.0.jar
|4 cormmons-collections-3.2.1.jar
|| cormmons-lang-2.5.ar

|| ezmorph-1.0.6.ar

|| httpeient-4.5.2.jar

|| httpeore-4.4.4.jar

|| jackson-annotations-2.54 jar
|4] jackson-core-2.54 jar

4] jackson-databind-2.5.4.jar
] jel-over-slfdj-1.7.25.jar

| json-lib-2.4jar

|| logback-classic-1.1.11.jar

|| logback-core-1.1.11,jar

4] sifdj-api-1.7.22.jar

201877720 17:17
20187720 17:17
20187720 17:17
201877720 1717
20187720 17:17
20187720 17:17
201877720 1717
201877720 17:17
20187720 17:17
20187720 17:17
201877720 1717
20187720 17:17
20187720 17:17
201877720 1717

Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File
Executable lar File

Executable Jar File

226 KB
562 KB
273 KB
85 KE
720 KB
320 KB
39 KE
225 KB
1,118 KB
17 KB
156 KE
302 KB
465 KE
41 KB

® The JAR package dependencies for the Java SDK Demo are stored in the components
folder. You can also download the JAR packages from the maven repository.

|4 httprime-4.5.2.ar
4] json-lib-24 jar
|| netty-all-4.0.27.Final jar

|| spring-boot-starter-web-1.5.9.RELEASE jar

LnoTe

The lib directory in the Java SDK Demo contains the SDK library.

5.1.4 Importing the Java SDK Demo

Step1 Decompress the downloaded package OceanConJavaDemo.zip to a local directory.

Step 2 Start Eclipse, choose File > Import > Maven > Existing Maven Projects, and click Next.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

272

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Import Existing Maven Projects

Select an import source:

Itype filter text

M- CVS
B-E= Git
E;- Install
E-(Maven

eck out Maven Projects fram SCh

o . Existing Mawven Projects |

‘ 3 an artitact to a Maven repository
oy wl Materialize Maven Projects frorm SCM

+-(= Run/Debug

+-(= Tasks

H-[—= Team

[XML

Step 3 Click Browse. Select the path to which the Java SDK Demo package is decompressed. Then,
click Finish.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 273

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

& Import Maven Projects = \E\
Maven Projects

Select Maven projects

Root Directory: C\Users\Desktop\North_JAVA_SDK_Demo - | Browse... I
Projects:
/sourcecode/pom.xm| com.huawel.mZm.iotplatform:api-client-demeo:1.0.0;jar Select All
Deselect All

:::::::::

[Add projectis) to working set

api-client-demo

b Advanced

Cancel

—--End

5.1.5 Initializing and Configuring Certificates

Create a NorthApiClient instance. Specify ClientInfo (including the [oT platform IP
address, port number, application ID, and secret) to initialize the certificate.

NOTICE

® In this example, the IoT platform IP address, port number, application ID, and secret are
read from the configuration file ./sre/main/resources/application.properties. Therefore,
when the values change, you only need to modify the configuration file.

® The certificate mentioned in this section is provided by the IoT platform for use when
calling related APIs. Generally, this certificate is different from the one used for API
callback.

Using a Test Certificate

If the test certificate is used:

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 274

IoT Device Management

Development Guide

5 SDK Usage Guide on the Application Side

NorthApiClient northApiClient = new NorthApiClient ();
PropertyUtil.init ("./src/main/resources/application.properties");

ClientInfo clientInfo = new ClientInfo();

clientInfo.setPlatformIp (PropertyUtil.getProperty ("platformIp"));
clientInfo.setPlatformPort (PropertyUtil.getProperty ("platformPort")) ;
clientInfo.setAppId(PropertyUtil.getProperty ("appId"))
clientInfo.setSecret (PropertyUtil.getProperty ("secret"));

northApiClient.setClientInfo(clientInfo);
northApiClient.initSSLConfig();//The default certificate is a test certificate.
The host name is not verified.

Using a Specified Certificate

If the test certificate is not used, you can manually specify a certificate (for example, a
commercial certificate).

NorthApiClient northApiClient = new NorthApiClient () ;
PropertyUtil.init("./src/main/resources/application.properties");

ClientInfo clientInfo = new ClientInfo();

clientInfo.setPlatformIp (PropertyUtil.getProperty ("platformIp")) ;
clientInfo.setPlatformPort (PropertyUtil.getProperty ("platformPort"));
clientInfo.setAppld (PropertyUtil.getProperty ("appId"))
clientInfo.setSecret (getAesPropertyValue ("secret")) ;

SSLConfig sslConfig= new SSLConfig() ;

sslConfig.setTrustCAPath (PropertyUtil.getProperty ("newCaFile")) ;
slConfig.setTrustCAPwd (getAesPropertyValue ("newCaPassword")) ;
slConfig.setSelfCertPath (PropertyUtil.getProperty ("newClientCertFile")) ;
slConfig.setSelfCertPwd (getAesPropertyValue ("newClientCertPassword")) ;

northApiClient.setClientInfo(clientInfo);
northApiClient.initSSLConfig(sslconfig); //Use the specified certificate. Strict
host name verification is used by default.

If strict host name verification is not used when a specified certificate is used, you can define
the host name verification method before calling northApiClient.initSSLConfig(sslconfig).
northApiClient.setHostnameVerifier (new HostnameVerifier () {
public boolean verify(String arg0, SSLSession argl) {
//Customized host name verification

NOTICE

The method for host name verification should follow security-first principles. The value true
should not be returned directly.

5.1.6 Calling Service APIs

You can call other service APIs only after the NorthApiClient instance is configured by
following the instructions provided in Initializing and Configuring Certificates. The
following APIs are used as an example to describe how to call service APIs:

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 275

IoT Device Management

Development Guide

5 SDK Usage Guide on the Application Side

Authentication

Subscription

//After the NorthApiClient instance is obtained, use the NorthApiClient to obtain
the authentication instance.
Authentication authentication = new Authentication (northApiClient);

//Call the service API provided by the authentication instance, for example,
getAuthToken.
AuthOutDTO authOutDTO = authentication.getAuthToken () ;

//Obtain the required parameters from the returned authOutDTO, for example,
accessToken.
String accessToken = authOutDTO.getAccessToken () ;

//After the NorthApiClient instance is obtained, use the NorthApiClient to obtain
the subscription instance.

SubscriptionManagement subscriptionManagement = new

SubscriptionManagement (northApiClient) ;

//Set the first input parameter SubDeviceDataInDTO in the subDeviceData API.
SubDeviceDataInDTO sddInDTO = new SubDeviceDataInDTO () ;
sddInDTO.setNotifyType ("deviceDataChanged") ;
//Modify the callback IP address and port number based on site requirements.
ddInDTO.setCallbackUrl ("https://XXX.XXX.XXX.XXX:8099/v1.0.0/messageReceiver");
try {

//Call the service API provided by the subscription class instance
subscriptionManagement, for example, subDeviceData.

SubscriptionDTO subDTO = subscriptionManagement.subDeviceData (sddInDTO, null,
accessToken) ;

System.out.println (subDTO.toString()) ;
} catch (NorthApiException e) {

System.out.println(e.toString());

Device Registration

//After the NorthApiClient instance is obtained, use the NorthApiClient to obtain
the device management instance.
DeviceManagement deviceManagement = new DeviceManagement (northApiClient);

//Set the first input parameter RegDirectDeviceInDTO2 in the regDirectDevice API.
RegDirectDeviceInDTO2 rddInDTO = new RegDirectDeviceInDTO2 () ;

String nodeid = "86370303XXXXXX"; //this is a test imei

String verifyCode = nodeid;

rddInDTO.setNodeId (nodeid) ;

rddInDTO.setVerifyCode (verifyCode) ;

rddInDTO.setTimeout (timeout) ;

//Call the service API provided by the device management instance
deviceManagement, for example, regDirectDevice.

RegDirectDeviceOutDTO rddod = deviceManagement.regDirectDevice (rddInDTO, null,
accessToken) ;

//Obtain the required parameters from the returned rddod structure, for example,
deviceld.
String deviceId = rddod.getDeviceId() ;

MnoTe

For details about mandatory parameters, see Northbound Java SDK API Reference. If a parameter is not
required, it can be left empty or set to null.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 276

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

5.1.7 Implementing Callback APIs and Making, Exporting, and
Uploading a Callback Certificate

Implementing Callback APIs

Create a class inheriting PushMessageReceiver. If a specific type of message needs to be
received, overwrite the corresponding method. For details, see PushMessageReceiverTest in
the Java SDK Demo.

@Override

public void handleDeviceAdded (NotifyDeviceAddedDTO body) {
System.out.println ("deviceAdded ==> " + body) ;
//TODO deal with deviceAdded notification

}

MnoTe

® A message pushed by the IoT platform must be processed according to the service. However,
complex calculations, I/0 operations, and operations that will take a long time are not
recommended. You can write data into the database, and access or refresh the corresponding page
before obtaining data from the database.

® The callback path has been set in the SDK. Therefore, pay attention to the callback URL during
subscription. For details, see APIs in the "Message Push" section in the Java SDK API Reference
Document.

® The callback IP address is the same as that of the server. It must be a public IP address.

® The callback port of the Java SDK Demo is configured in the src\main\resource

\application.properties directory.
#specify the port of the web application
server.port=8099

Making a Callback Certificate

A self-signed certificate is used as an example. A commercial certificate must be applied from
the CA.

Step1 Open the Windows CLI, and enter where java to switch to the bin directory of the JDK.

where java
Cd /d {bin directory of the JDK}

seprs WiBREREEE vhere java
rogranData“Oracle~Javasjavapath java.exe
“Program Files“Java“sjdkl.8.8_4dbhshin“java.exe

C:“Users il cd ~d C:“Program Files“JavasJjdkl.8.8_45%hin

C:“\Program Files“Javasjdki.8.8_45-bin>_

Step 2 Run the following command to generate the tomcat.keystore file:

keytool -genkey -v -alias tomcat -keyalg RSA -keystore tomcat.keystore -validity
36500

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 277

IoT Device Management

Development Guide

5 SDK Usage Guide on the Application Side

Step 3

c :“Program FilessJavasjdkl.8_8_131“bhin*keytool —genkey —v —-alias tomcat —kevalg

RSA —keystore tomcat.keystore —validity 365606

Enter keystore password:

Re—enter new password:

lhat is your first and last name?
[Unknownl: 1 b

What is the name of your organizational wunit?
[Unknownl: O t

What iz the name of your organization?
[Unknownl: O t

What iz the name of your City or Locality?
[Unknownl: sz

llhat is the name of your State or Province?
[Unknownl: gd

What iz the two-letter country code for this wnit?
[Unknownl: CHN

Is CN:

?
[nol: vy

Generating 2,848 hit R3A key pair and self—signed certificate
th a validity of 36.588 days
for: CH=1l
CN
Enter key password for <tomcat>
CRETURM if same as keystore passwordd:
[Etoring tomcat.keystorel

c:“Program Files“Javasjdkl.8.8_131~bhin>_

SN correct

CEHAZ256withRSAD> wi

NOTICE

® [f the tomcat.keystore file exists in the bin directory of the JDK, move the file to another

path.

® Enter the [P address or domain name of the application server under What is your first

and last name?

® The password of <tomcat> must be the same as that of the keystore (press Enter in the
last step). Remember the password of the keystore, as it will be used in subsequent

configurations.

Place the root certificate ca.pem provided by the IoT platform in the bin directory of the JDK
and run the following command to add it to the trust certificate chain of the tomcat.keystore

file:

keytool -import -v -file ca.pem -alias iotplatform ca -keystore tomcat.keystore

c :“Program FilessJavasjdki_.8.8_131~bhin>*keytool —import —v —file ca.pem —alias io

tplatform_ca —keystore tomcat.keystore
Enter keystore password:

Ouner: G

Issuer: CF

Enter the keystore password. Check the imported certificate content and enter y.

Trust this certificate? [nol: | y
Certificate was added to kevstore
[Storing tomcat.keystorel

c:“Program Files“Java’sjdki.8.8_131%bin>_

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

278

IoT Device Management

Development Guide

5 SDK Usage Guide on the Application Side

Step 4

Step 5

(MnoTe

® The test root certificate ca.pem of the loT platform can be found in the cert directory of the Java
SDK package.

® After the root certificate ca.pem provided by the IoT platform is added to the trust certificate chain
of the tomcat.keystore file, the sub-certificate issued by ca.pem can obtain the trust of the
application server.

Place the tomcat.keystore file in the directory of the Java SDK Demo, for example, src\main
\resources. Open the src\main\resource\application.properties file and add the following
configuration, where server.ssl.key-store indicates the path where the tomcat.keystore file is
stored and server.ssl.key-store-password indicates the password of the keystore:

#one-way authentication (server-auth)
server.ssl.key-store=./src/main/resources/tomcat.keystore
server.ssl.key-store-password=741852963.

Right-click PushMessageReceiverTest and choose Run As > Java Application to run the
PushMessageReceiverTest class in the Java SDK Demo. The command output is as follows:

MnoTe

Data is transferred to the corresponding callback function when it is pushed to the application server.

a7 ffoverride the callback functiens if needed, otherwise, you can delete them.
38 @verride
& 30 public woid handleDeviceddded(NotifyDevicedddedDTO body) |
48 Fystem.out.println(“deuiceAdded == " + body);l
41 1
42
43 @ verride
44 public woid handleBindDevice{MotifyBindDeviceDTO body) {
45 System.out.println{"bindDevice ==» " + body)ﬂ
46 T
47
48 @override
& 40 _J public woid handleDewiceInfoChanged{MNotifyDeviceInfoChangedDTO body) {
Problems lavadoc Declaration Search B Console 82]

PushMessageReceiverTest [lava Application] C\Program FileshJavayjdk1.8.0_45\jretbinyjavaw.exe (20188ETH13H F4F7:15:09)

. LAV
[_I I it
:: Spring Boot :: (wl.5.9.RELEASE)
|deviceﬂdded ==> MotifyDevicefddedDTO [notifyType=devicefdded, deviceld=. dk
—-End

Exporting a Callback Certificate

Step 1

Use a browser to open the callback URL https://server:8099/v1.0.0/messageReceiver and
view the certificate. Google Chrome is used as an example.

The IP address of the server is the same as that of the local host. 8099 is the port configured in
the application.properties file.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 279

IoT Device Management
Development Guide

5 SDK Usage Guide on the Application Side

E Mot securel hitpsyff. 007l

-f#/login

Your connection to this site is not
secure

You should not enter any sensitive information on
this site (for example, passwords or credit cards),
because it could be stolen by attackers. Learn

more

You have chosen to disable security warnings for

this site. Re-enable warnings

B Certificate (Invalid)

@& Cookies (11 in use)

£ Site settings

Step 2 In the Certificate dialog box, click the Details tab. Click Copy to File.

Certificate | x|

General |CertiFicatiDn Fath |

Shiow;

Fi_elu:l

E\,__il.:'-::si-_' Coraliaiis

rancadt o blzage

A

Fieshe Poiiies

e

£
[a R st riutin s P, Tsh
.

ey Aecess o T AUtRere Inro Accass A
: Deb S L0 G0 e a0 S Do ad el

Mgical Swnakire, Vev Sndphs

Edit Froperties, .. |I Copy ko File. .. Il

Learn more abouk certificate details

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd.

280

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Step 3 Click Next. In the Export File Format dialog box displayed, select Base-64 encoded X.509
(.CER), and click Next.

Certificate Export Wizard [=]

Export File Format
Certificates can be exparted in a variety af file Farmats,

Select the Format you wank ko use;

™ DER encoded binary ¥.509 {,CER)

{*' Base-64 encoded ¥.509 {.CER)

™ Cryptographic Message Syntax Standard - PECS #7 Certificates {P7E)

™ Include allcerbificates inthe certification path if possible

" Personal Information Exchange - PEES #£12(.BF%)

™| Include all certificates in the certification path iF possible
™| Delete the private kew if the export is successful
™| Export &l extended properties

 Microsoft Serislized Certificate Stare (55T

Learn more abouk cerkificate file Formats

< Back. II Mext = I Cancel

Step 4 Specify the path for saving the certificate.

1. Inthe File to Export dialog box, click Browse. Select a path, enter the file name, and
click Save to return to the Certificate Export Wizard dialog box. Then, click Next.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 281

IoT Device Management

Development Guide 5 SDK Usage Guide on the Application Side

Certificate Export Wizard

File to Export
Specify the name of the file you want o expork

File narmne:

CUsers 1Deskiopimycert, cer

Browse, ..

< Back Cancel |

2. Click Finish to export the certificate.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd.

282

IoT Device Management
Development Guide

5 SDK Usage Guide on the Application Side

Certificate Export Wizard
Completing the Certificate Export
Wizard
P You have successfully completed the Certificate Export
o, (%_‘ wizard,
=
'*::_f_ij./ You have specified the Following settings:
i
Expart Keys
Include all certificates in the certification path Mo
File Format Basebd
| | i
< Back Finish I Zancel
NOTICE
If the application server is deployed on the cloud, multiple certificates may exist. You are
advised to export the certificates one by one after the deployment is complete.
Step 5 If multi-level certificates exist, export them one by one.
1. Inthe Certificate dialog box, select a certificate path and click View Certificate.
Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 283

IoT Device Management

Development Guide

5 SDK Usage Guide on the Application Side

2.

T < T <
General | Details Certfication Path | General | petaik | Certification Path |

r—Certification path

=al|Globalsign
i GlobalSign Ordgnization Yalidation C& - SHAZSE - G2
-

g Certificate Information

This certificate is intended for the following purpose(s):

* Ensures the identity of a remote computer -
+ Proves your identity to a remote computer

* Ensures software came from software publisher

+ Protects software from alkeration after publication

* Protects e-mail messages

+ Allows data to be signed with the current: time: LI

Issued to: GlobalSign Root Ca

_/* Issued by: GlobalSign Root Ca
Wiew Certificate |

validfrom 1998 9/ 1to 2028/ 1] 28

Certificate status:

This certificate is Ok,

Issuer statement |

Learn more about certification paths Learn mare about certificates

o |

Click the Details tab and repeat the preceding steps to export every selected certificate.

Step 6 Use the text editor to combine all the exported certificates sequentially into a PEM file. This
file must be uploaded to the corresponding application on the IoT platform.

24 S5gaRQBiS+MHL3 StEqueWIMnNZEUdgemUTgRERQsTh47hDHOlAtukix1EORFEEWLE

25 WESgyvnéCagsCgiUXObIbhf+eEZdqVirEG3leBFoMtEMz e/ aliCEml oHwl L xOXnGLlY 2

26 4fORbxC1]lfenogUyZEadUVE otplF0lvwpEZlFQHECEwS rDghTMzVIchid 4 vEZVEN

27 hnacRHrZlVzZEZTIIMERUthg/aFzyQkgFCOFSDX9HoLPRsEda o7y

2 E—— — — END CERTIFICATE-—---

EICUN. — — BEGIN CERTIFICATE--——--——

30 MIIFODCCECCgawIBAgIQUT+S5dDhwtzRAOYlwkwaZ/ zANEgkghkis9wlEAQsFADCE

a1 yj ELMAkGAIUEERMCOVVM*F zAVBgyNVEBAOTD1 2l cm]l TaWd uL CB I hmMuMB SwHOY DVO0L

32 ExEWZEZIPUZ InbiBUcnVzdCBOZERILITrMT owOAYDVOOLEZE oY ykgM] AwNiEWZETp

33 UZlnbiwg8W5]LiAtIEZvweiBhdXZRob3TpemVkIHVzZSEvbrnxSMUTnCwyY DV QODE 22

34 ZXJpUZlnbiEBDhGFzoyAzIFElYmxpYyEQomlty XIS IENlenRpZml 1Y ERphZ4 g0z v
—-End

NOTICE

® The configuration in the Demo is one-way authentication. After the certificate is exported,
change it to two-way authentication. Open the following configuration file (delete the
comment and change the tomcat.keystore directory and password). The root certificate of
the platform has been added to the tomcat.keystore trust certificate chain. Therefore, you

do not need to modify the configuration file. Restart the server.
#two-way authentication (add client-auth)
server.ssl.trust-store=./src/main/resources/tomcat.keystore
server.ssl.trust-store-password=741852963.
server.ssl.client-auth=need

One-way authentication is less secure than two-way authentication. Therefore, two-way
authentication is recommended.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 284

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Uploading the Callback Certificate

Step1 Log in to the Developer Center and access a project.
Step 2 Choose Applications > Interconnection, and click Certificate Management.
Step 3 Click Add to upload the certificate.

—-End

5.1.8 Service API Calling Process and Precautions

The methods for calling other APIs are similar to those for calling service APIs. For details,
see Calling Service APIs.

® The following figure shows the flow for calling a service API.

Create a profile file.

Start authentication.

Subscribe to
platform service and
management data.

Register a directly
connected device.
Create a device
command (NB-loT

Bind a directly command).

connected device and
connect it to the loT Call other APIs.

platform. Call a device service
(non-NB-loT
command).

Modify device data.

® The following figure shows the profile file used in the Java SDK Demo. There is only
one Brightness service, which contains a brightness attribute and a PUT command.
When calling a device command or device service API, change the service,
attribute, or command name to the corresponding name if the following profile
content is not used.

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 285

IoT Device Management
Development Guide

5 SDK Usage Guide on the Application Side

Brightness

2019/02/23 10:14:40

Attributes

& | brightness

Commands

PUT

Command Request Parameter

brightness

~+ Add Attribute

int 0- . - R a2

100

~+ Add Command

-+ Add Command Request Parameter

0~ 100

Response Data

~+ Add Response Parameter

To create a profile, perform the following steps:

Log in to the Developer Center, choose Product > Product Development > Add >
Customization, and click Customization to open the Set Product Information page.
Specify Product Name, Model, Manufacture ID, Industry, Device Type, and
Protocol Type, and click Create. Click +Add Service to add attributes and commands
based on device functions, and click Save.

MnoTe

You are advised to call the API to register the device after the profile file is defined.

The values of DeviceType, Manufacturerld, ManufacturerName, and Model must be
the same as those defined in the profile file.

The accessToken can be managed by the SDK or third-party applications. For details,
choose Secure Application Access > Periodically Refreshing a Token in the
Northbound Java SDK API Reference.

5.1.9 Testing the SDK

The SDK packages provide JAR packages that can be run independently to test the related
northbound APIs provided by the IoT platform. JAR packages that can run independently are
stored in the testSDK directory.

Figure 5-1 JAR packages that can be run independently

api-client-test lib
api-client-test,jar

cajks

config.properties

logback xml
outgoing.CertwithiKey.pkes12
readMe_cn.tet

runhle.bat

Step1 Modify the config.properties file and double-click runMe.bat to perform the test.

Issue 02 (2019-08-28)

Copyright © Huawei Technologies Co., Ltd. 286

IoT Device Management
Development Guide 5 SDK Usage Guide on the Application Side

Figure 5-2 Modifying config.properties

1 #please modify the walue of platformIp/platformPort,
2 |platformIp=1c 1

3 | platformPort=8743

4 | appId=xolDlZa—y — AMIESa3DTa

5 | zecret=gPnTWw__" "~ " " kkflZp3fda

& fthe wvalue of newlaFile and newClientCertFile shoul:c
7 newCaFile=

2 newCaPassword=

2 newClientCertFile=
10 newClientCertPassword=
11 #hostNameVerify default walue is= true, true means s:
12 hostNameVerify=

Step 2 If a commercial certificate is used, place it in the testSDK directory (the certificate name
cannot be ca.jks or outgoing.CertwithKey.pkes12) and configure the certificate name and
password in the config.properties file. If the test certificate is used, you do not need to
modify the certificate data in the config.properties file.

Step 3 The test result is displayed at the beginning. [y] indicates that the test is successful. [x]
indicates an error. Check the error message or description in that line.

Step 4 The JDK is required to run JAR packages. Ensure that the JDK has been installed and the
system environment variables have been set.

The command output is as follows:

[¥] getAuthToken{> 1. get accesstoken successfully with inner certificates

AuthOutDTO [accessToken=57a37haa?2chbfca3dd?63ffelePe?d?3. tokenType=hearer. refreshloken=4bhad4a
[¥]1 refreshfuthToken<> succeeded. AuthRefreshOutDIT0 [accessToken=389c198hc?68ca31ebhB3996936fba2
3762hcf21]

[¥]1 regDirectDevice(> succeeded. DirectDeviceRegOutDTO [deviceld=ef?2daa2-772d-4a%b-aZhc-71a48al

[¥]1 modifyDevicelnfo{)} succeeded
[¥] deleteDevice(> succeeded

—End

Issue 02 (2019-08-28) Copyright © Huawei Technologies Co., Ltd. 287

	Contents
	1 Product Development
	1.1 Obtaining Development Resources
	1.2 Creating a Project and Product
	1.3 Developing a Product Model
	1.3.1 Development Guide
	1.3.2 Offline Development
	1.3.2.1 Profile Writing Guide
	1.3.2.2 Profile Providing Method
	1.3.2.3 Profile Field Description

	1.3.3 Reference
	1.3.3.1 Product Model Sample
	1.3.3.2 Fields in the Profile Sample

	1.4 Developing a Codec
	1.4.1 Development Guide
	1.4.2 Offline Development
	1.4.2.1 Preparing the Development Environment
	1.4.2.2 Importing the DEMO Project of the Codec
	1.4.2.3 Developing a Codec
	1.4.2.4 Packaging the Codec
	1.4.2.5 Inspecting the Quality of the Codec
	1.4.2.6 Signing the Codec Package with an Offline Signature

	1.4.3 Codec Development Examples
	1.4.3.1 Codec for Data Reporting and Command Delivery
	1.4.3.2 Codec for Multiple Data Reporting Messages
	1.4.3.3 Codec for Strings and Variable-Length Strings
	1.4.3.4 Codec for Arrays and Variable-Length Arrays
	1.4.3.5 Codec for Containing Command Execution Results

	1.4.4 Reference
	1.4.4.1 Message Processing Flow
	1.4.4.2 decode API Description
	1.4.4.3 Description of encode API
	1.4.4.4 getManufacturerId Interface Description
	1.4.4.5 getModel Interface Description
	1.4.4.6 Precautions on Interface Implementation
	1.4.4.7 Input/Output Format of the Codec Plug-In
	1.4.4.8 Implementation Sample Interpretation
	1.4.4.9 Appendix: Encryption Algorithms Supported by the JDK

	1.5 Developing an Application
	1.5.1 Application Connection to the IoT Platform
	1.5.2 Data Subscription
	1.5.3 Device Registration
	1.5.4 Device Access to the IoT Platform
	1.5.5 Data Reporting
	1.5.6 Command Delivery
	1.5.7 Development of Other APIs
	1.5.8 Reference
	1.5.8.1 Preparing the Java Development Environment
	1.5.8.1.1 Installing JDK 1.8
	1.5.8.1.2 Configuring Java Environment Variables (Windows OS)
	1.5.8.1.3 Installing Eclipse
	1.5.8.1.4 Creating a Project
	1.5.8.1.5 Importing Code Example

	1.5.8.2 Using Postman to Test IoT Platform APIs
	1.5.8.3 CA Certificate
	1.5.8.4 Performing Single-Step Debugging

	1.6 Developing a Device
	1.6.1 LWM2M/CoAP Device Integration
	1.6.1.1 Device Integration
	1.6.1.2 Device Testing

	1.7 Self-Service Testing
	1.7.1 Self-Service Testing Guide
	1.7.2 Device Registration and Access Test
	1.7.3 Data Reporting Test
	1.7.4 Radio Parameter Reporting Test
	1.7.5 Command Delivery Test
	1.7.6 Command Response Test
	1.7.7 Firmware Upgrade Test
	1.7.8 Software Upgrade Test
	1.7.9 Application Subscription Event Test
	1.7.10 Application Data Push Test

	1.8 Product Release

	2 Device Interconnection
	2.1 Creating an Application
	2.2 Importing a Product Model
	2.3 Registering a Device
	2.4 Connecting a Device

	3 Application Interconnection
	3.1 Connecting an NA
	3.2 Subscribing to Data
	3.3 Commissioning an NA

	4 SDK Usage Guide on the Device Side
	4.1 LiteOS SDK Integration Development Guide
	4.1.1 Overview
	4.1.1.1 Background Introduction
	4.1.1.2 System Plan
	4.1.1.3 Integration Strategies
	4.1.1.3.1 Integrability
	4.1.1.3.2 Portability
	4.1.1.3.3 Integration Restrictions

	4.1.1.4 Security
	4.1.1.5 Upgrade

	4.1.2 Process for Connecting Devices to OceanConnect on the Device Side
	4.1.2.1 Preparations
	4.1.2.2 Entrypoint Function for LiteOS SDK Device-Cloud Interconnect Components
	4.1.2.3 Initializing LiteOS SDK Device-Cloud Interconnect Components
	4.1.2.4 Creating a Data Reporting Task
	4.1.2.5 Command Processing Function for LiteOS SDK Device-Cloud Interconnect Components
	4.1.2.6 Main Function Body for LiteOS SDK Device-Cloud Interconnect Components
	4.1.2.7 Data Structure

	4.1.3 Appendix 1 LWM2M
	4.1.3.1 Definition
	4.1.3.2 Features
	4.1.3.3 System Architecture
	4.1.3.4 Object Defined by LWM2M
	4.1.3.5 Resource Defined by LWM2M
	4.1.3.6 API Defined by LWM2M
	4.1.3.7 Firmware Upgrade

	5 SDK Usage Guide on the Application Side
	5.1 Huawei IoT Platform Java SDK Usage Guide
	5.1.1 Before You Start
	5.1.2 Requirements for the Development Environment
	5.1.3 Downloading Related Development Resources
	5.1.4 Importing the Java SDK Demo
	5.1.5 Initializing and Configuring Certificates
	5.1.6 Calling Service APIs
	5.1.7 Implementing Callback APIs and Making, Exporting, and Uploading a Callback Certificate
	5.1.8 Service API Calling Process and Precautions
	5.1.9 Testing the SDK

