
IoT Device Access

Developer Guide

Issue 1.0

Date 2025-07-29

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Before You Start... 1

2 Obtaining Resources... 5

3 Development on the Device Side.. 12
3.1 Device Access... 12
3.2 Product Development.. 16
3.2.1 Product Development Guide... 16
3.2.2 Creating a Product.. 18
3.2.3 Developing a Product Model... 19
3.2.3.1 Product Model Definition.. 19
3.2.3.2 Developing a Product Model Online... 21
3.2.3.3 Developing a Product Model Offline...25
3.2.3.4 Exporting and Importing a Product Model... 38
3.2.4 Developing a Codec.. 40
3.2.4.1 Codec Definition... 40
3.2.4.2 Online Development... 43
3.2.4.3 JavaScript Script-based Development... 86
3.2.4.4 FunctionGraph-based Development... 103
3.2.4.4.1 Overview... 103
3.2.4.4.2 MQTT(S) Codec Example.. 117
3.2.4.4.3 NB-IoT (CoAP) Codec Example... 124
3.2.5 Online Debugging...132
3.3 Device Registration.. 137
3.3.1 Registering a Device...138
3.3.2 Registering a Batch of Devices... 140
3.3.3 Registering a Device Authenticated by an X.509 Certificate... 142
3.3.4 Device Self-Registration.. 148
3.4 Device SDK Access..154
3.5 MQTT(S) Access.. 175
3.5.1 Protocol Introduction... 175
3.5.2 Secret Authentication.. 182
3.5.3 Certificate Authentication.. 187
3.5.3.1 Usage... 187

IoT Device Access
Developer Guide Contents

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.5.3.2 Certificate Validity Verification (OCSP)... 199
3.5.4 Custom Authentication... 205
3.5.5 Custom-Template Authentication... 214
3.5.5.1 Usage... 214
3.5.5.2 Examples... 221
3.5.5.3 Internal Functions..225
3.6 HTTP(S) Access... 235
3.7 LwM2M/CoAP Access.. 239
3.8 Access Using MQTT Demos.. 241
3.8.1 MQTT Usage Guide.. 241
3.8.2 Java Demo Usage Guide...248
3.8.3 Python Demo Usage Guide... 254
3.8.4 Android Demo Usage Guide..261
3.8.5 C Demo Usage Guide.. 270
3.8.6 C# Demo Usage Guide..276
3.8.7 Node.js Demo Usage Guide...285
3.9 OTA Upgrade Adaptation on the Device Side.. 292
3.9.1 Adaptation Development on the Device Side... 292
3.9.2 PCP Introduction..313

4 Development on the Application Side... 321
4.1 API Usage Guide... 321
4.2 Debugging Using Postman... 326

IoT Device Access
Developer Guide Contents

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Before You Start

Overview

To create an IoT solution based on Huawei Cloud IoTDA, perform the operations
described in the table below.

Operation Description

Product
Development

Manage products, develop product models and codecs, and
perform online debugging on the IoT Device Access (IoTDA)
console.

Development
on the
Application
Side

Carry out development for connection between applications
and the platform, including calling APIs, obtaining service
data, and managing HTTPS certificates.

Development
on the Device
Side

Carry out development for connection between devices and
the platform, including connecting devices to the platform,
reporting service data to the platform, and processing
commands delivered by the platform.

Service Process

The following describes the complete process of using IoTDA, including product
development, device-side development, application-side development, and routine
management.
● Product development: You can perform development operations on the IoTDA

console. For example, you can create a product or device, develop a product
model or codec, and perform online debugging.

● Application-side development: The platform provides robust device
management capabilities through APIs. You can develop applications based
on the APIs to meet requirements in different industries such as smart city,
smart campus, smart industry, and IoV.

● Device-side development: You can connect devices to the platform by
integrating SDKs or modules, or using native protocols.

IoT Device Access
Developer Guide 1 Before You Start

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

● Routine management: After a physical device is connected, you can perform
routine device management on the IoTDA console or by calling APIs.

IoT Device Access
Developer Guide 1 Before You Start

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Figure 1-1 Flowchart

IoT Device Access
Developer Guide 1 Before You Start

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

FAQ
In What Scenarios Can the IoT Platform Be Applied?

Which Regions of Huawei Cloud Are Supported by the IoT Platform?

Does Huawei Provide Modules, Hardware Devices, and Application Software?

How Does IoTDA Obtain Device Data?

IoT Device Access
Developer Guide 1 Before You Start

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00250.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00006.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00009.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00011.html

2 Obtaining Resources

Platform Connection Information
1. Log in to the IoTDA console. In the navigation pane, choose IoTDA

Instances, and click the target instance card.

Figure 2-1 Instance management - Changing instance

2. In the navigation pane, choose Overview. In the Instance Information area,
click Access Details.

Figure 2-2 Obtaining access information

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Device Development Resources
You can connect devices to IoTDA using MQTT, LwM2M/CoAP, and HTTPS, as well
as connect devices that use Modbus, OPC UA, and OPC DA through IoT Edge. You
can also connect devices to IoTDA by calling APIs or integrating SDKs.

Resource Package Description Download Link

IoT Device Java SDK Devices can connect to
the platform by
integrating the IoT
Device Java SDK. The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device Java SDK.

IoT Device Java SDK

IoT Device C SDK for
Linux/Windows

Devices can connect to
the platform by
integrating the IoT
Device C SDK. The demo
provides the sample code
for calling SDK APIs. For
details, see IoT Device C
SDK.

IoT Device C SDK for
Linux/Windows

IoT Device C# SDK Devices can connect to
the platform by
integrating the IoT
Device C# SDK. The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device C# SDK.

IoT Device C# SDK

IoT Device Android SDK Devices can connect to
the platform by
integrating the IoT
Device Android SDK. The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device Android
SDK.

IoT Device Android SDK

Device IoT Device Go
SDK (Community
Edition)

Devices can connect to
the platform by
integrating the IoT
Device Go SDK. The
demo provides the code
sample for calling the
SDK APIs. For details, see
IoT Device Go SDK.

IoT Device Go SDK
(Community Edition)

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0089.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go

Resource Package Description Download Link

IoT Device Python SDK Devices can connect to
the platform by
integrating the IoT
Device Python SDK. The
demo provides the code
sample for calling the
SDK APIs. For details, see
IoT Device Python SDK.

IoT Device Python SDK

IoT Device Tiny C SDK
for Linux/Windows

Devices can connect to
the platform by
integrating the IoT
Device Tiny C SDK. The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device Tiny C SDK
for Linux/Windows.

IoT Device Tiny C SDK
for Linux/Windows

IoT Device ArkTS
(OpenHarmony) SDK

Devices can connect to
the platform by
integrating the IoT
Device ArkTS SDK. The
demo provides the code
sample for calling the
SDK APIs. For details, see
IoT Device ArkTS
(OpenHarmony) SDK.

IoT Device ArkTS
(OpenHarmony) SDK

Native MQTT or MQTTS
access

Devices can be
connected to the
platform using the native
MQTT or MQTTS
protocol. The demo
provides the sample code
for SSL-encrypted link
setup, TCP link setup,
data reporting, and topic
subscription.
Examples: Java, Python,
Android, C, C#, and
Node.js

quickStart(Java)
quickStart(Android)
quickStart(Python)
quickStart(C)
quickStart(C#)
quickStart(Node.js)

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/blob/main/huaweicloud_iot_device_library/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/blob/main/huaweicloud_iot_device_library/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(nodejs).zip

Resource Package Description Download Link

Product model template Product model templates
of typical scenarios are
provided. You can
customize product
models based on the
templates.
For details, see
Developing a Product
Model Offline.

Product Model Example

Codec example Demo codec projects are
provided for you to
perform secondary
development.

Codec Example

Codec test tool The tool is used to check
whether the codec
developed offline is
normal.

Codec Test Tool

NB-IoT device simulator The tool is used to
simulate the access of
NB-IoT devices to the
platform using LwM2M
over CoAP for data
reporting and command
delivery.
For details, see
Connecting and
Debugging an NB-IoT
Device Simulator.

NB-IoT Device
Simulator

Application Development Resources
The platform provides a wealth of application-side APIs to ease application
development. Applications can call these APIs to implement services such as
secure access, device management, data collection, and command delivery.

Resource Package Description Download Link

Application API Java
Demo

You can call application-
side APIs to experience
service functions and
service processes.

API Java Demo

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/ProfileDemo/ProfileSample.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/tool/CodecDemo/CodecDemoV2.zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/pluginDetector/IoT_Codec_Test_Tool.zip
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip

Resource Package Description Download Link

Application Java SDK You can use Java
methods to call
application-side APIs to
communicate with the
platform. For details, see
Java SDK.

Application Java SDK

Application .NET SDK You can use .NET
methods to call
application-side APIs to
communicate with the
platform. For details,
see .NET SDK.

Application .NET SDK

Application Python SDK You can use Python
methods to call
application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Application Python SDK

Application Go SDK You can use Go methods
to call application-side
APIs to communicate
with the platform. For
details, see Go SDK.

Application Go SDK

Application Node.js SDK You can use Node.js
methods to call
application-side APIs to
communicate with the
platform. For details, see
Node.js SDK.

Application Node.js
SDK

Application PHP SDK You can use PHP
methods to call
application-side APIs to
communicate with the
platform. For details, see
PHP SDK.

Application PHP SDK

Certificates
The following certificates are used when devices and applications need to verify
IoTDA.

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/releases

NO TE

● The certificates apply only to Huawei Cloud IoTDA and must be used together with the
corresponding domain name.

● CA certificates can no longer be used to verify server certificates upon expiration.
Replace CA certificates before they expire to ensure that devices can connect to the IoT
platform properly.

Table 2-1 Certificates

Certificate
Package
Name

Region
and
Edition

Cer
tifi
cat
e
Typ
e

Certific
ate
Format

Description Downloa
d Link

certificate CN-
Hong
Kong,
AP-
Singapo
re, AP-
Bangko
k, AP-
Jakarta,
AF-
Johanne
sburg,
LA-
Santiag
o, LA-
Sao
Paulo1,
LA-
Mexico
City2,
and
ME-
Riyadh

Dev
ice
cert
ifica
te

pem,
jks, and
bks

Used by a device to
verify the platform
identity. The certificate
must be used together
with the device access
domain name.

Certifica
te file

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip

Certificate
Package
Name

Region
and
Edition

Cer
tifi
cat
e
Typ
e

Certific
ate
Format

Description Downloa
d Link

certificate CN-
Hong
Kong,
AP-
Singapo
re, AP-
Bangko
k, AP-
Jakarta,
AF-
Johanne
sburg,
LA-
Santiag
o, LA-
Sao
Paulo1,
LA-
Mexico
City2,
and
ME-
Riyadh

App
lica
tion
cert
ifica
te

pem,
jks, and
bks

Application access:
HTTPS/AMQPS/MQTTS
platform CA certificates

Certifica
te file

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip

3 Development on the Device Side

3.1 Device Access

Process
You can use various protocols to access Huawei Cloud IoTDA, including:

● Common native protocols: MQTT(S), HTTPS, and LwM2M/CoAP(S)
● Standard protocols for access through gateways or IoT Edge: Modbus, OPC

UA, OPC DA, ONVIF, GB28181, and LoRa
● Common protocols in some industries: JT808 (vehicle terminal communication

protocol), SL651 (hydrological monitoring data communication protocol), and
HJ212 (environmental protection industry data transmission standard
protocol)

● TCP proprietary protocols and third-party protocols

For more protocols, see Device Access Protocols.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_01271.html#section1

Figure 3-1 Device access development process

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

TLS
IoTDA supports Transport Layer Security (TLS) for encrypted communication and
secure client connections. When TLS is utilized, clients can transmit the Server
Name Indication (SNI) and access domain name during connection establishment
with the device, which is essential for features like custom domain names, device
self-registration, and custom authentication.

Table 3-1 TLS types supported by common protocols

Protocol Operatio
ns
Supporte
d

Supported TLS
Version

Port

MQTT Publish/
Subscribe

Not applicable 1883

MQTTS Publish/
Subscribe

1.1, 1.2, and 1.3 8883

MQTT over
WebSocket
(WSS)

Publish/
Subscribe

TLS 1.2 443

HTTPS Publish TLS 1.2 443

CoAP Report
and
deliver

Not applicable 5683

CoAPS Report
and
deliver

DTLS 1.2 5684

Access via Device-side SDKs
IoTDA offers device SDKs for seamless integration with Huawei Cloud, supporting
functions like file uploading/downloading, automatic reconnection, OTA upgrades,
data reporting, and time synchronization. The SDKs are available in C, C#, Java,
Android, Go, Python, and ArkTS for HarmonyOS development. For details, see
Device SDKs.

Access via Native Protocols
Devices can connect to IoTDA using native protocols such as MQTT(S), HTTPS,
CoAP(S), or LwM2M. When a device employs the binary format, its data must be
converted between binary and JSON formats using the codec deployed on the
platform for communication with IoTDA.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0089.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0212.html
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0178.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9990.html#section3

Table 3-2 Native protocols

Proto
col

Opera
tions
Suppo
rted

Tra
nsp
ort
Lay
er

P
o
w
er
C
o
ns
u
m
pt
io
n

Appli
cable
Net
work

Feature Common Usage
Scenario

MQT
T(S)

Upstre
am
and
downs
tream

TCP Lo
w

Unst
able/
High-
laten
cy

Lightweight and
low power
consumption;
publish/subscribe
model for one-to-
many
communication;
persistent
sessions

Recommended industry
protocol for persistent
connection scenarios. It
can be used in IoT
systems that require
bidirectional
communication, device
control, or high
scalability, such as
smart city, Internet of
Vehicles (IoV), energy,
electric power, and
Industry 4.0 solution.

HTTP
S

Upstre
am
only

TCP Hi
g
h

Stabl
e and
high-
band
width

Various data
formats available;
one-way
communication
for client-intiated
requests; stateless
with independent
requests

Scenarios where data is
integrated with existing
web services (such as
apps and web pages)
or requires high
readability.

CoA
P(S)/
LwM
2M

Upstre
am
and
downs
tream

UD
P

Ve
ry
lo
w

Extre
mely
low
band
width
/High
pack
et
loss
rate

Designed for
restricted devices;
lightweight and
multicast; low
costs; binary
format (CBOR)

This technology is
commonly employed
on low-power devices
with limited resources,
such as water meters
and electricity meters,
as well as on devices
with extremely
restricted resources like
battery-powered
sensors or those
operating solely on
UDP networks.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Access via Huawei-certified Modules
Huawei-certified modules are integrated with the IoT Device SDK Tiny and have
passed Huawei certification tests. They comply with Huawei AT command
specifications. You can send and receive data with a few clicks using AT
commands, greatly reducing device interconnection workload and device
commissioning period.

3.2 Product Development

3.2.1 Product Development Guide
In the IoT platform integration solution, the IoT platform provides open APIs for
applications to connect devices that use various protocols. To better manage
devices, the IoT platform needs to understand the device capabilities and the
formats of data reported by devices. Therefore, you need to develop product
models and codecs on the IoT platform.

● A product model is a JSON file that describes device capabilities. It defines
basic device properties and message formats for data reporting and command
delivery. To define a product model is to construct an abstract model of a
device in the platform to enable the platform to understand the device
properties.

● A codec is developed based on the format of data reported by devices. IoTDA
uses codecs to convert data between binary and JSON formats as well as
between different JSON formats. The binary data reported by a device is
decoded into the JSON format for the application to read, and the commands
delivered by the application are encoded into the binary or JSON format for
the device to understand and execute. The following figure shows the process.

Figure 3-2 Codec usage process

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_9980.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1401.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1401.html

Product Development Process

The IoTDA console provides a graphical user interface (GUI) to help you quickly
develop products (product models and codecs) and perform self-service tests.

Figure 3-3 Product development process

● Product creation: A product is a collection of devices with the same
capabilities or features. In addition to physical devices, a product includes
product information, product models, and codecs generated during IoT
capability building.

● Model definition: Product model development is the most important part of
product development. A product model is used to describe the capabilities
and features of a device. You can build an abstract model of a device by
defining a product model on the platform so that the platform can know
what services, properties, and commands are supported by the device.

● Codec development: If the data reported by the device is in binary or JSON
format, a codec must be developed to convert data between binary and JSON
formats or between different JSON formats.

● Online commissioning: IoTDA provides application and device simulators for
you to commission data reporting and command delivery before developing
real applications and physical devices. You can also use the application
simulator to verify the service flow after the physical device is developed.

NO TE

Currently, only the standard edition supports online debugging of MQTT devices.

FAQ

Product Models

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01000.html

3.2.2 Creating a Product
On the IoT platform, a product is a collection of devices with the same capabilities
or features.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 Choose Products in the navigation pane and click Create Product on the left. Set
the parameters as prompted and click OK.

Set Basic Info

Resource
Space

Select a resource space from the drop-down list box. If a
resource space does not exist, create it first.

Product
Name

Define a product name. The product name must be unique in the
same resource space. The value can contain up to 64 characters.
Only letters, digits, and special characters (_?'#().,&%@!-) are
allowed.

Protocol ● MQTT: The device data format can be binary or JSON. If the
binary format is used, the codec must be deployed.

● LwM2M over CoAP: Used only by NB-IoT devices with limited
resources (including storage and power consumption). The
data format is binary, requiring the codec for device-platform
interaction.

● HTTPS: A secure communication protocol based on HTTP and
encrypted using SSL.

● Modbus: Devices that access the platform with Modbus via
IoT edge nodes (or child devices that connect to the platform
through gateways) are indirectly connected devices. For
details about the differences between directly connected
devices and indirectly connected devices, see Gateways and
Child Devices.

● HTTP (TLS-encrypted), ONVIF, OPC UA, OPC DA, TCP, UDP,
and other protocols: IoT Edge is used for connection.

Data Type ● JSON: JSON is used for the communication protocol between
the platform and devices.

● Binary: You need to develop a codec on the IoTDA console to
convert binary code data reported by devices into JSON data.
The devices can communicate with the platform only after the
JSON data delivered by the platform is parsed into binary
code.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0052.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0052.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html

Set Basic Info

Encoding
Format

When protocol_type is set to MQTT and data_format is set to
binary, set this parameter to specify the encoding format of
messages reported by devices.
● UTF-8 (default value): converts binary code streams into

Unicode strings.
● BASE64: converts binary code streams into Base64 strings.

Industry Set this parameter based on service requirements.

Device Type Set this parameter based on service requirements.

Advanced Settings

Product ID Set a unique identifier for the product. If this parameter is
specified, the platform uses the specified product ID. If this
parameter is not specified, the platform allocates a product ID.

Description Provide a description for the product. Set this parameter based
on service requirements.

You can click More > Delete to delete a product that is no longer used. After the
product is deleted, its resources such as the product models and codecs will be
cleared. Exercise caution when deleting a product.

----End

Follow-Up Procedure
1. In the product list, click the name of a product to access its details page. On

the product details page displayed, you can view basic product information,
such as the product ID, product name, device type, data format, resource
space, and protocol type.

Figure 3-4 Product details

2. On the product details page, you can develop a product model, develop a
codec, perform online debugging, and customize topics.

3.2.3 Developing a Product Model

3.2.3.1 Product Model Definition
A product model describes the capabilities and features of a device. You can build
an abstract model of a device by defining a product model on the IoT platform so

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0017.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9988.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html

that the platform can know what services, properties, and commands are
supported by the device, such as its on/off switches. After defining a product
model, you can use it during device registration.

A product model defines service capabilities.

● Service capabilities
The service capabilities of a device are divided into several services. Properties,
commands, and command parameters are defined for each service.
For example, a water meter has multiple capabilities. It reports the water
flow, alarms, battery life, and connection data, and it receives commands too.
When describing the capabilities of a water meter, the product model includes
five services, each of which has its own properties or commands.

Service Name Description

WaterMeterBasic Defines parameters reported by the water meter, such
as the water flow, temperature, and pressure. If these
parameters need to be controlled or modified using
commands, these parameters must be defined in the
commands.

WaterMeterAlarm Defines various scenarios where the water meter will
report an alarm. Commands need to be defined if
necessary.

Battery Defines the voltage and current intensity of the water
meter.

DeliverySchedule Defines transmission rules for the water meter.
Commands need to be defined if necessary.

Connectivity Defines connectivity parameters of the water meter.

NO TE

You can define the number of services as required. For example, the
WaterMeterAlarm service can be further divided into WaterPressureAlarm and
WaterFlowAlarm services or be integrated into the WaterMeterBasic service. The
platform provides multiple methods for developing product models. You can select a
method as required.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

● Customize Model (online development): Build a product model from
scratch. For details, see Developing a Product Model Online.

● Import from Local (offline development): Upload a local product model to
the platform. For details, see Developing a Product Model Offline.

● Import from Excel: Define product functions by importing an Excel file. This
method can lower the product model development threshold for developers
because they only need to fill in parameters based on the Excel file. It also
helps high-level developers and integrators improve the development
efficiency of complex models in the industry. For example, the auto-control air
conditioner model contains more than 100 service items. Developing the
product model by editing the excel file greatly improves the efficiency. You
can edit and adjust parameters at any time. For details, see Import from
Excel.

● Import from Library: You can use a preset product model to quickly develop
a product. The platform provides standard and manufacturer-specific product
models. Standard product models comply with industry standards and are
suitable for devices of most manufacturers in the industry. Manufacturer-
specific product models are suitable for devices provided by a small number
of manufacturers. You can select a product model as required.

3.2.3.2 Developing a Product Model Online

Overview

Before developing a product model online, you must create a product. When
creating a product, enter information such as the product name, protocol type,
data format, industry, and device type. The information will be used to fill in the
device capability fields in the product model. The IoT platform provides standard
models and vendor models. These models involve multiple domains and provide
edited product model files. You can modify, add, or delete fields in the product
model as required. If you want to customize a product model, you need to define
a complete product model.

This topic uses a product model that contains a service as an example. The
product model contains functions and fields in scenarios such as data reporting,
command delivery, and command response delivery.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 On the Basic Information tab page, click the button for adding a service.

Step 4 Specify Service ID, Service Type, and Description, and click OK.
● Service ID: The first letter of the value must be capitalized, for example,

WaterMeter and StreetLight.
● Service Type: You are advised to set this parameter to the same value as

Service ID.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://www.huaweicloud.com/intl/en-us/product/iotda.html

● Description: You can, for example, define the properties of light intensity
(Light_Intensity) and status (Light_Status).

After the service is added, define the properties and commands in the Add Service
area. A service can contain properties and/or commands. Configure the properties
and commands based on your requirements.

Step 5 Click the new service ID added in 4. On the page displayed, click Add Property. In
the dialog box displayed, set the parameters and click OK.

Parameter Description

Property
Name

Use camel case, for example, batteryLevel and
internalTemperature.

Data Type ● Integer: Select this value if the reported data is an integer
value.

● long: Select this value if the reported data is a long integer.
● Decimal: Select this value if the reported data is a decimal.

You are advised to set this parameter to Decimal when
configuring the longitude and latitude properties.

● String: Select this value if the reported data is a string or an
enumerated value. Use commas (,) to separate values.

● DateTime: Select this value if the reported data is a date or
time.
Property format examples: 2020-09-01T18:50:20Z and
2020-09-01T18:50:20.200Z

● JsonObject: Select this value if the reported data is in JSON
structure.

● enum: Select this value if the reported data is enumerated
values.
If enumerated values are OPEN,CLOSE, property format
examples include OPEN and CLOSE.

● boolean: Select this value if the reported data is a Boolean
value.
Property format examples: true/false and 0/1

● StringList: Select this value if the reported data is a string
list.

Property format examples: ["str1","str2","str3"]

Access
Permissions

● Read: You can query the property through APIs.
● Write: You can modify the property value through APIs.

Value Range Set these parameters based on the actual situation of the
device.

Step

Unit

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Figure 3-5 Adding a property - batteryLevel

Step 6 Click Add Command. In the dialog box displayed, set command parameters.
● Command Name: You are advised to capitalize the full command name and

use underscores (_) to separate words, for example, DISCOVERY and
CHANGE_STATUS.

● Command Parameters: Click Add Command Parameter. In the dialog box
displayed, set the parameters of the command to be delivered and click OK.

Parameter Description

Parameter You are advised to start the name with a lowercase letter
and capitalize the other words, example, valueChange.

Data Type Set these parameters based on the actual situation of the
device.

Value Range

Step

Unit

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Figure 3-6 Adding a command - CHANGE_STATUS

● Click Add Response Parameter to add parameters of a command response
when necessary. In the dialog box displayed, set the parameters and click OK.

Parameter Description

Parameter You are advised to start the name with a lowercase letter
and capitalize the other words, example, valueResult.

Data Type Set these parameters based on the actual situation of the
device.

Value Range

Step

Unit

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Figure 3-7 Adding a command response parameter - valueAResult

----End

3.2.3.3 Developing a Product Model Offline

Overview
A product model is essentially a .zip package consisting of a devicetype-
capability.json file and several serviceType-capability.json files. The devicetype-
capability.json file describes the service capabilities contained in the product
model, and the serviceType-capability.json file describes each capability of
service_capabilities in the devicetype-capability.json file. WaterMeter indicates
the device type, TestUtf8Manuld identifies the manufacturer ID, and
WaterMeterBasic, WaterMeterAlarm, and Battery indicates the service types.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

In offline development, you need to define device capabilities in the devicetype-
capability.json file and service capabilities in the servicetype-capability.json file
based on the platform rules and JSON format specifications.

Developing a Product Model Online is recommended, which is less time-
consuming.

Naming Rules

The product model must comply with the following naming rules:

● Use upper camel case for device types, service types, and service IDs, for
example, WaterMeter and Battery.

● Use lower camel case for property names, for example, batteryLevel and
internalTemperature.

● For commands, capitalize all characters, with words separated by underscores,
for example, DISCOVERY and CHANGE_COLOR.

● Name a device capability profile (.json file) in the format of devicetype-
capability.json.

● Name a service capability profile (.json file) in the format of servicetype-
capability.json.

● The manufacturer ID must be unique in different product models and can
only be in English.

● Names are universal and concise and service capability descriptions clearly
indicate corresponding functions. For example, you can name a multi-sensor
device MultiSensor and name a service that displays the battery level
Battery.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Product Model Templates
To connect a new device to the IoT platform, you must first define a product
model for the device. The IoT platform provides some product model templates. If
the types and functions of devices newly connected to the IoT platform are
included in these templates, directly use the templates. If the types and functions
are not included in the product model templates, define your product model.

For example, if a water meter is connected to the IoT platform, you can directly
select the corresponding product model on the IoT platform and modify the device
service list.

NO TE

The product model templates provided by the IoT platform are updated continuously. The
following uses a water meter as an example to describe how to define a product model.

Device identification properties

Property Key (Product Model
JSON File)

Value

Device Type deviceType WaterMeter

Manufacturer ID manufacturerId TestUtf8ManuId

Manufacturer Name manufacturerName HZYB

Protocol Type protocolType CoAP

Service list

Service Service ID Service Type Option

Basic water meter
function

WaterMeterBasic Water Mandatory

Alarm service WaterMeterAlarm Battery Mandatory

Battery service Battery Battery Optional

Data reporting
rule

DeliverySchedule DeliverySchedule Mandatory

Connectivity Connectivity Connectivity Mandatory

Device Capability Definition Example
The devicetype-capability.json file records basic information about a device.

{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "omCapability":{
 "upgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"PCP"
 },
 "fwUpgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"LWM2M"
 },
 "configCapability" : {
 "supportConfig":true,
 "configMethod":"file",
 "defaultConfigFile": {
 "waterMeterInfo" : {
 "waterMeterPirTime" : "300"
 }
 }
 }
 },
 "serviceTypeCapabilities": [
 {
 "serviceId": "WaterMeterBasic",
 "serviceType": "WaterMeterBasic",
 "option": "Mandatory"
 },
 {
 "serviceId": "WaterMeterAlarm",
 "serviceType": "WaterMeterAlarm",
 "option": "Mandatory"
 },
 {
 "serviceId": "Battery",
 "serviceType": "Battery",
 "option": "Optional"
 },
 {
 "serviceId": "DeliverySchedule",
 "serviceType": "DeliverySchedule",
 "option": "Mandatory"
 },
 {
 "serviceId": "Connectivity",
 "serviceType": "Connectivity",
 "option": "Mandatory"
 }
]
 }
]
}

The fields are described as follows:

Fiel
d

Sub-field Mandatory Description

devi
ces

- - Yes Complete capability information
about a device. The root node cannot
be modified.

- manufactur
erId

- No Manufacturer ID of the device.

- manufactur
erName

- Yes Manufacturer name of the device.
The name must be in English.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Fiel
d

Sub-field Mandatory Description

- protocolTyp
e

- Yes Protocol used by the device to
connect to the IoT platform. For
example, the value is CoAP for NB-
IoT devices.

- deviceType - Yes Type of the device.

- omCapabili
ty

- No Software upgrade, firmware upgrade,
and configuration update capabilities
of the device. For details, see the
description of the omCapability
structure below.
If software or firmware upgrade is
not involved, this field can be
deleted.

- serviceType
Capabilities

- Yes Service capabilities of the device.

- - servic
eId

Yes Service ID. If a service type includes
only one service, the value of
serviceId is the same as that of
serviceType. If the service type
includes multiple services, the
services are numbered
correspondingly, such as Switch01,
Switch02, and Switch03.

- - servic
eType

Yes Type of the service. The value of this
field must be the same as that of
serviceType in the servicetype-
capability.json file.

- - optio
n

Yes Type of the service field. The value
can be Master, Mandatory, or
Optional.
This field is not a functional field but
a descriptive one.

Description of the omCapability structure

Field Sub-field Man
dator
y

Description

upgradeCa
pability

- No Software upgrade capabilities of the device.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Field Sub-field Man
dator
y

Description

- supportUpg
rade

No true: The device supports software upgrades.
false: The device does not support software
upgrades.

- upgradePro
tocolType

No Protocol type used by the device for
software upgrades. It is different from
protocolType of the device. For example,
the software upgrade protocol of CoAP
devices is PCP.

fwUpgrad
eCapabilit
y

- No Firmware upgrade capabilities of the device.

- supportUpg
rade

No true: The device supports firmware
upgrades.
false: The device does not support firmware
upgrades.

- upgradePro
tocolType

No Protocol type used by the device for
firmware upgrades. It is different from
protocolType of the device. Currently, the
IoT platform supports only firmware
upgrades of LwM2M devices.

configCap
ability

- No Configuration update capabilities of the
device.

- supportConf
ig

No true: The device supports configuration
updates.
false: The device does not support
configuration updates.

- configMeth
od

No file: Configuration updates are delivered in
the form of files.

- defaultConf
igFile

No Default device configuration information (in
JSON format). The specific configuration
information is defined by the manufacturer.
The IoT platform stores the information for
delivery but does not parse the
configuration fields.

Service Capability Definition Example
The servicetype-capability.json file records service information about a device.

{
 "services": [
 {

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

 "serviceType": "WaterMeterBasic",
 "description": "WaterMeterBasic",
 "commands": [
 {
 "commandName": "SET_PRESSURE_READ_PERIOD",
 "paras": [
 {
 "paraName": "value",
 "dataType": "int",
 "required": true,
 "min": 1,
 "max": 24,
 "step": 1,
 "maxLength": 10,
 "unit": "hour",
 "enumList": null
 }
],
 "responses": [
 {
 "responseName": "SET_PRESSURE_READ_PERIOD_RSP",
 "paras": [
 {
 "paraName": "result",
 "dataType": "int",
 "required": true,
 "min": -1000000,
 "max": 1000000,
 "step": 1,
 "maxLength": 10,
 "unit": null,
 "enumList": null
 }
]
 }
]
 }
],
 "properties": [
 {
 "propertyName": "registerFlow",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "R",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "currentReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "timeOfReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": null,
 "enumList": null
 },

]
 }
]
}

The fields are described as follows:

Fiel
d

Sub-field Man
dat
ory

Description

serv
ices

- - - - Yes Complete information about a service.
The root node cannot be modified.

- ser
vic
eTy
pe

- - - Yes Type of the service. The value of this
field must be the same as that of
serviceType in the devicetype-
capability.json file.

- des
cri
pti
on

- - - Yes Description of the service.
This field is not a functional field but a
descriptive one. It can be set to null.

- co
m
ma
nds

- - - Yes Command supported by the device. If
the service has no commands, set the
value to null.

- - com
man
dNa
me

- - Yes Name of the command. The command
name and parameters together form a
complete command.

- - para
s

- - Yes Parameters contained in the command.

- - - para
Nam
e

- Yes Name of a parameter in the command.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Fiel
d

Sub-field Man
dat
ory

Description

- - - dataT
ype

- Yes Data type of the parameter in the
command.
Value: string, int, string list, decimal,
DateTime, jsonObject, enum, or
boolean
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

- - - requir
ed

- Yes Whether the command is mandatory.
The value can be true or false. The
default value is false, indicating that
the command is optional.
This field is not a functional field but a
descriptive one.

- - - min - Yes Minimum value.
This field is valid only when dataType is
set to int or decimal.

- - - max - Yes Maximum value.
This field is valid only when dataType is
set to int or decimal.

- - - step - Yes Step.
This field is not used. Set it to 0.

- - - maxL
ength

- Yes String length.
This field is valid only when dataType is
set to string, string list, or DateTime.

- - - unit - Yes Unit, which must be in English.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Fiel
d

Sub-field Man
dat
ory

Description

- - - enum
List

- Yes Enumerated value.
For example, the status of a switch can
be set as follows:
"enumList" : ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

- - resp
onse
s

- - Yes Responses to command execution.

- - - respo
nseN
ame

- Yes You can add _RSP to the end of
commandName.

- - - paras - Yes Parameters contained in a response.

- - - - pa
ra
Na
m
e

Yes Name of a parameter in the command.

- - - - da
ta
Ty
pe

Yes Data type.
Value: string, string list, decimal,
DateTime, jsonObject, or int
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

- - - - re
qu
ire
d

Yes Whether the command response is
mandatory. The value can be true or
false. The default value is false,
indicating that the command response
is optional.
This field is not a functional field but a
descriptive one.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Fiel
d

Sub-field Man
dat
ory

Description

- - - - mi
n

Yes Minimum value.
This field is valid only when dataType is
set to int or decimal. The value of a
field of the int or decimal type must be
greater than or equal to the value of
min.

- - - - m
ax

Yes Maximum value.
This field is valid only when dataType is
set to int or decimal. The value of a
field of the int or decimal type must be
less than or equal to the value of max.

- - - - ste
p

Yes Step.
This field is not used. Set it to 0.

- - - - m
ax
Le
ng
th

Yes String length.
This field is valid only when dataType is
set to string, string list, or DateTime.

- - - - un
it

Yes Unit, which must be in English.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

- - - - en
u
m
Lis
t

Yes Enumerated value.
For example, the status of a switch can
be set as follows:
"enumList" : ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

- pro
per
ties

- - - Yes Reported data. Each sub-node indicates
a property.

- - prop
erty
Nam
e

- - Yes Property name.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Fiel
d

Sub-field Man
dat
ory

Description

- - data
Type

- - Yes Data type.
Value: string, string list, decimal,
DateTime, jsonObject, or int
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

- - requi
red

- - Yes Whether the property is mandatory. The
value can be true or false. The default
value is false, indicating that the
property is optional.
This field is not a functional field but a
descriptive one.

- - min - - Yes Minimum value.
This field is valid only when dataType is
set to int or decimal. The value of a
field of the int or decimal type must be
greater than or equal to the value of
min.

- - max - - Yes Maximum value.
This field is valid only when dataType is
set to int or decimal. The value of a
field of the int or decimal type must be
less than or equal to the value of max.

- - step - - Yes Step.
This field is not used. Set it to 0.

- - met
hod

- - Yes Access mode.
R indicates reading, W indicates writing,
and E indicates subscription.
Value: R, RW, RE, RWE, or null

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Fiel
d

Sub-field Man
dat
ory

Description

- - unit - - Yes Unit, which must be in English.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

- - max
Leng
th

- - Yes String length.
This field is valid only when dataType is
set to string, string list, or DateTime.

- - enu
mLis
t

- - Yes Enumerated value.
For example, batteryStatus can be set
as follows:
"enumList" : [0, 1, 2, 3, 4, 5, 6]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

Product Model Packaging
After the product model is completed, package it in the format shown below.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

The following requirements must be met for product model packaging:

● The product model hierarchy must be the same as that shown above and
cannot be added or deleted. For example, the second level can contain only
the profile and service folders, and each service must contain the profile
folder.

● The product model is compressed in .zip format.

● The product model must be named in the format of
deviceType_manufacturerId. The values of deviceType and manufacturerId
must be the same as those in the devicetype-capability.json file. For
example, the following provides the main fields of the devicetype-
capability.json file.
{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",

 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "serviceTypeCapabilities": ****
 }
]
}

● WaterMeterBasic, WaterMeterAlarm, and Battery in the figure are services
defined in the devicetype-capability.json file.

The product model is in the JSON format. After the product model is edited, you
can use format verification websites on the Internet to check the validity of the
JSON file.

3.2.3.4 Exporting and Importing a Product Model

A product model can be exported from or imported to the IoT platform.

● After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

● If you have a complete product model (developed offline or exported from
other projects or platforms) or use an Excel file to develop a product model,
you can import the product model to the platform.

Exporting a Product Model

After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 On the page displayed, click Export to export the product model to the local host.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 3-8 Product Model - Exporting a product model

----End

Importing a Product Model

If you have a complete product model (developed offline or exported from other
projects or platforms) or use an Excel file to develop a product model, you can
import the product model to the platform.

NO TE

IoTDA uses codecs to convert data between binary and JSON formats as well as between
JSON formats (see Codec Definition). The product model imported from the local host
does not contain a codec. If the device reports binary code, go to the IoTDA console to
develop or import a codec.

● Import from Local

a. Access the IoTDA service page and click Access Console. Click the target
instance card.

b. In the navigation pane, choose Products. In the product list, click the
name of a product to access its details.

c. On the Basic Information tab page, click Import from Local. In the
dialog box displayed, load the local product model and click OK.

Figure 3-9 Product - Uploading a product model

● Import from Excel

a. Access the IoTDA service page and click Access Console. Click the target
instance card.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

b. In the navigation pane, choose Products. In the product list, click the
name of a product to access its details.

c. On the Model Definition tab page, click Import from Excel. In the
product template downloaded, enter the service ID in the Device sheet
and set parameters such as properties, commands, and events in the
Parameter sheet. Import the Excel file and click OK.

Figure 3-10 Product - Importing a product model using an Excel file

3.2.4 Developing a Codec

3.2.4.1 Codec Definition
A codec, as a plug-in within the platform, enables the conversion of data between
binary and JSON formats or between different JSON formats. It manages the
conversion of data from devices to the platform and vice versa.

In the NB-IoT scenario, a codec can decode binary data reported by a device into
the JSON format for the application to read, and encode the commands delivered
by the application into the binary format for the device to understand and
execute. CoAP is used for communications between NB-IoT devices and the IoT
platform. The payload of CoAP messages carries data at the application layer, at
which the data type is defined by the devices. As NB-IoT devices require low
power consumption, data at the application layer is generally in binary format
instead of JSON. However, the platform sends data in JSON format to applications.
Therefore, codec development is required for the platform to convert data
between binary and JSON formats.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Scenarios

1. Required for device access using LwM2M/CoAP

2. Required for device access using generic protocols, such as TCP, JT808, and
GB32960

3. Not required for device access using MQTT(S) or HTTP(S)

Data Reporting

Figure 3-11 Codecs for data reporting

In the data reporting process, the codec is used in the following scenarios:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

● Decoding binary data reported by a device into JSON data and sending the
decoded data to an application

● Encoding JSON data returned by an application into binary data that can be
identified by the device and sending the encoded data to a device

Command Delivery

Figure 3-12 Codec usage in command delivery

In the command delivery process, the codec is used in the following scenarios:

● Encoding JSON data delivered by an application into binary data and sending
the encoded data to a device

● Decoding binary data returned by a device into JSON data and reporting the
decoded data to an application

Graphical Development and Script-based Development
The platform provides multiple methods for developing codecs.

● Online development: The codec of a product can be quickly developed in a
visualized manner on the IoTDA console.

● Script-based development: JavaScript scripts are used to implement
encoding and decoding. After December 1, 2024, JavaScript-based codec
development is no longer available on the platform for new users. You are
advised to use FunctionGraph to write JavaScript scripts. For details, see
Overview.

FAQ
Codecs

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00018.html

What Is NB-IoT?

Best Practices
Connecting and Debugging an NB-IoT Smart Street Light Using a Simulator

3.2.4.2 Online Development
Codecs developed online on IoTDA apply only to devices that report binary data.

On the IoTDA console, you can quickly develop codecs in a visualized manner.

This section uses an NB-IoT smoke detector as an example to describe how to
develop a codec that supports data reporting and command delivery as well as
command execution result reporting. The other two scenarios are used as
examples to describe how to develop and commission complex codecs.

● Codec for Data Reporting and Command Delivery
● Codec for Strings and Variable-Length Strings
● Codec for Arrays and Variable-Length Arrays

Codec for Data Reporting and Command Delivery
Scenario

A smoke detector provides the following functions:

● Reporting smoke alarms (fire severity) and temperature.
● Receiving and running remote control commands, which can be used to

enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

● Reporting command execution results

Product Model

Define the product model on the product details page of the smoke detector.
● level: indicates the fire severity.
● temperature: indicates the temperature at the fire scene.
● SET_ALARM: indicates whether to enable or disable the alarm function. The

value 0 indicates that the alarm function is disabled, and 1 indicates that the
alarm function is enabled.

Figure 3-13 Model definition - smokedetector

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00200.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Step 2 Click Add Message to add a smokerinfo message. This step is performed to
decode the binary code stream message uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:
● Message Name: smokerinfo
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

Figure 3-14 Adding a message - smokerinfo

1. Click Add Field, select Tagged as address field, and add the messageId field,
which indicates the message type. In this scenario, the message type for
reporting the fire severity and temperature is 0x0. When a device reports a
message, the first field of each message is messageId. For example, if the
message reported by a device is 0001013A, the first field 00 indicates that the
message is used to report the fire severity and temperature. The subsequent
fields 01 and 013A indicate the fire severity and temperature, respectively. If

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

there is only one data reporting message and one command delivery
message, the messageId field does not need to be added.

– Data Type is configured based on the number of data reporting message
types. The default data type of the messageId field is int8u.

– The value of Offset is automatically filled based on the field location and
the number of bytes of the field. messageId is the first field of the
message. The start position is 0, the byte length is 1, and the end position
is 1. Therefore, the value of Offset is 0-1.

– The value of Length is automatically filled based on the value of Data
Type.

– Default Value can be changed but must be in hexadecimal format. In
addition, the corresponding field in data reporting messages must be the
same as the default value.

Figure 3-15 Adding a field - messageId

2. Add a level field to indicate the fire severity.

– Field Name can contain only letters, digits, underscores (_), and dollar
signs ($) and cannot start with a digit.

– Data Type is configured based on the data reported by the device and
must match the type defined in the product model. The level property

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

defined in the product model is int, and the maximum value is 9.
Therefore, the value of Data Type is int8u.

– The value of Offset is automatically filled based on the field location and
the number of bytes of the field. The start position of the level field is
the end position of the previous field. The end position of the previous
field messageId is 1. Therefore, the start position of the level field is 1.
The length of the level field is 1 byte, and the end position is 2.
Therefore, the value of Offset is 1-2.

– The value of Length is automatically filled based on Data Type.

– Default Value can be left blank. If you do not set Default Value, the fire
level is not fixed and has no default value.

Figure 3-16 Adding a field - level

3. Add the temperature field to indicate the temperature at the fire scene.

– Data Type: In the product model, the data type of the temperature
property is int and the maximum value is 1000. Therefore, the value of
Data Type is int16u in the codec to meet the value range of the
temperature property.

– Offset is automatically configured based on the number of characters
between the first field and the end field. The start position of the
temperature field is the end position of the previous field. The end
position of the previous field level is 2. Therefore, the start position of
the temperature field is 2. The length of the temperature field is 2
bytes, and the end position is 4. Therefore, the value of Offset is 2-4.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

– The value of Length is automatically filled based on Data Type.
– If you do not set Default Value, the value of the temperature is not fixed

and has no default value.

Figure 3-17 Adding a field - temperature

Step 3 Click Add Message to add a SET_ALARM message and set the temperature
threshold for fire alarms. For example, if the temperature exceeds 60°C, the device
reports an alarm. This step is performed to encode the command message in
JSON format delivered by the IoT platform into binary data so that the smoke
detector can understand the message. The following is a configuration example:
● Message Name: SET_ALARM
● Message Type: Command delivery
● Add Response Field: selected. After a response field is added, the device

reports the command execution result after receiving the command. You can
determine whether to add response fields as required.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Figure 3-18 Adding a message - SET_ALARM

a. Click Add Field to add the messageId field, which indicates the message
type. For example, set the message type of the fire alarm threshold to
0x3. For details about the message ID, data type, length, default value,
and offset, see 1.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Figure 3-19 Adding a command field - messageId (0x3)

b. Add the mid field. This field is generated and delivered by the platform
and is used to associate the delivered command with the command
delivery response. The data type of the mid field is int16u by default. For
details about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Figure 3-20 Adding a command field - mid

c. Add the value field to indicate the parameter value of the delivered
command. For example, deliver the temperature threshold for a fire
alarm. For details about the data type, length, default value, and offset,
see 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Figure 3-21 Adding a command field - value

d. Click Add Response Field to add the messageId field, which indicates
the message type. The command delivery response is an upstream
message, which is differentiated from the data reporting message by the
messageId field. The message type for reporting the temperature
threshold of the fire alarm is 0x4. For details about the message ID, data
type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Figure 3-22 Adding a response field - messageId (0x4)

e. Add the mid field. This field must be the same as that in the command
delivered by the IoT platform. It is used to associate the delivered
command with the command execution result. The data type of the mid
field is int16u by default. For details about the length, default value, and
offset, see 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Figure 3-23 Adding a response field - mid

f. Add the errcode field to indicate the command execution status. 00
indicates success and 01 indicates failure. If this field is not carried in the
response, the command is executed successfully by default. The data type
of the errcode field is int8u by default. For details about the length,
default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Figure 3-24 Adding a response field - errcode

g. Add the result field to indicate the command execution result. For
example, the device returns the current alarm threshold to the platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Figure 3-25 Adding a response field - result

Step 4 Drag the property fields and command fields in Device Model on the right to set
up a mapping between the fields in the data reporting message and those in the
command delivery message.

Figure 3-26 Developing a codec online - smokerdetector

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Figure 3-27 Deploying a codec

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a virtual device as
an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

Figure 3-28 Online debugging - Creating a virtual device

Step 3 Click Debug to access the debugging page.

Figure 3-29 Entering debugging

Step 4 Use the device simulator to report data. For example, a hexadecimal code stream
(0008016B) is reported. 00 indicates the messageId field. 08 indicates the fire
level, and its length is one byte. 016B indicates the temperature, and its length is
two bytes.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

View the data reporting result ({level=8, temperature=363}) in Application
Simulator. 8 is the decimal number converted from the hexadecimal number 08
and 363 from the hexadecimal number 016B.

In the Device Simulator area, the response data AAAA0000 delivered by the IoT
platform is displayed.

Figure 3-30 Online debugging - Simulating data reporting (smokerdetector)

Step 5 Use the application simulator to deliver a command and set value to 1. The
command {"serviceId": "Smokeinfo", "method": "SET_ALARM", "paras": "{\"value
\":1}"} is delivered.

View the command receiving result in Device Simulator, which is 03000101. 03
indicate the messageId field, 0001 indicates the mid field, and 01 is the
hexadecimal value converted from the decimal value 1.

Figure 3-31 Online debugging - Simulating command delivery (smokerdetector)

NO TE

During online debugging of a CoAP virtual device, if the device simulator does not receive
the delivered command, use the device simulator to report the property, and deliver the
command again.

----End

Summary

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

● If the codec needs to parse the command execution result, the mid field must
be defined in the command and the command response.

● The length of the mid field in a command is two bytes. For each device, mid
increases from 1 to 65535, and the corresponding code stream ranges from
0001 to FFFF.

● After a command is executed, the mid field in the reported command
execution result must be the same as that in the delivered command. In this
way, the IoT platform can update the command status.

Codec for Strings and Variable-Length Strings

If the smoke detector needs to report the description information in strings or
variable-length strings, perform the following steps to create messages:

Product Model

Create a smoke sensor product and define the product model on the product
details page.

Figure 3-32 Model definition - smokedetector carrying other_info

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Step 2 Click Add Message to add the other_info message and report the description of
the string type. This step is performed to decode the binary code stream message
of the string uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:

● Message Name: other_info

● Message Type: Data reporting

● Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Figure 3-33 Adding a message - other_info

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the string type). For details about the message
ID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Figure 3-34 Adding a field - messageId (0x2)

2. Add the other_info field to indicate the description of the string type. In this
scenario, set Data Type to string and Length to 6. For details about the field
name, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Figure 3-35 Adding a field - other_info

Step 3 Click Add Message, add the other_info2 message name, and configure the data
reporting message to report the description of the variable-length string type. This
step is performed to decode the binary code stream message of variable-length
strings uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:
● Message Name: other_info2
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Figure 3-36 Adding a message - other_info2

1. Add the messageId field to indicate the message type. In this scenario, the
value 0x0 is used to identify the message that reports the fire severity and
temperature, 0x1 is used to identify the message that reports only the
temperature, and 0x3 is used to identify the message that reports the
description (of the variable-length string type). For details about the message
ID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Figure 3-37 Adding a field - messageId (0x3)

2. Add the length field to indicate the length of a variable-length string. Data
Type is configured based on the length of the variable-length string. If the
string contains 255 or fewer characters in this scenario, set this parameter to
int8u. For details about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Figure 3-38 Adding a field - length

3. Add the other_info field and set Data Type to varstring, which indicates the
description of the variable-length string type. Set Length Correlation Field to
length, indicating that the length of the current variable-length string is
determined by the reported value of length. The default mask is 0xff, which is
used to calculate the actual length of the field. For example, if the value of
Length Correlation Field is 5, the binary value is 00000101. If the mask is
0xff, the binary value is 11111111. The result of the AND operation on these
two values is 00000101, that is, 5 in decimal format. Therefore, the length of
this field that takes effect is 5 bytes. For example, if the reported data is
03051234567890, its message ID is 03, its length is 5 bytes, and the code
stream corresponding to other_info is 1234567890.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Figure 3-39 Adding a field - other_info as varstring

Step 4 Drag the property fields in Device Model on the right to set up a mapping
between the corresponding fields in the data reporting messages.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Figure 3-40 Developing a codec - Data reporting field mapping

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Figure 3-41 Deploying a codec

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a virtual device as
an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Figure 3-42 Online debugging - Creating a virtual device

Step 3 Click Debug to access the debugging page.

Figure 3-43 Entering debugging

Step 4 Use the device simulator to report the description of the string type.

In the hexadecimal code stream example (0231), 02 indicates the messageId field
and specifies that this message reports the description of the string type. 31
indicates the description and its length is one byte.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than six bytes. Therefore, the codec cannot parse
the description.

Figure 3-44 Simulating data reporting - other_info too short

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

In the hexadecimal code stream example (02313233343536), 02 indicates the
messageId field and specifies that this message reports the description of the
string type. 313233343536 indicates the description and its length is six bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description is six bytes. The description is parsed successfully by
the codec.

Figure 3-45 Simulating data reporting - other_info length proper

In the hexadecimal code stream example (023132333435363738), 02 indicates the
messageId field and specifies that this message reports the description of the
string type. 3132333435363738 indicates the description and its length is eight
bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description exceeds six bytes. Therefore, the first six bytes are
intercepted and parsed by the codec.

Figure 3-46 Simulating data reporting - other_info too long

In the hexadecimal code stream example (02013132333435), 02 indicates the
messageId field and specifies that this message reports the description of the
string type. 013132333435 indicates the description and its length is six bytes.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

View the data reporting result ({other_info=\u000112345}) in Application
Simulator. In the ASCII code table, 01 indicates start of headline which cannot
be represented by specific characters. Therefore, 01 is parsed to \u0001.

Figure 3-47 Simulating data reporting - other_info as ASCII code

Step 5 Use the device simulator to report the description of the variable-length string
type.

In the hexadecimal code stream example (030141), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
string type. 01 indicates the length of the description. 41 indicates the description
content and its length is one byte.

View the data reporting result ({other_info=A}) in Application Simulator. A
corresponds to 41 in the ASCII code table.

Figure 3-48 Simulating data reporting - other_info as variable-length character
string 1

In the hexadecimal code stream example (03024142), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
string type. 02 indicates the length of the description. 4142 indicates the
description content and its length is two bytes.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

View the data reporting result ({other_info=AB}) in Application Simulator. A
corresponds to 41 and B corresponds to 42 in the ASCII code table.

Figure 3-49 Simulating data reporting - other_info as variable-length character
string 2

In the hexadecimal code stream example (030341424344), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length string type. The second 03 indicates the length of the description.
41424344 indicates the description content and its length is four bytes.

View the data reporting result ({other_info=ABC}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. In the ASCII code table, A corresponds to 41, B to 42, and
C to 43.

Figure 3-50 Simulating data reporting - other_info as variable-length character
string 3

In the hexadecimal code stream example (0304414243), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length string type. 04 indicates the string length (four bytes) and its
length is one byte. 414243 indicates the description and its length is four bytes.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than four bytes. The codec fails to parse the
description.

Figure 3-51 Simulating data reporting - other_info as variable-length character
string 4

----End

Summary

● When data is a string or a variable-length string, the codec processes the data
based on the ASCII code. When data is reported, the hexadecimal code stream
is decoded to a string. For example, 21 is parsed to an exclamation mark (!),
31 to 1, and 41 to A. When a command is delivered, the string is encoded into
a hexadecimal code stream. For example, an exclamation mark (!) is encoded
into 21, 1 into 31, and A into 41.

● When the data type of a field is varstring (variable-length string type), the
field must be associated with the length field. The data type of the length
field must be int.

● For variable-length strings, the codecs for command delivery and data
reporting are developed in the same way.

● Codecs developed online encode and decode strings and variable-length
strings using the ASCII hexadecimal standard table. During decoding (data
reporting), if the parsing results cannot be represented by specific characters
such as start of headline, start of text, and end of text, the \u+2 byte code
stream values are used to indicate the results. For example, 01 is parsed to
\u0001 and 02 to \u0002. If the parsing results can be represented by specific
characters, specific characters are used.

Codec for Arrays and Variable-Length Arrays

If the smoke detector needs to report the description information in arrays or
variable-length arrays, perform the following steps to create messages:

Product Model

Define the product model on the product details page of the smoke detector.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Figure 3-52 Model definition - smokedetector carrying other_info

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Step 2 Click Add Message to add the other_info message and report the description of
the array type. This step is performed to decode the array binary code stream
message uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:
● Message Name: other_info
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Figure 3-53 Adding a message - other_info

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the array type). For details about the message
ID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Figure 3-54 Adding a field - messageId (0x2)

2. Add the other_info field and set Data Type to array, which indicates the
description of the array type. In this scenario, set Length to 5. For details
about the field name, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Figure 3-55 Adding a field - other_info as array

Step 3 Click Add Message to add the other_info2 message and report the description of
the variable-length array type. This step is performed to decode the binary code
stream message of variable-length arrays uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:
● Message Name: other_info2
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Figure 3-56 Adding a message - other_info2

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x3 is used to identify the message
that reports the description (of the variable-length array type). For details
about the message ID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Figure 3-57 Adding a field - messageId (0x3)

2. Add the length field to indicate the length of an array. Data Type is
configured based on the length of the variable-length array. If the array
contains 255 or fewer characters, set this parameter to int8u. For details
about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Figure 3-58 Adding a field - length

3. Add the other_info field and set Data Type to variant, which indicates the
description of the variable-length array type. Set Length Correlation Field to
length, indicating that the length of the current variable-length array is
determined by the reported value of length. The default mask is 0xff, which is
used to calculate the actual length of the array. For example, if the value of
Length Correlation Field is 5, the binary value is 00000101. If the mask is
0xff, the binary value is 11111111. The result of the AND operation on these
two values is 00000101, that is, 5 in decimal format. Therefore, the length of
this array that takes effect is 5 bytes. For example, if the reported data is
03051234567890, its message ID is 03, its length is 5 bytes, and the code
stream corresponding to other_info is 1234567890.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Figure 3-59 Adding a field - other_info as variant

Step 4 Drag the property fields in Device Model on the right to set up a mapping
between the corresponding fields in the data reporting messages.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

Figure 3-60 Developing a codec - Data reporting field mapping (other_info to
variant)

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Figure 3-61 Deploying a codec

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a virtual device as
an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

Figure 3-62 Online debugging - Creating a virtual device

Step 3 Click Debug to access the debugging page.

Figure 3-63 Entering debugging

Step 4 Use the device simulator to report the description of the array type.

For example, a hexadecimal code stream (0211223344) is reported. In this code
stream, 02 indicates the messageId field and specifies that this message reports
the description of the array type. 11223344 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than five bytes. Therefore, the codec cannot parse
the description.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

Figure 3-64 Simulating data reporting - other_info as array 1

In the hexadecimal code stream example (021122334455), 02 indicates the
messageId field and specifies that this message reports the description of the
array type. 1122334455 indicates the description and its length is five bytes.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"ESIzRFU="}}) in Application Simulator. The length of the
description is five bytes. The description is parsed successfully by the codec.

Figure 3-65 Simulating data reporting - other_info as array 2

In the hexadecimal code stream example (02112233445566), 02 indicates the
messageId field and specifies that this message reports the description of the
array type. 112233445566 indicates the description and its length is six bytes.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"ESIzRFU="}}) in Application Simulator. The length of the
description exceeds six bytes. Therefore, the first five bytes are intercepted and
parsed by the codec.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Figure 3-66 Simulating data reporting - other_info as array 3

Step 5 Use the device simulator to report the description of the variable-length array
type.

In the hexadecimal code stream example (030101), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
array type. The first 01 indicates the length of the description (one byte) and its
length is one byte. The second 01 indicates the description and its length is one
byte.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"AQ=="}}) in Application Simulator. AQ== is the encoded value of
01 using the Base64 encoding mode.

Figure 3-67 Simulating data reporting - other_info as variable-length array 1

In the hexadecimal code stream example (03020102), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
array type. 02 indicates the length of the description (two bytes) and its length is
one byte. 0102 indicates the description and its length is two bytes.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"AQI="}}) in Application Simulator. AQI= is the encoded value of
01 using the Base64 encoding mode.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Figure 3-68 Simulating data reporting - other_info as variable-length array 2

In the hexadecimal code stream example (03030102), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
array type. The second 03 indicates the length of the description (three bytes) and
its length is one byte. 0102 indicates the description and its length is two bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than three bytes. The codec fails to parse the
description.

Figure 3-69 Simulating data reporting - other_info as variable-length array 3

In the hexadecimal code stream example (0303010203), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 010203 indicates the description and its
length is three bytes.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"AQID"}}) in Application Simulator. AQID is the encoded value of
010203 using the Base64 encoding mode.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Figure 3-70 Simulating data reporting - other_info as variable-length array 4

In the hexadecimal code stream example (030301020304), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 01020304 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. AQID is the encoded value of 010203 using the Base64
encoding mode.

Figure 3-71 Simulating data reporting - other_info as variable-length array 5

----End

Description of Base64 Encoding Modes

In Base64 encoding mode, three 8-bit bytes (3 x 8 = 24) are converted into four 6-
bit bytes (4 x 6 = 24), and 00 are added before each 6-bit byte to form four 8-bit
bytes. If the code stream to be encoded contains less than three bytes, fill the
code stream with 0 at the end. The byte that is filled with 0 is displayed as an
equal sign (=) after it is encoded.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Developers can encode hexadecimal code streams as characters or values using
the Base64 encoding modes. The encoding results obtained in the two modes are
different. The following uses the hexadecimal code stream 01 as an example:

● Use 01 as the characters. 01 contains fewer than three characters. Therefore,
add one 0 to obtain 010. Query the ASCII code table to convert the characters
into an 8-bit binary number, that is, 0 is converted into 00110000 and 1 into
00110001. Therefore, 010 can be converted into 001100000011000100110000
(3 x 8 = 24). The binary number can be split into four 6-bit numbers: 001100,
000011, 000100, and 110000. Then, pad each 6-bit number with 00 to obtain
the following numbers: 00001100, 00000011, 00000100, and 00110000. The
decimal numbers corresponding to the four 8-bit numbers are 12, 3, 4, and
48, respectively. You can obtain M (12), D (3), and E (4) by querying the
Base64 coding table. As the last character of 010 is obtained by adding 0, the
fourth 8-bit number is represented by an equal sign (=). Finally, MDE= is
obtained by using 01 as characters.

● Use 01 as a value (that is, 1). It contains fewer than three characters.
Therefore, add 00 to obtain 100. Convert 100 into an 8-bit binary number,
that is, 0 is converted into 00000000 and 1 is converted into 00000001.
Therefore, 100 can be converted into 000000010000000000000000 (3 x 8 =
24). The binary number can be split into four 6-bit numbers: 000000, 010000,
000000, and 000000. Then, pad each 6-bit number with 00 to obtain
00000000, 00010000, 00000000, and 00000000. The decimal numbers
corresponding to the four 8-bit numbers are 0, 16, 0, and 0, respectively. You
can obtain A (0) and Q (16) by querying the Base64 coding table. As the last
two characters of 100 are obtained by adding 0, the third and fourth 8-bit
numbers are represented by two equal signs (==). Finally, AQ== is obtained
by using 01 as a value.

Summary

● When the data is an array or a variable-length array, the codec encodes and
decodes the data using Base64. For data reporting messages, the hexadecimal
code streams are encoded using Base64. For example, 01 is encoded into
AQ==. For command delivery messages, characters are decoded using Base64.
For example, AQ== is decoded to 01.

● When the data type of a field is variant (variable-length array type), the field
must be associated with the length field. The data type of the length field
must be int.

● For variable-length arrays, the codecs for command delivery and data
reporting are developed in the same way.

● When the codecs that are developed online encode data using Base64,
hexadecimal code streams are encoded as values.

3.2.4.3 JavaScript Script-based Development

The IoT platform can encode and decode JavaScript scripts. Based on the script
files you submit, the IoT platform can convert between binary and JSON formats
as well as between different JSON formats. This topic uses a smoke detector as an
example to describe how to develop a JavaScript codec that supports device
property reporting and command delivery, and describes the format conversion
requirements and debugging method of the codec.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

NO TE

After December 1, 2024, JavaScript-based codec development is no longer available on the
platform for new users. You are advised to use FunctionGraph to write JavaScript scripts.
For details, see Overview.

NO TE

● JavaScript syntax rules must comply with ECMAScript 5.1 specifications.
● The codec script supports only let and const of ECMAScript 6. Other expressions, such

as the arrow function, are not supported.
● The size of a JavaScript script cannot exceed 1 MB.
● After the JavaScript script is deployed on a product, the JavaScript script parses

upstream and downstream data of all devices under the product. When you develop a
JavaScript codec, take all upstream and downstream scenarios into consideration.

● The JSON upstream data obtained after being decoded by the JavaScript codec must
meet the format requirements of the platform. For details about the format
requirements, see Data Decoding Format Definition.

● For the JSON format definition of downstream commands, see Data Encoding Format
Definition. If the JavaScript codec is used for encoding, the JSON format of the platform
must be converted into the corresponding binary code stream or another JSON format.

● You can select the auto save option in the upper right corner of the script text box to let
the system automatically save the scripts every 10 seconds.

Defining a Smoke Detector
Scenario

A smoke detector provides the following functions:

● Reporting smoke alarms (fire severity) and temperature.
● Receiving and running remote control commands, which can be used to

enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

● The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device APIs, but reporting simple binary data.

Product Model

Define the product model on the product details page of the smoke detector.
● level: indicates the fire severity.
● temperature: indicates the temperature at the fire scene.
● SET_ALARM: indicates whether to enable or disable the alarm function. The

value 0 indicates that the alarm function is disabled, and 1 indicates that the
alarm function is enabled.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

https://www.ecma-international.org/ecma-262/5.1/

Figure 3-72 Model definition - smokedetector

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Edit Script.

Figure 3-73 Developing a codec - Script-based development

Step 2 Write a script to convert binary data into JSON data. The script must implement
the following methods:
● Decode: Converts the binary data reported by a device into the JSON format

defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

● Encode: Converts JSON data into binary data supported by the device when
the platform sends downstream data to the device. For details about the
JSON format requirements, see Data Encoding Format Definition.

The following is an example of JavaScript implemented for the current smoke
detector:
// Upstream message types
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response
var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Property setting response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; // Property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message reporting
// Downstream message types
var MSG_TYPE_COMMANDS = 'commands'; // Command delivery
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; // Property setting request
var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; // Platform message delivery
// Mapping between topics and upstream MQTT message types
var TOPIC_REG_EXP = {

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

 'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
 'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)'),
 'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)'),
 'command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)'),
 'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x50, 0x00, 0x5a]
 topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}]}
Input parameters:
 payload: [0x02, 0x00, 0x00, 0x01]
 topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output:

{"msg_type":"command_response","result_code":0,"command_name":"SET_ALARM","service_id":"smokerdect
or","paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 var msgType = '';
 // Parse the message type based on the topic parameter, if available.
 if (null != topic) {
 msgType = topicParse(topic);
 }
 // Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.
 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 // Convert binary data into the format used for property reporting.
 if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 // Obtain the level value from the code stream.
 var level = dataView.getInt16(0);
 // Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(2);
 // Convert the data to the JSON format used by property reporting.
 jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceId,"properties":
{"level":level,"temperature":temperature}}]};
 }else if (msgType == MSG_TYPE_COMMAND_RSP) { // Convert binary data into the format used by a
command response.
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 var command = dataView.getInt8(0); // Obtain the command name ID from the binary code stream.
 var command_name = '';
 if (2 == command) {
 command_name = 'SET_ALARM';
 }
 var result_code = dataView.getInt16(1); // Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(3); // Obtain the returned value of the command execution result from
the binary code stream.
 // Convert data to the JSON format used by the command response.
 jsonObj =
{"msg_type":"command_response","result_code":result_code,"command_name":command_name,"service_id":
serviceId,"paras":{"value":value}};

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

 }
 // Convert data into a string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":
{"value":1}}
Output ->
 [0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
 // Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 // Obtain the message type.
 var msgType = jsonObj.msg_type;
 var payload = [];
 // Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) // Command delivery
 {
 payload = payload.concat(buffer_uint8(1)); // Identify command delivery.
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); // Command name
 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.
 }
 // Return the encoded binary data.
 return payload;
}
// Parse the message type based on the topic name.
function topicParse(topic) {
 for(var type in TOPIC_REG_EXP){
 var pattern = TOPIC_REG_EXP[type];
 if (pattern.test(topic)) {
 return type;
 }
 }
 return '';
}
// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

Step 3 Debug the script online. After the script is edited, select the simulation type and
enter the simulation data to debug the script online.

1. Use the simulation device to convert binary code streams into JSON data
when reporting property data.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

– Select the topic used by device property reporting: $oc/devices/
{device_id}/sys/properties/report.

– Select Decode for Simulation Type, enter the following simulated device
data, and click Debug.
0050005a

– The script codec engine converts binary code streams into the JSON
format based on input parameters and the decode method in the
submitted JavaScript script, and displays the debugging result in the text
box.

Figure 3-74 Script-based development - Debugging and decoding

– Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

2. Convert a command delivered by an application into binary code streams that
can be identified by the device.
– Select Encode for Simulation Type, enter the command delivery format

to be simulated, and click Debug.
{
 "msg_type": "commands",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "command_name": "SET_ALARM",
 "service_id": "smokerdector",
 "paras": {
 "value": "1"
 }
}

– The script codec engine converts JSON data into the binary code streams
based on input parameters and the encode method in the submitted
JavaScript script, and displays the debugging result in the text box.

Figure 3-75 Script-based development - Debugging and coding

– Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

Step 4 Deploy the script. After confirming that the script can be correctly encoded and
decoded, click Deploy to submit the script to the IoT platform so that the IoT
platform can invoke the script when data is sent and received.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

Figure 3-76 Script-based development - Deployment

Step 5 Use a physical device for online debugging. Before using the script, use a real
device to communicate with the IoT platform to verify that the IoT platform can
invoke the script and parse upstream and downstream data.

----End

JavaScript Codec Template

The following is an example of the JavaScript codec template. Developers need to
implement the corresponding API based on the template provided by the platform.

/**
* When a device reports data to the IoT platform, the IoT platform calls this API to decode the raw data of
the device into JSON data that complies with the product model definition.
* The API name and input parameters have been defined. You only need to implement the API.
* @param byte[] payload Original code stream reported by the device
* @param string topic Topic to which an MQTT device reports data. This parameter is not carried when a
non-MQTT device reports data.
* @return string json JSON character string that complies with the product model definition
 */
function decode(payload, topic) {
 var jsonObj = {};
 return JSON.stringify(jsonObj);
}

/**
* When the IoT platform delivers a command, it calls this API to encode the JSON data defined in the
product model into the original code stream of the device.
* The API name and input parameter format have been defined. You only need to implement the API.
* @param string json JSON character string that complies with the product model definition
* @return byte[] payload Original code stream after being encoded
 */
function encode(json) {
 var payload = [];
 return payload;
}

JavaScript Codec Example for MQTT Device Access

The following is an example of JavaScript codec of MQTT devices. You can convert
the binary format to the JSON format in the corresponding scenario based on the
example.

// Upstream message types
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response
var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Property setting response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; // Property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message reporting
// Downstream message types
var MSG_TYPE_COMMANDS = 'commands'; // Command delivery
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; // Property setting request
var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; // Platform message delivery

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

// Mapping between topics and upstream MQTT message types
var TOPIC_REG_EXP = {
 'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
 'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)'),
 'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)'),
 'command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)'),
 'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x50, 0x00, 0x5a]
 topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}]}
Input parameters:
 payload: [0x02, 0x00, 0x00, 0x01]
 topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output:

{"msg_type":"command_response","result_code":0,"command_name":"SET_ALARM","service_id":"smokerdect
or","paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 var msgType = '';
 // Parse the message type based on the topic parameter, if available.
 if (null != topic) {
 msgType = topicParse(topic);
 }
 // Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.
 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 // Convert binary data into the format used for property reporting.
 if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 // Obtain the level value from the code stream.
 var level = dataView.getInt16(0);
 // Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(2);
 // Convert the data to the JSON format used by property reporting.
 jsonObj = {
 "msg_type": "properties_report",
 "services": [{"service_id": serviceId, "properties": {"level": level, "temperature": temperature}}]
 };
 } else if (msgType == MSG_TYPE_COMMAND_RSP) { // Convert binary data into the format used by a
command response.
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 var command = dataView.getInt8(0); // Obtain the command name ID from the binary code stream.
 var command_name = '';
 if (2 == command) {
 command_name = 'SET_ALARM';
 }
 var result_code = dataView.getInt16(1); // Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(3); // Obtain the returned value of the command execution result from
the binary code stream.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

 // Convert data to the JSON format used by the command response.
 jsonObj = {
 "msg_type": "command_response",
 "result_code": result_code,
 "command_name": command_name,
 "service_id": serviceId,
 "paras": {"value": value}
 };
 } else if (msgType == MSG_TYPE_PROPERTIES_SET_RSP) {
 // Convert data to the JSON format used by the property setting response.
 //jsonObj = {"msg_type":"properties_set_response","result_code":0,"result_desc":"success"};
 } else if (msgType == MSG_TYPE_PROPERTIES_GET_RSP) {
 // Convert data to the JSON format used by the property query response.
 //jsonObj = {"msg_type":"properties_get_response","services":[{"service_id":"analog","properties":
{"PhV_phsA":"1","PhV_phsB":"2"}}]};
 } else if (msgType == MSG_TYPE_MESSAGE_UP) {
 // Convert the data to the JSON format used by message reporting.
 //jsonObj = {"msg_type":"message_up","content":"hello"};
 }
 // Convert data into a string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":
{"value":1}}
Output ->
 [0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
 // Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 // Obtain the message type.
 var msgType = jsonObj.msg_type;
 var payload = [];
 // Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) { // Command delivery
 // Command delivery format example:
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":1}}
 // Convert the format used by command delivery to a binary code stream.
 payload = payload.concat(buffer_uint8(1)); // Identify command delivery.
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); // Command name.
 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.
 } else if (msgType == MSG_TYPE_PROPERTIES_SET) {
 // Property setting format example: {"msg_type":"properties_set","services":
[{"service_id":"Temperature","properties":{"value":57}}]}
 // Convert the JSON format to the corresponding binary code streams if the property setting scenario is
involved.
 } else if (msgType == MSG_TYPE_PROPERTIES_GET) {
 // Property query format example: {"msg_type":"properties_get","service_id":"Temperature"}
 // Convert the JSON format to the corresponding binary code streams if the property query scenario is
involved.
 } else if (msgType == MSG_TYPE_MESSAGE_DOWN) {
 // Message delivery format example: {"msg_type":"messages","content":"hello"}
 // Convert the JSON format to the corresponding binary code streams if the message delivery scenario
is involved.
 }
 // Return the encoded binary data.
 return payload;
}
// Parse the message type based on the topic name.
function topicParse(topic) {
 for (var type in TOPIC_REG_EXP) {
 var pattern = TOPIC_REG_EXP[type];

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

 if (pattern.test(topic)) {
 return type;
 }
 }
 return '';
}
// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}

// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

JavaScript Codec Example for NB-IoT Device Access

The following is an example of the JavaScript codec for NB-IoT devices. Developers
can develop codecs for data reporting and command delivery of NB-IoT devices
based on the example.

// Upstream message types
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response
//Downstream message type
var MSG_TYPE_COMMANDS = 'commands'; // Command delivery
var MSG_TYPE_PROPERTIES_REPORT_REPLY = 'properties_report_reply'; // Property reporting response
// Message types
var MSG_TYPE_LIST = {
 0: MSG_TYPE_PROPERTIES_REPORT, // In the code stream, 0 indicates device property reporting.
 1: MSG_TYPE_PROPERTIES_REPORT_REPLY, // In the code stream, 1 indicates a property reporting
response.
 2: MSG_TYPE_COMMANDS, // In the code stream, 2 indicates platform command delivery.
 3: MSG_TYPE_COMMAND_RSP // In the code stream, 3 indicates a command response from
the device.
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x00, 0x50, 0x00, 0x5a]
Output:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}]}
Input parameters:
 payload: [0x03, 0x01, 0x00, 0x00, 0x01]
Output:
 {"msg_type":"command_response","request_id":1,"result_code":0,"paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 // Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 // Obtain the message type from the first byte of the message code stream.
 var messageId = dataView.getInt8(0);
 // Convert binary data into the format used for property reporting.
 if (MSG_TYPE_LIST[messageId] == MSG_TYPE_PROPERTIES_REPORT) {
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 // Obtain the level value from the code stream.
 var level = dataView.getInt16(1);
 // Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(3);
 // Convert the data to the JSON format used by property reporting.
 jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceId,"properties":
{"level":level,"temperature":temperature}}]};
 }else if (MSG_TYPE_LIST[messageId] == MSG_TYPE_COMMAND_RSP) { // Convert binary data to the
format used by a command response.
 var requestId = dataView.getInt8(1);
 var result_code = dataView.getInt16(2); // Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(4); // Obtain the returned value of the command execution result from
the binary code stream.
 // Convert data to the JSON format used by the command response.
 jsonObj = {"msg_type":"command_response","request_id":requestId,"result_code":result_code,"paras":
{"value":value}};
 }
 // Convert data into a string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->

{"msg_type":"commands","request_id":1,"command_name":"SET_ALARM","service_id":"smokerdector","paras
":{"value":1}}
Output ->
 [0x02, 0x00, 0x00, 0x00, 0x01]
Sample data: When a response is returned for property reporting, data in JSON format on the platform is
encoded into a binary code stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"properties_report_reply","request":"000050005a","result_code":0}
Output ->
 [0x01, 0x00]
*/
function encode(json) {
 // Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 // Obtain the message type.
 var msgType = jsonObj.msg_type;
 var payload = [];
 // Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) { // Command delivery
 payload = payload.concat(buffer_uint8(2)); // Command delivery
 payload = payload.concat(buffer_uint8(jsonObj.request_id)); // Command ID
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); // Command name
 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.
 } else if (msgType == MSG_TYPE_PROPERTIES_REPORT_REPLY) { // Response for device property reporting
 payload = payload.concat(buffer_uint8(1)); // Response to property reporting
 if (0 == jsonObj.result_code) {
 payload = payload.concat(buffer_uint8(0)); // The property reporting message is successfully
processed.
 }

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

 }
 // Return the encoded binary data.
 return payload;
}
// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

Requirements on the JavaScript Codec Format
Data Decoding Format

In the data parsing scenario, when the platform receives data from a device, it
sends the binary code stream in the payload to the JavaScript script by using the
decode method. The script calls the decode method to decode the data to the
JSON format defined in the product model. The platform has the following
requirements on the parsed JSON data:

● Device Reporting Properties
{
 "msg_type": "properties_report",
 "services": [{
 "service_id": "Battery",
 "properties": {
 "batteryLevel": 57
 },
 "event_time": "20151212T121212Z"
 }]
}

Paramet
er

Manda
tory

Type Description

msg_typ
e

Yes String Message type. The value is fixed to
properties_report.

services Yes List<Service
Property>

List of device services. For details, see
the ServiceProperty structure table.

ServiceProperty Structure

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

Parame
ter

Mand
atory

Type Description

service_i
d

Yes String Service ID of the device.

properti
es

Yes Object Service properties, which are defined in
the product model associated with the
device.

event_ti
me

No String UTC time when the device collects data.
The format is yyyyMMddTHHmmssZ, for
example, 20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

● Responding to the Platform for Property Setting

{
 "msg_type": "properties_set_response",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "result_code": 0,
 "result_desc": "success"
}

Paramete
r

Mand
atory

Type Description

msg_type Yes String Message type. The value is fixed to
properties_set_response.

request_id No String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod
e

No Integer Execution result. 0 indicates success,
and other values indicate failure. If this
parameter is not carried, the execution
is considered successful.

result_des
c

No String Description of the property setting
response.

● Responding to the Platform for Property Query

{
"msg_type": "properties_get_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "services": [
 {
 "service_id": "analog",
 "properties": {

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

 "PhV_phsA": "1",
 "PhV_phsB": "2"
 },
 "event_time": "20190606T121212Z"
 }
]
}

Paramet
er

Manda
tory

Type Description

msg_typ
e

Yes String The value is fixed at
properties_get_response.

request_i
d

No String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

services Yes List<Service
Property>

List of device services. For details, see
the ServiceProperty structure table.

ServiceProperty Structure

Parame
ter

Mand
atory

Type Description

service_i
d

Yes String Service ID of the device.

properti
es

Yes Object Service properties, which are defined in
the product model associated with the
device.

event_ti
me

No String UTC time when the device collects data.
The format is yyyyMMddTHHmmssZ, for
example, 20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

● Responding to the Platform for Command Delivery

{
 "msg_type": "command_response",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "result_code": 0,
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": "1"
 }
}

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Paramete
r

Mand
atory

Type Description

msg_type Yes String The value is fixed at
command_response.

request_id No String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod
e

No Integer Execution result. 0 indicates success,
and other values indicate failure. If this
parameter is not carried, the execution
is considered successful.

response_
name

No String Response name, which is defined in the
product model associated with the
device.

paras No Object Response parameters, which are defined
in the product model associated with
the device.

● Device Reporting Messages

{
 "msg_type": "message_up",
 "content": "hello"
}

Paramete
r

Mand
atory

Type Description

msg_type Yes String The value is fixed at message_up.

content No String Message content.

Data Encoding Format

In the data parsing scenario, when the IoT platform delivers a command, it sends
the data in JSON format defined by the product model to the JavaScript script
using the encode method. If the data is not in JSON format, encoding and
decoding may fail. The script calls the encode method to encode the data in JSON
format into binary code streams that can be identified by the device. During
encoding, the JSON format transferred from the platform to the script is as
follows:

● Delivering a Device Command
{
 "msg_type": "commands",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

 "paras": {
 "value": 1
 }
}

Paramete
r

Mand
atory

Type Description

msg_type Yes String The value is fixed at commands.

request_id Yes String Unique ID of a request. The ID is
delivered to the device through a
topic.

service_id No String Service ID of the device.

command
_name

No String Command name, which is defined in
the product model associated with the
device.

paras No Object Command execution parameters,
which are defined in the product
model associated with the device.

● Platform Setting Device Properties

{
"msg_type": "properties_set",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "services": [{
 "service_id": "Temperature",
 "properties": {
 "value": 57
 }
 },
 {
 "service_id": "Battery",
 "properties": {
 "level": 80
 }
 }
]
}

Paramet
er

Man
dator
y

Type Description

msg_type Yes String The value is fixed at properties_set.

request_i
d

Yes String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform.

services Yes List<Service
Property>

List of device services.

ServiceProperty Structure

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Parame
ter

Mand
atory

Type Description

service_i
d

Yes String Service ID of the device.

properti
es

Yes Object Service properties, which are defined in
the product model.

● Platform Querying Device Properties

{
 "msg_type": "properties_get",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "service_id": "Temperature"
}

Paramet
er

Manda
tory

Type Description

msg_typ
e

Yes String The value is fixed at properties_get.

request_i
d

Yes String Unique ID of a request. The ID is
delivered to the device through a topic.

service_i
d

No String Service ID of the device.

● Responding to Property Reporting of NB-IoT Device Access

{
 "msg_type": "properties_report_reply",
 "request": "213355656",
 "result_code": 0
}

Paramete
r

Mand
atory

Type Description

msg_type Yes String The value is fixed at
properties_report_reply.

request No String Base64-encoded string of property
reporting.

result_cod
e

No Integer Execution result of property reporting.

has_more No Boolean Whether a cache command exists.

● Delivering Device Messages

{
 "msg_type": "messages",
 "content": "hello"
}

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Paramete
r

Mand
atory

Type Description

msg_type Yes String The value is fixed at messages.

content No String Content of command delivery.

3.2.4.4 FunctionGraph-based Development

3.2.4.4.1 Overview

Introduction

FunctionGraph can be utilized to convert binary data into JSON data or vice versa.
This feature is used when the device has limited capabilities and can only report
basic binary data. FunctionGraph supports Node.js, Python, Java, Go, C#, PHP,
Cangjie, and custom runtimes, meeting multiple development requirements. You
can check run logs and graphical monitoring data in real time, greatly improving
development and debugging efficiency.

NO TE

● FunctionGraph hosts and computes event-driven functions in a serverless context while
ensuring high reliability, high scalability, and zero maintenance. All you need to do is
write your code and set conditions.

● For details about FunctionGraph billing, see FunctionGraph Billing Overview. You pay
only for what you use and you are not charged when your code is not running.

NO TICE

Check the following guide about data conversion for different protocols:
● MQTT(S) Codec Example
● NB-IoT (CoAP) Codec Example

Process

Figure 3-77 Use of FunctionGraph

1. Creating a product: Create a CoAP or MQTT product and device on IoTDA. For
details, see Creating a Product.

a. Access the IoTDA service page and click Access Console. Click the target
instance card.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://support.huaweicloud.com/intl/en-us/price-functiongraph/functiongraph_00_0001.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

b. Choose Products in the navigation pane and click Create Product. Set
the parameters as prompted and click OK.

2. Writing the FunctionGraph codec:

a. Create an event function. The event function must be created in the
same region as that of the created product. Otherwise, the function
cannot be referenced by the product. You can check the region in the
upper left corner of the console.

Figure 3-78 FunctionGraph-based development - Checking regions

b. Writing codecs. FunctionGraph supports multiple runtime languages,
including Python, Node.js, Java, Go, C#, PHP, Cangjie, and custom
runtimes. The supported versions vary depending on the languages. For
details, see Supported Programming Languages.

NO TE

Reference: Creating a Function from Scratch and Executing the Function.

3. Deploying the FunctionGraph codec:

a. Return to the IoTDA console, open the product page, click the Codec
Development tab, and select FunctionGraph. If you use the tool for the
first time, perform access authorization.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0151.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0101.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 3-79 FunctionGraph-based Development - Codec authorization

b. After the authorization is successful, select the target function created in
2 and click Deploy.

Figure 3-80 FunctionGraph-based Development - Codec deployment

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Communications with FunctionGraph Through APIs

Figure 3-81 Process

1. If the reported data is binary data, IoTDA automatically encodes and stores
the data using Base64. For example, if a device reports data [0x01, 0x02], the
data stored in IoTDA is AQI=.

NO TE

CoAP products report binary data by default. The data is then encoded using Base64
and sent to the codec. MQTT(S) products report data in the selected data format. The
data is then encoded if necessary. For details, see Creating a Product.

2. After receiving data, IoTDA transmits the data to FunctionGraph in a specific
format if the codec exists. The following table lists the related parameters and
data format (fixed format A).

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0054.html

Table 3-3 Upstream data format

Param
eter

Mandat
ory

Type Description

codecT
ype

Yes String Definition
Execution type. decode indicates
upstream decoding (from binary code
streams to JSON data), and encode
indicates downstream encoding (from
JSON data to binary streams).

messa
ge

Yes String Definition
String data in JSON format, which
contains the topic and payload
parameters.
● topic: For MQTT products, the

reported topic is carried. For CoAP
products, the value is null.

● payload: Base64 data encoded from
the data reported by the device. (For
MQTT products, you can select the
encoding format on the product
page.)

Example of a decoding request sent by IoTDA to FunctionGraph (for CoAP
products):
{
 "codecType": "decode",
 "message": "{\"topic\": null,\"payload\": \"AABQAFo=\"}"
}

Example of a decoding request sent by IoTDA to FunctionGraph (for MQTT
products):
{
 "codecType": "decode",
 "message": "{\"topic\": \"$oc/devices/661f99d6da14e268414f0af6_longsj123/sys/properties/report
\",\"payload\": \"AABQAFo=\"}"
}

3. FunctionGraph decodes the data and returns the result. The following table
lists the related parameters and data format (fixed format B).

Table 3-4 Downstream data format

Param
eter

Mandat
ory

Type Description

status Yes String Definition
Execution result. 200 indicates success,
and other values indicate failure.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

Param
eter

Mandat
ory

Type Description

messa
ge

Yes String Definition
String data in JSON format. Used for
decoding binary code stream data into
JSON data.

Example of a decoding request sent by FunctionGraph to IoTDA:
{
 "status": 200,
 "message": "{\"msg_type\":\"properties_report\",\"services\":[{\"service_id\":\"smokerdector
\",\"properties\":{\"level\":258,\"temperature\":3.4}}]}"
 }

4. The data initially provided by the platform or applications for delivery is in
JSON format and needs to be converted into binary code streams using the
codec before final delivery.

5. Before delivering data, IoTDA transmits the data in a specific format to
FunctionGraph if the codec exists. The following table lists the related
parameters and data format (fixed format A).

Table 3-5 Upstream data format

Param
eter

Mandat
ory

Type Description

codecT
ype

Yes String Definition
Execution type. decode indicates
upstream decoding (from binary code
streams to JSON data), and encode
indicates downstream encoding (from
JSON data to binary streams).

messa
ge

Yes String Definition
String data in JSON format.

Example of an encoding request sent by IoTDA to FunctionGraph:
{
 "codecType": "encode",
 "message": "{\"msg_type\":\"commands\",\"service_id\": \"smokerdector\",\"paras\": {\"value\":
1},\"command_name\": \"SET_ALARM\",\"hasMore\": 0,\"request_id\": 1}"
}

6. FunctionGraph decodes the data and returns the result. The following table
lists the related parameters and data format (fixed format C).

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

Table 3-6 Downstream data format

Param
eter

Mandat
ory

Type Description

status Yes String Definition
Execution result. 200 indicates success,
and other values indicate failure.

messa
ge

Yes String Definition
String data in JSON format, which
contains the payload parameter.
● payload: byte[] data decoded by

FunctionGraph.

Example of an encoding request sent by FunctionGraph to IoTDA:
{
 "status": 200,
 "message": "{\"payload\":[2,1,0,0,1]}"
 }

7. The platform delivers the binary code streams encoded by the codec to the
device. For example, [2,1,0,0,1].

IoTDA Product Model Data Format

Table 3-7 Data format of a product model

Scena
rio

Item Message Type Support
ed
Protocol

Description

Decod
ing
(from
binary
code
strea
ms to
JSON
data)

Device
reporting
properties

properties_repor
t

All Device reporting
properties

Device
returning a
command
response

command_resp
onse

All Device returning a
command response

Device
returning a
response to the
platform for
property setting

properties_set_r
esponse

MQTT/
MQTTS

Device returning a
response to the
platform for property
setting

Device
returning a
response to the
platform for
property query

properties_get_r
esponse

MQTT/
MQTTS

Device returning a
response to the
platform for property
query

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

Scena
rio

Item Message Type Support
ed
Protocol

Description

Device
reporting
messages

message_up MQTT/
MQTTS

Device reporting
messages

Encodi
ng
(from
JSON
data
to
binary
code
strea
ms)

Platform
delivering
commands

commands All Platform delivering
commands

Platform
responding to
device property
reporting

properties_repor
t_reply

NB-IoT
(CoAP)

Platform responding
to device property
reporting (NB-IoT
devices)

Platform
setting device
properties

properties_set MQTT/
MQTTS

Platform setting
device properties

Platform
querying device
properties

properties_get MQTT/
MQTTS

Platform querying
device properties

Platform
delivering
messages

messages MQTT/
MQTTS

Platform delivering
messages

Data Decoding Format

When the platform receives data from the device, the platform sends the binary
code stream in the payload to FunctionGraph. FunctionGraph decodes the binary
stream into the JSON format defined in the product model. The JSON format can
be identified by the platform. The following is the decoded data in JSON format:
{
 "status": 200,
 "message": "${Decoded JSON data}"
 }

${Decoded JSON data} is in the JSON format required by the platform.

● Device reporting properties
{
 "msg_type": "properties_report",
 "services": [{
 "service_id": "Battery",
 "properties": {
 "batteryLevel": 57
 },
 "event_time": "20151212T121212Z"
 }]
}

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

Table 3-8 Data format of device reporting properties

Paramet
er

Manda
tory

Type Description

Message
Type

Yes String Message type. The value is fixed to
properties_report.

services Yes List<Service
Property>

List of device services. For details, see
the ServiceProperty structure table.

Table 3-9 ServiceProperty structure

Parame
ter

Mand
atory

Type Description

service_i
d

Yes String Service ID of the device.

properti
es

Yes Object Service properties, which are defined in
the product model associated with the
device.

event_ti
me

No String UTC time when the device collects data.
The format is yyyyMMddTHHmmssZ, for
example, 20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

● Responding to the Platform for Property Setting

{
 "msg_type": "properties_set_response",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "result_code": 0,
 "result_desc": "success"
}

Table 3-10 Data format of device returning a response to the platform for
property setting

Paramete
r

Mand
atory

Type Description

Message
Type

Yes String Message type. Fixed value:
properties_set_response

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Paramete
r

Mand
atory

Type Description

request_id No String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod
e

No Integer Execution result. 0 indicates success,
and other values indicate failure. If this
parameter is not carried, the execution
is considered successful.

result_des
c

No String Description of the property setting
response.

● Responding to the Platform for Property Query

{
"msg_type": "properties_get_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "services": [
 {
 "service_id": "analog",
 "properties": {
 "PhV_phsA": "1",
 "PhV_phsB": "2"
 },
 "event_time": "20190606T121212Z"
 }
]
}

Table 3-11 Data format of device returning a response to the platform for
property query

Paramet
er

Manda
tory

Type Description

Message
Type

Yes String The value is fixed at
properties_get_response.

request_i
d

No String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

services Yes List<Service
Property>

List of device services. For details, see
the ServiceProperty structure table.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Table 3-12 ServiceProperty structure

Parame
ter

Mand
atory

Type Description

service_i
d

Yes String Service ID of the device.

properti
es

Yes Object Service properties, which are defined in
the product model associated with the
device.

event_ti
me

No String UTC time when the device collects data.
The format is yyyyMMddTHHmmssZ, for
example, 20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

● Responding to the Platform for Command Delivery
{
 "msg_type": "command_response",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "result_code": 0,
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": "1"
 }
}

Table 3-13 Data format of device returning a command response

Paramete
r

Mand
atory

Type Description

Message
Type

Yes String The value is fixed at
command_response.

request_id No String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod
e

No Integer Execution result. 0 indicates success,
and other values indicate failure. If this
parameter is not carried, the execution
is considered successful.

response_
name

No String Response name, which is defined in the
product model associated with the
device.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

Paramete
r

Mand
atory

Type Description

paras No Object Response parameters, which are defined
in the product model associated with
the device.

● Device Reporting Messages

{
 "msg_type": "message_up",
 "content": "hello"
}

Table 3-14 Data format of device reporting messages

Paramete
r

Mand
atory

Type Description

Message
Type

Yes String The value is fixed at message_up.

content No String Message content.

Data Encoding Format

When the platform delivers data to the device, the platform sends the JSON data
defined by the product model to FunctionGraph. (If the data is not in that JSON
format, the encoding and decoding may fail.) FunctionGraph encodes the JSON
data into binary code streams that can be identified by the device. The following is
the data in JSON format sent by the platform to FunctionGraph:
{
 "codecType": "encode",
 "message": "${JSON data sent from the platform to FunctionGraph}"
}

${JSON data sent from the platform to FunctionGraph} is the JSON data sent by
the platform to FunctionGraph before encoding.

● Platform delivering commands
{
 "msg_type": "commands",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": 1
 }
}

Table 3-15 Data format of platform delivering commands

Paramete
r

Mand
atory

Type Description

Message
Type

Yes String The value is fixed at commands.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

Paramete
r

Mand
atory

Type Description

request_id Yes String Unique ID of a request. The ID is
delivered to the device through a
topic.

service_id No String Service ID of the device.

command
_name

No String Command name, which is defined in
the product model associated with the
device.

paras No Object Command execution parameters,
which are defined in the product
model associated with the device.

● Platform Setting Device Properties
{
"msg_type": "properties_set",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "services": [{
 "service_id": "Temperature",
 "properties": {
 "value": 57
 }
 },
 {
 "service_id": "Battery",
 "properties": {
 "level": 80
 }
 }
]
}

Table 3-16 Data format of platform setting device properties

Paramet
er

Man
dator
y

Type Description

Message
Type

Yes String The value is fixed at properties_set.

request_i
d

Yes String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform.

services Yes List<Service
Property>

List of device services.

ServiceProperty Structure

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

Table 3-17 ServiceProperty structure

Parame
ter

Mand
atory

Type Description

service_i
d

Yes String Service ID of the device.

properti
es

Yes Object Service properties, which are defined in
the product model.

● Platform Querying Device Properties
{
 "msg_type": "properties_get",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "service_id": "Temperature"
}

Table 3-18 Data format of platform querying device properties

Paramet
er

Manda
tory

Type Description

Message
Type

Yes String The value is fixed at properties_get.

request_i
d

Yes String Unique ID of a request. The ID is
delivered to the device through a topic.

service_i
d

No String Service ID of the device.

● Platform Responding to Device Property Reporting (NB-IoT Devices)
{
 "msg_type": "properties_report_reply",
 "request": "213355656",
 "result_code": 0
}

Table 3-19 Data format of platform responding to device property reporting

Paramete
r

Mand
atory

Type Description

Message
Type

Yes String The value is fixed at
properties_report_reply.

request No String Base64-encoded string of property
reporting.

result_cod
e

No Integer Execution result of property reporting.

has_more No Boolean Whether a cache command exists.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

● Platform Delivering Messages
{
 "msg_type": "messages",
 "content": "hello"
}

Table 3-20 Data format of platform delivering messages

Paramete
r

Mand
atory

Type Description

Message
Type

Yes String The value is fixed at messages.

content No String Content of command delivery.

3.2.4.4.2 MQTT(S) Codec Example

This section uses a smoke detector as an example to describe how to develop a
FunctionGraph codec in JavaScript for reporting properties and delivering
commands over MQTT or MQTTS. The codec converts binary data into JSON data
and provides a method for debugging.

Defining a Smoke Detector
Scenario

A smoke detector provides the following functions:

● Reporting smoke alarms (fire severity) and temperature.
● Receiving and running remote control commands, which can be used to

enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

● The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device APIs, but reporting simple binary data.

Product Model

Define the product model on the product details page of the smoke detector.
● level: indicates the fire severity.
● temperature: indicates the temperature at the fire scene.
● SET_ALARM: indicates whether to enable or disable the alarm function. The

value 0 indicates that the alarm function is disabled, and 1 indicates that the
alarm function is enabled. The response command result is used to report the
modified alarm value.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Figure 3-82 Model definition - smokedetector

Developing a Codec

Step 1 On the smoke detector product page, click the Codec Development tab, select
FunctionGraph, and click Create Function. If you use the tool for the first time,
perform access authorization.

Figure 3-83 FunctionGraph-based Development - Codec authorization

Step 2 On the FunctionGraph console, click Create Function. On the displayed page, click
Create from scratch, enter a function name, and select Node.js 16.17 as the
runtime.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

Figure 3-84 Function list - Creating a function

Figure 3-85 Creating a function - Parameters

Step 3 Write a script to convert binary data into JSON data. The script must implement
the following methods:
● Decode: Converts the binary data reported by a device into the JSON format

defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

● Encode: Converts JSON data into binary data supported by the device when
the platform sends downstream data to the device. For details about the
JSON format requirements, see Data Encoding Format Definition.

The following is an example of the JavaScript implemented for the smoke
detector. Copy the code to the project and click the button for deploying the code.
// Upstream message types
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response
var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Property setting response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; // Property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message reporting
// Downstream message types
var MSG_TYPE_COMMANDS = 'commands'; // Command delivery
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; // Property setting request
var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; // Platform message delivery

// Mapping between topics and upstream MQTT message types

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

var TOPIC_REG_EXP = {
 'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
 'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)'),
 'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)'),
 'command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)'),
 'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
};
exports.handler = async (event, context) => {
 const codecType = event.codecType;
 const message = JSON.parse(event.message);
 console.log("input Data:", event);
 if (codecType === "decode") {
 // Decoding operation
 return decode(message.payload, message.topic);
 } else if (codecType === "encode") {
 // Encoding operation
 return encode(message);
 }
}
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 // The first two bytes 0x00 and 0x50 are the value of the level property, and the last two bytes 0x00 and
0x5a are the value of the temperature property.
 payload:[0x00, 0x50, 0x00, 0x5a]
 topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}]}
Input parameters:
 // The first byte 0x02 indicates that the command_name is SET_ALARM. The second byte 0x00 indicates
that the command is successfully responded. The last two bytes 0x00 and 0x01 indicate the value of the
command response.
 payload: [0x02, 0x00, 0x00, 0x01]
 topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output:

{"msg_type":"command_response","result_code":0,"command_name":"SET_ALARM","service_id":"smokerdect
or","paras":{"value":"1"}}
*/
// Decoding function
function decode(payload, topic) {
 // Decoding logic
 var binaryString = atob(payload);
 const byteArray = new Uint8Array(binaryString.length);
 for (let i = 0; i < binaryString.length; i++) {
 byteArray[i] = binaryString.charCodeAt(i);
 }
 /* byteArray is the binary data reported by the device after decoding. You can check whether the
reported data is correctly parsed.*/
 var returnData;
 msgType = topicParse(topic);
 if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
 returnData = decodePropertiesReport(byteArray);
 } else if (msgType == MSG_TYPE_COMMAND_RSP) {
 returnData = decodeCommandRsp(byteArray);
 } else if (msgType == MSG_TYPE_PROPERTIES_SET_RSP) {
 // Convert data to the JSON format used by the property setting response.
 // jsonObj = {"msg_type":"properties_set_response","result_code":0,"result_desc":"success"};
 // returnData = outputData(status, jsonObj)
 } else if (msgType == MSG_TYPE_PROPERTIES_GET_RSP) {
 // Convert data to the JSON format used by the property query response.
 // jsonObj = {"msg_type":"properties_get_response","services":[{"service_id":"analog","properties":
{"PhV_phsA":"1","PhV_phsB":"2"}}]};

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

 // returnData = outputData(status, jsonObj)
 } else if (msgType == MSG_TYPE_MESSAGE_UP) {
 // Convert the data to the JSON format used by message reporting.
 // jsonObj = {"msg_type":"message_up","content":"hello"};
 // returnData = outputData(status, jsonObj)
 }
 return returnData;
}
// Encoding function
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":
{"value":1}}
Output ->
 // The first byte 0x01 is used to identify command delivery. The second byte 0x00 indicates
command_name = = 'SET_ALARM'. The last two bytes 0x00 and 0x01 are the value of the command
properties.
 [0x01, 0x00, 0x00, 0x01]
*/
function encode(data) {
 var msgType = data.msg_type;
 let payload = [];
 var status = 200;
 // Command delivery
 if (msgType == MSG_TYPE_COMMANDS) {
 payload[0] = 0x02; // Command delivery type
 if (data.command_name == 'SET_ALARM') {
 payload[1] = 0x00; // Command name
 }
 // Set the command property value
 payload[2] = (data.paras.value >> 8) & 0xFF;
 payload[3] = data.paras.value & 0xFF;
 } else if (msgType == MSG_TYPE_PROPERTIES_SET) {
 // Response to device property reporting
 // Property setting format example: {"msg_type":"properties_set","services":
[{"service_id":"Temperature","properties":{"value":57}}]}
 // Convert the JSON format to the corresponding binary code streams if the property setting scenario
is involved.
 } else if (msgType == MSG_TYPE_PROPERTIES_GET) {
 // Property query format example: {"msg_type":"properties_get","service_id":"Temperature"}
 // Convert the JSON format to the corresponding binary code streams if the property query scenario is
involved.
 } else if (msgType == MSG_TYPE_MESSAGE_DOWN) {
 // Message delivery format example: {"msg_type":"messages","content":"hello"}
 // Convert the JSON format to the corresponding binary code streams if the message delivery scenario
is involved.
 }
 return outputData(status, { "payload": payload });
}
// Parse the message type based on the topic name.
function topicParse(topic) {
 for (var type in TOPIC_REG_EXP) {
 var pattern = TOPIC_REG_EXP[type];
 if (pattern.test(topic)) {
 return type;
 }
 }
 return '';
}
// Property reporting (upstream)
function decodePropertiesReport(byteArray) {
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 var level = byteArray[0] * Math.pow(2, 8) + byteArray[1];
 var status = 200;
 var jsonObj;
 if (byteArray.length < 4) {

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

 jsonObj = {
 "msg_type": "ERR", "message": "decodePropertiesReport byte length < 5."
 };
 status = 402;
 }
 // Obtain the values of the fourth and fifth values.
 const integerPart = byteArray[2]; // Third value
 const decimalPart = byteArray[3]; // Fourth value
 // Combine the values into decimals.
 const temperature = parseFloat(integerPart + '.' + decimalPart);
 jsonObj = {
 "msg_type": MSG_TYPE_PROPERTIES_REPORT, "services":
 [{ "service_id": serviceId, "properties": { "level": level, "temperature": temperature } }]
 };
 return outputData(status, jsonObj);
}
// Command response (upstream)
function decodeCommandRsp(byteArray) {
 var serviceId = 'smokerdector';
 var command = byteArray[0];
 var command_name = '';
 if (2 == command) {
 command_name = 'SET_ALARM';
 }
 var result_code = byteArray[1]; // Obtain the command execution result from the binary code stream.
 var value = byteArray[2] * Math.pow(2, 8) + byteArray[3]; // Obtain the return value of the command
execution result from the binary code stream.
 // Convert data into the JSON format used by the command response.
 jsonObj = {
 'msg_type': MSG_TYPE_COMMAND_RSP, 'service_id': serviceId, "command_name": command_name,
 'result_code': result_code, 'paras': { 'value': value }
 };
 return outputData(200, jsonObj);
}
// Output the result.
function outputData(status, body) {
 const output =
 {
 'status': status,
 'message': JSON.stringify(body),
 }
 console.log("output Data:", output);
 return output;
}

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

Figure 3-86 FunctionGraph - Copying code to a project

Step 4 Debug the script online. After the script is edited, click Configure Test Event on
the FunctionGraph console, select a blank template, enter simulated data, and
click Create. After configuring the test event, click Test to obtain the function
result and logs.

Simulated data: payload is the binary data reported by the device, that is, 0x01,
0x02, 0x03, 0x04. AQIDBA== is the result value encoded by the platform using
Base64.
{
 "codecType": "decode",
 "message": "{\"topic\": \"$oc/devices/device_id/sys/properties/report\",\"payload\": \"AQIDBA==\"}"
}

Figure 3-87 FunctionGraph - Adding a test event

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

Figure 3-88 FunctionGraph - Test result (MQTT)

Step 5 After the debugging is successful, select the created FunctionGraph function from
the drop-down list in Step 1 and click Deploy.

Figure 3-89 FunctionGraph-based Development - Codec deployment

----End

3.2.4.4.3 NB-IoT (CoAP) Codec Example

This section uses a smoke detector as an example to describe how to develop a
FunctionGraph codec in JavaScript for reporting properties and delivering
commands over CoAP. The codec converts binary data into JSON data and
provides a method for debugging.

Defining a Smoke Detector
Scenario

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

A smoke detector provides the following functions:

● Reporting smoke alarms (fire severity) and temperature.
● Receiving and running remote control commands, which can be used to

enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

● The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device APIs, but reporting simple binary data.

Product Model

Define the product model on the product details page of the smoke detector.
● level: indicates the fire severity.
● temperature: indicates the temperature at the fire scene.
● SET_ALARM: indicates whether to enable or disable the alarm function. The

value 0 indicates that the alarm function is disabled, and 1 indicates that the
alarm function is enabled. The response command result is used to report the
modified alarm value.

Figure 3-90 Model definition - smokedetector

Developing a Codec

Step 1 On the smoke detector product page, click the Codec Development tab, select
FunctionGraph, and click Create Function. If you use the tool for the first time,
perform access authorization.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

Figure 3-91 FunctionGraph-based Development - Function creation

Step 2 On the FunctionGraph console, click Create Function. On the displayed page, click
Create from scratch, enter a function name, and select Node.js 16.17 as the
runtime.

Figure 3-92 Function list - Creating a function

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

Figure 3-93 Creating a function - Parameters

Step 3 Write a script to convert binary data into JSON data. The script must implement
the following methods:
● Decode: Converts the binary data reported by a device into the JSON format

defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

● Encode: Converts JSON data into binary data supported by the device when
the platform sends downstream data to the device. For details about the
JSON format requirements, see Data Encoding Format Definition.

The following is an example of the JavaScript implemented for the smoke
detector. Copy the code to the project.
// Upstream message types
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response
// Downstream message types
var MSG_TYPE_COMMANDS = 'commands'; // Command delivery
var MSG_TYPE_PROPERTIES_REPORT_REPLY = 'properties_report_reply'; // Property reporting response
// Message types
var MSG_TYPE_LIST = {
 0: MSG_TYPE_PROPERTIES_REPORT, // In the code stream, 0 indicates device property reporting.
 1: MSG_TYPE_PROPERTIES_REPORT_REPLY, // In the code stream, 1 indicates a property reporting
response.
 2: MSG_TYPE_COMMANDS, // In the code stream, 2 indicates platform command delivery.
 3: MSG_TYPE_COMMAND_RSP // In the code stream, 3 indicates a command response from
the device.
};
// FunctionGraph entry function
exports.handler = async (event, context) => {
 const codecType = event.codecType;
 const message = JSON.parse(event.message);
 console.log("input Data:", event);
 if (codecType === "decode") {
 // Decoding operation
 return decode(message.payload);
 } else if (codecType === "encode") {
 // Encoding operation
 return encode(message);
 }
}
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

product model definition.
Input parameters:
 payload:[0x00, 0x00, 0x50, 0x00, 0x5a]
 payload[0] indicates the data type. 0x00 indicates property reporting. payload[1] and payload[2] indicate
the value of the level property. payload[3] and payload[4] indicate the value of the temperature property.
payload[3] is the value before the decimal point, and payload[4] is the value after the decimal point.
Output:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}]}
Input parameters:
 payload: [0x03, 0x01, 0x00, 0x00, 0x01]
 payload[0] indicates the data type. 0x03 indicates that the device returns a command response.
payload[1] indicates the value of request_id used to identify the command. payload[2] indicates whether
the command is successfully set. If the value is 0, the command is successfully set. payload[3] and
payload[4] indicate the values of "value" in the command response.
Output:
 {"msg_type":"command_response","request_id":1,"result_code":0,"paras":{"value":1}}
*/
function decode(payload) {
 // Decoding logic
 var binaryString = atob(payload);
 const byteArray = new Uint8Array(binaryString.length);
 for (let i = 0; i < binaryString.length; i++) {
 byteArray[i] = binaryString.charCodeAt(i);
 }
/* byteArray is the binary data reported by the device after decoding. You can check whether the
reported data is correctly parsed.*/
 var returnData;
 var messageId = byteArray[0];
 if (MSG_TYPE_LIST[messageId] == MSG_TYPE_PROPERTIES_REPORT) {
 returnData = decodePropertiesReport(byteArray);
 } else if (MSG_TYPE_LIST[messageId] == MSG_TYPE_COMMAND_RSP) {
 returnData = decodeCommandRsp(byteArray);
 }
 return returnData;
}
/*
Example data:
When a command is delivered, data in JSON format on IoTDA is encoded into a binary code stream using
the encode method of JavaScript.
Input parameters ->

{"msg_type":"commands","request_id":1,"command_name":"SET_ALARM","service_id":"smokerdector","paras
":{"value":1}}
Output ->
 [0x02, 0x00, 0x00, 0x00, 0x01]
 payload[0] indicates the data type, 0x02 indicates the platform command delivery. payload[1] indicates
the command ID. payload[2] indicates the command name (when command_name is SET_ALARM,
payload[2] = 0x00). payload[3] and payload[4] indicate the values of the delivered command.
Sample data: When a response is returned for property reporting, data in JSON format on the platform is
encoded into a binary code stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"properties_report_reply","request":"000050005a","result_code":0}
Output ->
 [0x01, 0x00]
 payload[0] indicates the data type. 0x01 indicates the response message for reporting device properties.
payload[1] indicates the device response result. 0x00 indicates success.
*/
function encode(data) {
 var msgType = data.msg_type;
 let payload = [];
 var status = 200;
 // Command delivery
 if (msgType == MSG_TYPE_COMMANDS) {
 payload[0] = 0x02; // Command delivery type
 payload[1] = data.request_id & 0xFF; // Command ID
 if (data.command_name == 'SET_ALARM') {
 payload[2] = 0x00; // Command name
 }

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

 // Set the command property value.
 payload[3] = (data.paras.value >> 8) & 0xFF;
 payload[4] = data.paras.value & 0xFF;
 } else if (msgType == MSG_TYPE_PROPERTIES_REPORT_REPLY) {
 // Response to device property reporting
 payload[0] = 0x01; // Response to the device property reporting type
 if (0 == data.result_code) {
 payload[1] = 0x00; // Property reporting processed
 } else {
 payload[1] = 0x01;
 status = 401;
 }
 }
 return outputData(status, { "payload": payload });
}
// Property reporting (upstream)
function decodePropertiesReport(byteArray) {
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 var level = byteArray[1] * Math.pow(2, 8) + byteArray[2];
 var status = 200;
 var jsonObj;
 if (byteArray.length < 4) {
 jsonObj = {
 "msg_type": "ERR", "message":"decodePropertiesReport byte length < 5."
 };
 status = 402;
 }
 // Obtain the values of the fourth and fifth values.
 const integerPart = byteArray[3]; // Fourth value
 const decimalPart = byteArray[4]; // Fifth value
 // Combine the values into decimals.
 const temperature = parseFloat(integerPart + '.' + decimalPart);
 jsonObj = {
 "msg_type": MSG_TYPE_PROPERTIES_REPORT, "services":
 [{ "service_id": serviceId, "properties": { "level": level, "temperature": temperature } }]
 };
 return outputData(status, jsonObj);
}
// Command response (upstream)
function decodeCommandRsp(byteArray) {
 var requestId = byteArray[1];
 var result_code = byteArray[2]; // Obtain the command execution result from the binary code stream.
 var value = byteArray[3] * Math.pow(2, 8) + byteArray[4]; // Obtain the return value of the command
execution result from the binary code stream.
 // Convert data into the JSON format used by the command response.
 jsonObj = {
 'msg_type': MSG_TYPE_COMMAND_RSP, 'request_id': requestId,
 'result_code': result_code, 'paras': { 'value': value }
 };
 return outputData(200, jsonObj);
}
function outputData(status, body) {

 const output =
 {
 'status': status,
 'message': JSON.stringify(body),
 }
 console.log("output Data:", output);
 return output;
}

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Figure 3-94 FunctionGraph - Copying code to a project (CoAP)

Step 4 Debug the script online. After the script is edited, click Configure Test Event on
the FunctionGraph console, select a blank template, enter simulated data, and
click Create. After configuring the test event, click Test to obtain the function
result and logs.

Simulated data: payload is the binary data reported by the device, that is, 0x00,
0x00, 0x05, 0x00,0x5a. AABQAFo= is the result value encoded by the platform
using Base64.
{
 "codecType": "decode",
 "message": "{\"topic\": null,\"payload\": \"AABQAFo=\"}"
}

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

Figure 3-95 FunctionGraph - Adding a test event

Figure 3-96 FunctionGraph - Test result (CoAP)

Step 5 After the debugging is successful, select the created FunctionGraph function from
the drop-down list in Step 1 and click Deploy.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Figure 3-97 FunctionGraph-based Development - Codec deployment

----End

3.2.5 Online Debugging

Overview
After the product model and codec are developed, the application can receive data
reported by the device and deliver commands to the device through the platform.

IoTDA provides application and device simulators for you to commission data
reporting and command delivery before developing real applications and physical
devices. You can also use the application simulator to verify the service flow after
the physical device is developed.

Debugging a Product by Using a Virtual Device
When both device development and application development are not completed,
you can create virtual devices and use the application simulator and device
simulator to test product models and codecs. The online debugging page consists
of the following parts:

1. Device information area (upper part): displays the basic information about
the device that is being debugged, including the device name, device status,
device ID, resource space, and product.

2. Application simulator area (upper left corner): You can simulate an
application to deliver commands, messages, and messages with custom
topics.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

3. Device simulator area (lower left corner): You can simulate a device to report
properties, messages, events, and messages with custom topics, and set
command responses.

4. Application simulator record area (upper right corner): displays the data
received and delivered by the application.

5. Device simulator record area (lower right corner): displays the data reported
and received by the device.

Figure 3-98 Online debugging - Virtual device structure

To debug a virtual device online, perform the following steps:

Step 1 On the product details page, click the Online Debugging tab and click Add Test
Device.

Step 2 In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

Step 3 In the device list, select the new virtual device.

Figure 3-99 Online debugging - Creating a virtual device

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

Step 4 Click Debug on the right.

Figure 3-100 Entering debugging

Step 5 On the displayed page, the device status is Online.

Figure 3-101 Online Commissioning - Online devices

Step 6 In the Device Simulator area, select the usage scenario as required. Options:
property reporting, message reporting, event reporting, and data reporting via
custom topics. For example, to report a property, click the property reporting tab,
select the target service, enter the property value, and click Send. Check the
reported properties in the device simulator record area on the right. Check the
property values received by the application simulator in the application simulator
record area.

Figure 3-102 Online debugging - Simulating data reporting (Battery)

Step 7 In the Application Simulator area, select the usage scenario. Options: command
delivery, message delivery, and message delivery via custom topics. For example,
to deliver a command, click the command delivery tab, select the target service
and command, enter the command value, and click Send. Check the delivered
command and the received command response in the application simulator record
area on the right, and check the command received by the device and the
command response reported by the device in the device simulator record area.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

NO TE

For command delivery, you can set the response reported by the device to the platform on
the command response tab page of the device simulator.
For message delivery via custom topics, you can use the device to subscribe to the target
topic on the subscription tab page of the device simulator.

Figure 3-103 Online debugging - Command delivery

----End

Debugging a Product by Using a Physical Device
When the device development is complete but the application development is not,
you can add physical devices and use the application simulator to test devices,
product models, and codecs. The physical device debugging page consists of the
following parts:

1. Device information area (upper part): displays the basic information about
the device that is being debugged, including the device name, device status,
device ID, resource space, and product.

2. Application simulator area (left part): You can simulate an application to
deliver commands, messages, and messages with custom topics.

3. Application simulator record area: displays the data received and delivered by
the application.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

Figure 3-104 Online debugging - Physical device structure

Next, you can create a physical device for online debugging.

Step 1 On the product details page, click the Online Debugging tab and click Add Test
Device.

Step 2 In the Add Test Device dialog box, select Physical device for Device Type, set the
parameters of the device, and click OK.

Figure 3-105 Online debugging - Adding a test device

Note: If DTLS is used for access, keep the key secure.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

NO TE

The newly added device is in the inactive state. In this case, online debugging cannot be
performed. For details, see Device Connection Authentication. After the device is
connected to the platform, perform the debugging.

Step 3 Click Debug to access the debugging page.

Figure 3-106 Entering debugging

Step 4 On the displayed page, the device status is Online.

Figure 3-107 Online Commissioning - Online devices

Step 5 In the Application Simulator area, select the usage scenario. Options: command
delivery, message delivery, and message delivery via custom topics. For example,
to deliver a command, click the command delivery tab, select the target service
and command, enter the command value, and click Send. Check the delivered
command and the received command response in the application simulator record
area on the right. Your physical device can receive the delivered commands and
perform corresponding actions.

Figure 3-108 Online debugging - Physical devices

----End

3.3 Device Registration

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

3.3.1 Registering a Device
A device is a physical entity that belongs to a product. Each device has a unique
ID. It can be a device directly connected to the platform, or a gateway that
connects child devices to the platform. You can register a physical device with the
platform, and use the device ID and secret allocated by the platform to connect
your SDK-integrated device to the platform.

The platform allows an application to call the API for creating a device to register
an individual device. Alternatively, you can register an individual device on the
IoTDA console. This section describes the procedure on the IoTDA console.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page, click
Register Device, set parameters based on the table below, and click OK.

Figure 3-109 Device - Registering a secret device

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Table 3-21 Registering a device with secret

Parameter Description

Resource
Space

Select the resource space to which a device belongs.

Product Select the product to which the device belongs.
You can select a product only after it is defined. If no product is
available, create a product by following the instructions
provided in Creating a Product.

Node ID Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom string that contains letters, digits,
hyphens (-), and underscores (_).

Device ID Enter a unique device ID. If this parameter is carried, the
platform will use the parameter value as the device ID.
Otherwise, the platform will allocate a device ID, which is in the
format of product_id_node_id.

Device Name Customize the device name.

Description Customize device description.

Authenticatio
n Type

● Secret: The device uses the secret for identity verification.
● X.509 certificate: The device uses an X.509 certificate for

identity verification.

Secret Customize the secret used for device access. If the secret is left
blank, the platform automatically generates one.

Fingerprint This parameter is displayed when Authentication Type is set to
X.509 certificate. Import the fingerprint corresponding to the
preset device certificate on the device side. You can run
openssl x509 -fingerprint -sha256 -in deviceCert.pem in the
OpenSSL view to query the fingerprint.

Delete the colons (:) from the obtained fingerprint when filling
it.

Save the device ID and secret. They are used for authentication when the device
attempts to access the platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

Figure 3-110 Device - Device registered

NO TE

If the secret is lost, you can update the secret. The secret generated during device
registration cannot be retrieved.

You can delete a device that is no longer used from the device list. Deleted devices
cannot be retrieved. Exercise caution.

----End

APIs
● Query the Device List
● Create a Device
● Query a Device
● Modify a Device
● Delete a Device
● Reset a Device Secret

3.3.2 Registering a Batch of Devices
IoTDA allows an application to call the API for creating a batch task to register a
batch of devices. Alternatively, you can perform batch registration on the IoTDA
console. This section describes the procedure on the IoTDA console.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0114.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0055.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0041.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0093.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html

Procedure

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose Devices > All Devices, click the Batch
Registration tab, and then click Batch Register.

Step 3 In the displayed Batch Registration dialog box, enter the task name, download
and fill in the Batch Device Registration Template, upload the file, and click OK.

Figure 3-111 Device - Registering devices in batches

Step 4 If the devices use the native MQTT protocol, click the batch task registration
record to open the task execution details, and save the device IDs and secrets
generated, which will be used for device access.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 3-112 Batch device registering - Execution details

----End

APIs
● Create a Device
● Query the Batch Task List
● Create a Batch Task
● Query a Batch Task

3.3.3 Registering a Device Authenticated by an X.509
Certificate

An X.509 certificate is a digital certificate used for communication entity
authentication. IoTDA allows devices to use their X.509 certificates for
authentication. The use of X.509 certificate authentication protects devices from
being spoofed.

Before registering a device authenticated by an X.509 certificate, upload the device
Certificate Authority (CA) certificate to the platform and bind the device certificate
to the device during device registration. This section describes how to upload a

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0017.html

device CA certificate to the platform and register a device that uses the X.509
certificate for authentication.

Constraints
● Only MQTT devices can use X.509 certificates for identity authentication.
● You can upload up to 100 device CA certificates.

Uploading a Device CA Certificate
Step 1 Access the IoTDA service page and click Access Console. Click the target instance

card.

Step 2 In the navigation pane, choose Devices > Device Certificates. On the Device CA
Certificates tab page, click Upload Certificate.

Step 3 In the displayed dialog box, click Select File to add a file, and then click OK.

Figure 3-113 Device CA certificate - Uploading a certificate

NO TE

Device CA certificates are provided by device vendors. You can prepare a commissioning
certificate during commissioning. For security reasons, you are advised to replace the
commissioning certificate with a commercial certificate during commercial use. Purchased
CA certificates (in formats such as PEM and JKS) can be directly uploaded to the platform.

----End

Creating a Device CA Commissioning Certificate
This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format.

1. Download and install OpenSSL.
2. Open the CLI as user admin.
3. Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL

installation directory) to access the OpenSSL view.
4. Generate a public/private key pair.

openssl genrsa -out rootCA.key 2048

5. Use the private key in the key pair to generate a CA certificate.
openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

Enter the following information as prompted. All parameters can be
customized.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://slproweb.com/products/Win32OpenSSL.html

– Country Name (2 letter code) [AU]: country, for example, CN
– State or Province Name (full name) []: state or province, for example, GD
– Locality Name (for example, city) []: city, for example, SZ
– Organization Name (for example, company) []: organization, for

example, Huawei
– Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
– Common Name (e.g. server FQDN or YOUR name) []: common name, for

example, zhangsan
– Email Address []: email address, for example, 1234567@163.com
Obtain the generated CA certificate rootCA.pem from the bin folder in the
OpenSSL installation directory.

Uploading a Verification Certificate
If the uploaded certificate is a commissioning certificate, the certificate status is
Unverified. In this case, upload a verification certificate to verify that you have the
CA certificate.

Figure 3-114 Device CA certificate - Unverified certificate

The verification certificate is created based on the private key of the device CA
certificate. Perform the following operations to create a verification certificate:

Step 1 Generate a key pair for the verification certificate.
openssl genrsa -out verificationCert.key 2048

Step 2 Create a certificate signing request (CSR) for the verification certificate.
openssl req -new -key verificationCert.key -out verificationCert.csr

The system prompts you to enter the following information. Set Common Name
to the verification code and set other parameters as required.

● Country Name (2 letter code) [AU]: country, for example, CN
● State or Province Name (full name) []: state or province, for example, GD
● Locality Name (for example, city) []: city, for example, SZ
● Organization Name (for example, company) []: organization, for example,

Huawei
● Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
● Common Name (e.g. server FQDN or YOUR name) []: verification code for

verifying the certificate. For details on how to obtain the verification code, see
Step 5.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

● Email Address []: email address, for example, 1234567@163.com
● Password[]: password, for example, 1234321
● Optional Company Name[]: company name, for example, Huawei

Step 3 Use the CSR to create a verification certificate.
openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
verificationCert.pem -days 500 -sha256

Obtain the generated verification certificate verificationCert.pem from the bin
folder of the OpenSSL installation directory.

Step 4 Select the corresponding certificate, click , and click Upload Verification
Certificate.

Figure 3-115 Device CA certificate - Verifying a certificate

Step 5 The verification code is displayed in the dialog box. Click Select File, upload the
verification certificate, and click OK. After the certificate is uploaded, the
certificate status changes to Verified, indicating that you have the CA certificate.

Figure 3-116 Device CA certificate - Uploading a verified certificate

----End

Deleting a Device CA Certificate

You can delete a device CA certificate that is no longer used.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

NO TE

Once a service device CA certificate is deleted, devices that rely on it for authentication can
no longer access the platform. Back up related data before the deletion.

Figure 3-117 Device CA certificate - Deleting a certificate

Presetting an X.509 Certificate

Before registering an X.509 device, preset the X.509 certificate issued by the CA on
the device.

NO TE

The X.509 certificate is issued by the CA. If no commercial certificate issued by the CA is
available, you can create an X.509 commissioning certificate. Purchased certificates or
certificates (in formats such as PEM and JKS) issued by authoritative organizations can be
directly uploaded to the platform.

Creating an X.509 Commissioning Certificate

1. Run cmd as user admin to open the CLI and run cd c:\openssl\bin (replace
c:\openssl\bin with the actual OpenSSL installation directory) to access the
OpenSSL view.

2. Generate a public/private key pair.
openssl genrsa -out deviceCert.key 2048

3. Create a CSR for the device certificate.
openssl req -new -key deviceCert.key -out deviceCert.csr

Enter the following information as prompted. All parameters can be
customized.
– Country Name (2 letter code) [AU]: country, for example, CN
– State or Province Name (full name) []: state or province, for example, GD
– Locality Name (for example, city) []: city, for example, SZ
– Organization Name (for example, company) []: organization, for

example, Huawei
– Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
– Common Name (e.g. server FQDN or YOUR name) []: common name, for

example, zhangsan
– Email Address []: email address, for example, 1234567@163.com
– Password[]: password, for example, 1234321
– Optional Company Name[]: company name, for example, Huawei

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

4. Create a device certificate using CSR.
openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
deviceCert.pem -days 500 -sha256

Obtain the generated device certificate deviceCert.pem from the bin folder in
the OpenSSL installation directory.

Registering a Device Authenticated by an X.509 Certificate

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page, click
Register Device, set parameters based on the table below, and click OK.

Figure 3-118 Device - Registering an X.509 device

Table 3-22 Registering a device using X.509 certificate

Parameter Description

Resource
Space

Select the resource space to which a device belongs.

Product Select the product to which the device belongs.
Select an existing or create one.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Parameter Description

Node ID Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom string that contains letters, digits,
hyphens (-), and underscores (_).

Device ID Enter a unique device ID. If this parameter is carried, the
platform will use the parameter value as the device ID.
Otherwise, the platform will allocate a device ID, which is in the
format of product_id_node_id.

Device Name Customize the device name.

Description Customize device description.

Authenticatio
n Type

X.509 certificate: The device uses an X.509 certificate for
identity verification.

Fingerprint This parameter is displayed when Authentication Type is set to
X.509 certificate. Import the fingerprint corresponding to the
preset device certificate on the device side. You can run
openssl x509 -fingerprint -sha256 -in deviceCert.pem in the
OpenSSL view to query the fingerprint. Note: Delete the colon
(:) from the obtained fingerprint when filling it.

----End

APIs
● Obtain the Device CA Certificate List
● Upload a Device CA Certificate
● Delete a Device CA Certificate
● Verify a Device CA Certificate

3.3.4 Device Self-Registration

Introduction
The device self-registration function enables automatic registration of a device
with the IoT platform upon initial connection, eliminating the need for pre-
registration on the console. This process is facilitated through certificate
authentication, with device information stored in device certificates.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0016.html

Figure 3-119 Device self-registration process

Scenarios
● Device requirements: Some devices cannot be pre-registered on the console or

by calling APIs.
● Internet of Vehicles (IoV): When a head unit is started, it automatically

registers with the platform and reports data to the platform, simplifying the
development of the vehicle application.

● Multi-instance scenario: Enterprise customers can utilize the self-registration
function to efficiently manage devices across multiple IoTDA instances. This
eliminates the need to provision and register devices separately on each
instance beforehand.

Constraints
● Max. self-registration templates for an instance: 10.
● To use the device self-registration function, the device must use transport

layer security (TLS) and enable the Server Name Indication (SNI) extension.
The SNI must carry the domain name allocated by the platform. To obtain the
domain name, see How Do I Obtain the Platform Access Address?

● Only available for MQTTS certificate authentication.
● Not available for standard edition instances in the CN East-Shanghai1 region.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00123.html

NO TICE

Devices registered through self-registration are authenticated based on the
self-registration template. Modifying or disabling the self-registration
template may affect device authentication. Exercise caution.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 Create a product.

Step 3 In the navigation pane, choose Devices > Self-registration Template. Click
Create Template. On the displayed page, enter basic information, and click the
button for adding the required parameters to the template.

Figure 3-120 Self-registration template - Adding parameters

Step 4 Select the device name, node ID, device ID, and product ID in the resource
configuration area.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0054.html

Figure 3-121 Self-registration template - Creating a template

NO TE

The platform predefines the parameters that can be declared and referenced in the
template, as shown below. The certificate must contain the parameters referenced in the
template.

● iotda::certificate::country: country

● iotda::certificate::organization: organization

● iotda::certificate::organizational_unit: department

● iotda::certificate::distinguished_name_qualifier: distinguished name

● iotda::certificate::state_name: province/state

● iotda::certificate::common_name: common name

● iotda::certificate::serial_number: serial number

Step 5 Add a policy in the policy configuration area. The added policy is automatically
bound to the device during self-registration. For details, see Device Topic Policies.

Step 6 In the navigation pane, choose Devices > Device Certificates. Create a device
certificate by referring to Registering a Device Authenticated by an X.509
Certificate. Upload the CA certificate to the platform for verification, bind the
self-registration template created in Step 3, and enable the self-registration
function.

Figure 3-122 Device CA certificate - Binding a template

NO TE

The CA certificate and the product associated with the product ID in the template must be
in the same resource space.

Step 7 On the device CA certificate tab page, click Debug, upload the device certificate
created in Step 6, and check whether the pre-parsed device information meets
your expectation.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_1111.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section2

Figure 3-123 Device CA certificate - Debugging a certificate

----End

Simulator-based Verification

Use MQTT.fx to simulate a device to access the platform for automatic device
registration.

Step 1 Download MQTT.fx (64-bit OS) or MQTT.fx (32-bit OS) and install it.

Step 2 Open MQTT.fx, set connection parameters by referring to Table 3-23, and click
Apply.

Table 3-23 Connection parameters

Parameter Description

Broker Address Platform access address (see How Do I Obtain the Platform
Access Address?)

Broker Port 8883

Client ID Any string. Recommended: Set this parameter according to
the platform rules in Device Connection Authentication to
ensure continued access to the platform via certificate
authentication even after the template is disabled.

User Name Any string. Recommended: Set this parameter according to
the platform rules in Device Connection Authentication to
ensure continued access to the platform via certificate
authentication even after the template is disabled.

Password Empty

Enable SSL/TLS True

Self signed
certificates

True

CA File Platform CA certificate (see Certificates)

Client
Certificate File

Path of the device certificate file

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows-x64.exe
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows.exe
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00123.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00123.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

Parameter Description

Client Key File Path of the private key file of the device certificate

Client Key
Password

Private key password (not necessary if there is no password)

Figure 3-124 MQTT.fx Settings

Figure 3-125 Connection parameters

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

Figure 3-126 Certificate information

Step 3 Click Connect. If the icon in the upper right corner turns green, the simulated
device has been authenticated and connected.

Figure 3-127 Device simulator connected

Step 4 In the navigation pane of the IoTDA console, choose Devices > All Devices. On
the device list tab page, search for the device by device ID or node ID. The device
is displayed as registered and online.

Figure 3-128 Device - Self-registered device details

----End

3.4 Device SDK Access
Huawei Cloud IoTDA, a platform for access and management of a large number
of devices, allows you to connect your physical devices to the cloud, where you
can collect device data and deliver commands to devices for remote control. It can
also work with other Huawei Cloud services to help you quickly develop IoT
solutions.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

This section describes how to efficiently connect devices to IoTDA using the Java
SDK, with a custom gas meter product model as an example. It covers developing
SDK code for reporting device data (messages and properties) and delivering
commands for remote configuration and control, as well as integrating the code
into devices.

NO TE

Device SDKs are not exclusive to a specific product model. You can customize the code
based on the site requirements.

Device SDKs

Table 3-24 Device SDKs

Resource Package Description Download Link

IoT Device Java SDK The demo provides the
code sample for calling
the SDK APIs. For details,
see
IoT Device Java SDK.

IoT Device Java SDK

IoT Device C SDK for
Linux/Windows

The demo provides the
code sample for calling
the SDK APIs. For details,
see
IoT Device C SDK for
Linux/Windows.

IoT Device C SDK for
Linux/Windows

IoT Device C# SDK The demo provides the
code sample for calling
the SDK APIs. For details,
see
IoT Device C# SDK.

IoT Device C# SDK

IoT Device Android SDK The demo provides the
code sample for calling
the SDK APIs.

IoT Device Android SDK

IoT Device Go SDK
(Community Edition)

The demo provides the
code sample for calling
the SDK APIs.

IoT Device Go SDK
(Community Edition)

IoT Device Python SDK The demo provides the
code sample for calling
the SDK APIs.

IoT Device Python SDK

IoT Device Tiny C SDK
for Linux/Windows

The demo provides the
code sample for calling
the SDK APIs.

IoT Device Tiny C SDK
for Linux/Windows

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0089.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab

Resource Package Description Download Link

IoT Device ArkTS
(OpenHarmony) SDK

The demo provides the
code sample for calling
the SDK APIs.

IoT Device ArkTS
(OpenHarmony) SDK

Table 3-25 SDK functions

Function C Java C# Andr
oid

Go Pyth
on

C
Tiny

ArkT
S

Property
reporting

√ √ √ √ √ √ √ √

Message
reporting and
delivery

√ √ √ √ √ √ √ √

Event
reporting and
delivery

√ √ √ √ √ √ √ ×

Command
delivery and
response

√ √ √ √ √ √ √ √

Device
shadow

√ √ √ √ √ √ √ √

OTA upgrade √ √ √ √ √ √ √ ×

Bootstrap √ √ √ √ √ √ √ ×

Time
synchronizati
on

√ √ √ √ √ √ √ ×

Gateway and
child device
management

√ √ √ √ √ √ √ ×

Device-side
rule engine

√ × √ × × × √ ×

Remote
secure shell
(SSH)

√ × √ × × × × ×

Anomaly
detection

√ × √ × × × × ×

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main

Function C Java C# Andr
oid

Go Pyth
on

C
Tiny

ArkT
S

Device-cloud
secure
communicatio
n (soft bus)

√ × √ × × × × ×

Machine-to-
machine
(M2M)
function

√ × √ × × × × ×

Generic-
protocol
access

√ √ √ √ × √ × ×

Prerequisites
● Development environment: The integrated environment (IntelliJ IDEA) of Java

has been installed, and the environment such as Maven has been configured.

● This example uses the MQTTS protocol on the device.

● You have registered a Huawei Cloud account and completed real-name
authentication.

● You have subscribed to IoTDA on the console.

Service Flow

Use the IoT Device Java SDK to connect devices to IoTDA and report data and
deliver commands.

1. Product creation: Create an MQTT product.

2. Product model development: Create a product model for a gas meter on the
platform that allows for remote reporting of readings and the delivery of
configurations and commands.

3. Device registration: Register a device using the MQTT protocol.

4. Access to Huawei Cloud via Java SDK: Download the SDK, adapt the code,
and use the Java SDK to activate the device registered on the platform.

5. Message reporting: Adapt the code and use the Java SDK to report messages
to the platform.

6. Property reporting: Adapt the code and use the Java SDK to report device
properties to the platform.

7. Command delivery: Adapt the code and deliver commands on the console to
set device properties remotely.

8. Java SDK integration and running: Package the adapted SDK into a
runnable file, import the file to the IoT device, and run the file to connect the
device to IoTDA.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Creating a Product

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card. Choose Products in the navigation pane and click Create Product.

Figure 3-129 Creating a product

Step 2 Create a product whose protocol type is MQTT and device type is custom gas
meter. Set parameters by referring to the following table and click OK.

Table 3-26 Parameters for creating a product

Resource Space Select the default resource space.

Product Name Customize a product name, for
example, Gas Meter.

Protocol Select MQTT.

Data Type Select JSON.

Device Type Selection Select Custom.

Device Type Customize a device type, for example,
Custom Gas Meter.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 3-130 Creating an MQTT product

----End

Developing a Product Model

Step 1 Click the created product to access its details page.

Step 2 On the Basic Information tab page, click Customize Model to add services of the
product.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

Figure 3-131 Custom model - MQTT

Step 3 On the displayed Add Service page, enter the service ID, service type, and service
description, and click OK.

Figure 3-132 Adding a service - GasMeter

Step 4 Choose GasMeter in the service list, click Add Property, set parameters according
to the following figure, and click OK.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

Figure 3-133 Adding a property - flow

Step 5 Add a command model.

1. Choose GasMeter in the service list, click Add Command, and set the
command name to TOGGLE.

Figure 3-134 Adding a command - TOGGLE

2. On the displayed page, click Add Command Parameter, set parameters
according to the following figure, and click OK.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

Figure 3-135 Adding a command - toggle

Step 6 Check the product model details.

Figure 3-136 Product model - gas meters

----End

Registering a Device

Step 1 On the IoTDA console, click the target instance card. In the navigation pane,
choose Devices > All Devices. Click Register Device.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

Figure 3-137 Registering a device

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

Ensure that the device and its associated product belong to the
same resource space.

Product Select a corresponding product.

Node ID Customize a unique physical identifier for the device. Enter 4 to
64 characters. Use only letters, digits, underscores (_), and
hyphens (-).

Device Name Customize the device name.

Authenticatio
n Type

Select Secret.

Secret If you do not set this parameter, IoTDA automatically generates
a value.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

Figure 3-138 Registering a device - MQTT

Step 3 After the device is registered, the platform automatically generates a device ID
and secret. Save the device ID and secret for device access.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

Figure 3-139 Device - Device registered

----End

Accessing to Huawei Cloud Using Java SDK
You can use IntelliJ IDEA (IntelliJ IDEA 2023 Community Edition is used as an
example) to write and debug code. Ensure that the IDEA environment is normal
and Maven is available. For details about the Java SDK usage and APIs, see
README.

NO TE

You are advised to adapt the SDK code and activate the device on the computer, and then
import the modified code to the device for integration.

Step 1 Create a project. Open IntelliJ IDEA and click New Project. On the displayed page,
enter the project name and project path, set Language to Java, set Build System
to Maven, and click Create.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md

Figure 3-140 Creating a Java project

Step 2 Add the Maven reference. After the project is created, the pom.xml and Main.java
files are automatically generated in the project. Open the pom.xml file, add the
Maven reference of the Java SDK, and click the Maven update icon in the upper
right corner. If an error is reported, check the Maven configuration.
<dependencies>
 <dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.2.1</version>
 </dependency>
</dependencies>

Figure 3-141 Adding the Maven reference of the Java SDK

Step 3 Write the reference code to establish a connection with the device.

1. Open the Main.java file and copy the following code to the file:
import com.huaweicloud.sdk.iot.device.IoTDevice;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.Files;
import static java.nio.file.StandardCopyOption.REPLACE_EXISTING;
public class Main {
 private static final String IOT_ROOT_CA_RES_PATH = "ca.jks";

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

 private static final String IOT_ROOT_CA_TMP_PATH = "huaweicloud-iotda-tmp-" +
IOT_ROOT_CA_RES_PATH;
 public static void main(String[] args) throws InterruptedException, IOException {
 // Load the CA certificate of the IoT platform for server verification.
 File tmpCAFile = new File(IOT_ROOT_CA_TMP_PATH);
 try (InputStream resource =
Main.class.getClassLoader().getResourceAsStream(IOT_ROOT_CA_RES_PATH)) {
 Files.copy(resource, tmpCAFile.toPath(), REPLACE_EXISTING);
 }
 // Create a device and initialize it. Replace the access address with your own address.
 IoTDevice device = new IoTDevice("ssl://xxx.st1.iotda-device.cn-
north-4.myhuaweicloud.com:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret", tmpCAFile);
 if (device.init() != 0) {
 return;
 }
 }
}

2. Add a certificate file. Obtain the CA certificate on the device side based on
your region and change the certificate name to ca.jks. Save the certificate to
the resources directory of the project.

Figure 3-142 Obtaining the CA file on the device side

3. Modify access information. Change the device access address, device ID, and
device secret to those obtained in Registering a Device.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

Figure 3-143 Modifying device connection parameters

Figure 3-144 Obtaining access information

NO TE

– Select the MQTTS access address and copy it to the code. To use the MQTT
protocol, change ssl://xxx.st1.iotda-device.cn-north-4.myhuaweicloud.com:8883
to tcp://xxx.st1.iotda-device.cn-north-4.myhuaweicloud.com:1883.

– When you create a device, the system displays a dialog box asking you whether to
save the device ID and key. If you choose to save, the device ID and key are saved
as a file on your computer.

Step 4 Write and run the code. Click the run button in IDEA. The device is online on the
platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

Figure 3-145 Running code in IDEA

Figure 3-146 Device online status

----End

NO TE

The SDK automatically reconnects to the device if the device is disconnected due to
network problems.

Reporting a Message

Develop the message reporting function by referring to the guide for message
reporting and delivery.

Step 1 Copy the following code to the Main.java file of the new project. Put the code
after the device.init() method, which indicates that the connection is successfully
established.
// pubBody indicates the message to be reported. It will be edited into the standard format for reporting
data.
// The default topic reported by the reportDeviceMessage method is $oc/devices/{device_id}/sys/
messages/up.
String pubBody = "hello";
device.getClient().reportDeviceMessage(new DeviceMessage(pubBody), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 System.out.println("reportDeviceMessage ok");
 }
 @Override
 public void onFailure(Object context, Throwable var2) {
 System.out.println("reportDeviceMessage fail: " + var2);
 }
});

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md

Figure 3-147 Reporting messages - IDEA

Step 2 Enable device message tracing to check message records. Locate the device on the
Huawei Cloud console, go to device details page, and choose Message Trace >
Start Trace. Run the code again to check the reported messages.

Figure 3-148 Device list - Viewing details

Figure 3-149 Message tracing - Viewing device_sdk_java tracing result

----End

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

Reporting Properties

Develop the property reporting function by referring to the guide for property
reporting.

Step 1 Copy the following code to the Main.java file. Put the code after the device.init()
method, which indicates that the connection is successfully established.
// Report properties.
Map<String, Object> json = new HashMap<>();
Random rand = new SecureRandom();
// Set properties based on the product model.
json.put("flow", rand.nextFloat() * 100.0f);
ServiceProperty serviceProperty = new ServiceProperty();
serviceProperty.setProperties(json);
serviceProperty.setServiceId("GasMeter"); // serviceId must be the same as that in the product model.

device.getClient().reportProperties(Arrays.asList(serviceProperty), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 System.out.println("pubMessage success");
 }
 @Override
 public void onFailure(Object context, Throwable var2) {
 System.out.println("reportProperties failed" + var2.toString());
 }
});

Figure 3-150 Reporting properties - IDEA

NO TE

The gas meter is used as an example. You can adapt the code as required.

Step 2 Check the reported property value on the platform. On the Huawei Cloud console,
locate the target device to access its details page, click the Device Info tab, and
run the code again. The reported property value is displayed.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md

Figure 3-151 Device list - Viewing details

Figure 3-152 Viewing reported data - Flow

----End

Delivering Commands
Develop the delivery function by referring to the guide for command delivery.

Step 1 Copy the following code to the Main.java file. Put the code before the
device.init() method, which is used to establish a link connection.
// Set the listener to receive downstream data.
device.getClient().setCommandListener(new CommandListener() {
 @Override
 public void onCommand(String requestId, String serviceId, String commandName, Map<String, Object>
paras) {
 System.out.println("onCommand, serviceId = " + serviceId);
 System.out.println("onCommand , name = " + commandName);
 System.out.println("onCommand, paras = " + paras.toString());
 // Process the command.

 // Send the command response.
 device.getClient().respondCommand(requestId, new CommandRsp(0));
 }
});

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md

Figure 3-153 Command delivery - IDEA

Step 2 Deliver a command on the platform. Run the SDK code. On the Huawei Cloud
console, locate the target device to access its details page, click the Cloud
Delivery tab and then the Command Delivery tab, click Deliver Command, and
click OK. The delivered value is received on the IDEA console.

Figure 3-154 Device list - Viewing details

Figure 3-155 Checking the IDEA command delivery structure

----End

Integrating and Running the Device Java SDK
Huawei Cloud IoT device SDKs seamlessly integrate with IoT devices, as
demonstrated in this section using a Linux-based IoT device and the Java SDK. By

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

debugging and transferring the Java SDK-generated JAR package from IDEA to the
Linux device, you can efficiently connect the device to IoTDA.

Prerequisites

The device runs Linux and JDK has been installed.

Procedure

Step 1 Copy the configuration below to the pom.xml file in the root directory.
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <archive>
 <manifest>
 <mainClass>org.example.Main</mainClass>
 </manifest>
 </archive>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <appendAssemblyId>false</appendAssemblyId>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Figure 3-156 IDEA - Adding the package parameter

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

Step 2 Open Maven in IDEA and click package to generate a JAR package in the
directory.

Figure 3-157 IDEA - Generating a JAR package

Step 3 Copy the JAR package to the Linux device and run the java -jar test-javaSdk-1.0-
SNAPSHOT command. If the code is successfully executed, the device is
successfully connected to IoTDA.

Figure 3-158 Running the JAR package in Linux

NO TE

If no Java command is displayed, run the java -version command to check whether JDK is
installed and the JDK version.

----End

3.5 MQTT(S) Access

3.5.1 Protocol Introduction

Overview
Message Queuing Telemetry Transport (MQTT) is a publish/subscribe messaging
protocol that transports messages between clients and servers. It is suitable for
remote sensors and control devices (such as smart street lamps) that have limited

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

computing capabilities and work in low-bandwidth, unreliable networks through
persistent device-cloud connections. MQTT clients publish or subscribe to
messages through topics. MQTT brokers centrally manage message routing and
ensure end-to-end message transmission reliability based on the preset quality of
service (QoS). In this process, the client that sends messages (publisher) and the
client that receives messages (subscriber) are decoupled, eliminating the need for
a direct connection between them. MQTT has emerged as a top protocol in the
IoT domain by meeting the lightweight, reliable, bidirectional, and scalable
communication protocol needs of IoT applications. To learn more about the MQTT
syntax and interfaces, click here.

MQTTS is a variant of MQTT that uses TLS encryption. MQTTS devices
communicate with the platform using encrypted data transmission.

Service Flow
MQTT devices communicate with the platform without data encryption. For
security purposes, MQTTS access is recommended.

You are advised to use the IoT Device SDK to connect devices to the platform
over MQTTS.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1001.html

1. Create a product on the IoTDA console or by calling the API Creating a
Product.

2. Register a device on the IoTDA console or calling the API Creating a Device.
3. The registered device can report messages and properties, receive commands,

properties, and messages, perform OTA upgrades, and report data using
custom topics. For details about preset topics of the platform, see Topic
Definition.

NO TE

You can use MQTT.fx to debug access using the native MQTT protocol. For details, see
Developing an MQTT-based Smart Street Light Online.

Constraints
Description Constraint

Number of concurrent connections to a directly
connected MQTT device

1

Connection setup requests of an account per second
on the device side

● Basic edition: 100
● Standard edition: See

Specifications.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

Description Constraint

Number of upstream requests for an instance per
second on the device side (when average message
payload is 512 bytes)

● Basic edition: 500
● Standard edition: See

Specifications.

Number of upstream messages for an MQTT
connection

50 per second

Bandwidth of an MQTT connection (upstream
messages)

1 MB (default)

Length of a publish message sent over an MQTT
connection (Oversized messages will be rejected.)

1 MB

Standard MQTT protocol MQTT v5.0, MQTT v3.1.1,
and MQTT v3.1

Differences from the standard MQTT protocol ● Not supported: QoS 2
● Not supported: will

and retain msg

Security levels supported by MQTT TCP channel and TLS
protocols (TLS v1, TLS
v1.1, TLS v1.2, and TLS
v1.3)

Recommended heartbeat interval for MQTT
connections

Range: 30s to 1200s;
recommended: 120s

MQTT message publish and subscription A device can only publish
and subscribe to
messages of its own
topics.

Number of subscriptions for an MQTT connection 100

Length of a custom MQTT topic 128 bytes

Number of custom MQTT topics added to a product 10

Number of CA certificates uploaded for an account
on the device side

100

Communication Between MQTT Devices and the Platform
The platform communicates with MQTT devices through topics, and they
exchange messages, properties, and commands using preset topics. You can also
create custom topics for connected devices to meet specific requirements.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

Data
Type

Message
Type

Description

Upstr
eam
data

Reporting
device
properties

Devices report property data in the format defined in the
product model.

Reporting
device
messages

If a device cannot report data in the format defined in
the product model, the device can report data to the
platform using the device message reporting API. The
platform forwards the messages reported by devices to
an application or other Huawei Cloud services for
storage and processing.

Gateway
reporting
device
properties in
batches

A gateway reports property data of multiple devices to
the platform.

Reporting
device
events

Devices report event data in the format defined in the
product model.

Down
strea
m
data

Delivering
platform
messages

The platform delivers data in a custom format to devices.

Setting
device
properties

A product model defines the properties that the platform
can configure for devices. The platform or application
can modify the properties of a specific device.

Querying
device
properties

The platform or application can query real-time property
data of a specific device.

Delivering
platform
commands

The platform or application delivers commands in the
format defined in the product model to devices.

Delivering
platform
events

The platform or application delivers events in the format
defined in the product model to devices.

Preset Topics

The following table lists the preset topics of the platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

Category Function Topic Publ
isher

Subsc
riber

Device
message
related
topics

Device
Reporting
a Message

$oc/devices/{device_id}/sys/
messages/up

Devi
ce

Platfo
rm

Platform
Delivering
a Message

$oc/devices/{device_id}/sys/
messages/down

Platf
orm

Devic
e

Device
command
related
topics

Platform
Delivering
a
Command

$oc/devices/{device_id}/sys/
commands/request_id={request_id}

Platf
orm

Devic
e

Device
Returning
a
Command
Response

$oc/devices/{device_id}/sys/
commands/response/
request_id={request_id}

Devi
ce

Platfo
rm

Device
property
related
topics

Device
Reporting
Properties

$oc/devices/{device_id}/sys/
properties/report

Devi
ce

Platfo
rm

Reporting
Property
Data by a
Gateway

$oc/devices/{device_id}/sys/
gateway/sub_devices/properties/
report

Devi
ce

Platfo
rm

Setting
Device
Properties

$oc/devices/{device_id}/sys/
properties/set/
request_id={request_id}

Platf
orm

Devic
e

Returning
a Response
to Property
Settings

$oc/devices/{device_id}/sys/
properties/set/response/
request_id={request_id}

Devi
ce

Platfo
rm

Querying
Device
Properties

$oc/devices/{device_id}/sys/
properties/get/
request_id={request_id}

Platf
orm

Devic
e

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html

Category Function Topic Publ
isher

Subsc
riber

Device
Returning
a Response
for a
Property
Query The
response
does not
affect
device
properties
and
shadows.

$oc/devices/{device_id}/sys/
properties/get/response/
request_id={request_id}

Devi
ce

Platfo
rm

Obtaining
Device
Shadow
Data from
the
Platform

$oc/devices/{device_id}/sys/
shadow/get/request_id={request_id}

Devi
ce

Platfo
rm

Returning
a Response
to a
Request for
Obtaining
Device
Shadow
Data

$oc/devices/{device_id}/sys/
shadow/get/response/
request_id={request_id}

Platf
orm

Devic
e

Device
event
related
topics

Reporting
a Device
Event

$oc/devices/{device_id}/sys/
events/up

Devi
ce

Platfo
rm

Delivering
an Event

$oc/devices/{device_id}/sys/events/
down

Platf
orm

Devic
e

You can create custom topics on the console to report personalized data. For
details, see Custom Topic Communications.

TLS Support for MQTT
TLS is recommended for secure transmission between devices and the platform.
Currently, TLS v1.1, v1.2, v1.3, and GMTLS are supported. TLS v1.3 is
recommended. TLS v1.1 will not be supported in the future. GMTLS is supported
only by the enterprise edition using Chinese cryptographic algorithms.

When TLS connections are used for the basic edition, standard edition, and
enterprise edition that support general cryptographic algorithms, the IoT platform
supports the following cipher suites:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html

● TLS_AES_256_GCM_SHA384
● TLS_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
● TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

When the enterprise edition that supports Chinese cryptographic algorithms uses
TLS connections, the IoT platform supports the following cipher suites:

● ECC_SM4_GCM_SM3
● ECC_SM4_CBC_SM3
● ECDHE_SM4_GCM_SM3
● ECDHE_SM4_CBC_SM3
● TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

NO TE

CBC cipher suites may pose security risks.

3.5.2 Secret Authentication

Overview

MQTT(S) secret authentication requires a device to have its ID and secret for
access authentication. For devices connected through MQTTS, a CA certificate
must be preconfigured on the devices.

Process

Figure 3-159 MQTT(S) secret authentication process

1. An application calls the API for registering a device. Alternatively, a user uses
the IoTDA console to register a device.

NO TE

During registration, use the MAC address, serial number, or IMEI of the device as the
node ID.

2. The platform allocates a globally unique device ID and secret to the device.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

NO TE

The secret can be defined during device registration. If no secret is defined, the
platform allocates one.

3. The device needs to integrate the preset CA certificate (only for the
authentication process of MQTTS access).

4. During login, the device sends a connection request carrying the device ID and
secret.

5. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

Procedure
This section uses MQTT.fx to describe how to activate a device registered on the
IoT platform.

Step 1 Download MQTT.fx (64-bit OS) or MQTT.fx (32-bit OS) and install it.

Step 2 Go to the device details page, click MQTT Connection Parameters, and check the
device connection information (ClientId, Username, and Password).

Figure 3-160 Device - Connection parameters

Alternatively, access the parameter generation tool and enter the device ID
(device_id) and secret (secret) generated after registration to generate the
parameters (ClientId, Username, and Password) required for device connection
authentication.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows-x64.exe
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows.exe
https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/

Table 3-27 Parameters

Para
meter

Man
dator
y

Type Description

ClientI
d

Yes String Definition
The value of this parameter consists of a device ID,
device type, password signature type, and
timestamp. They are separated by underscores (_).
● Device ID: A device ID uniquely identifies a device

and is generated when the device is registered
with IoTDA. The value usually consists of a
device's product ID and node ID which are
separated by an underscore (_).

● Device type: The value is fixed at 0, indicating a
device ID.

● Password signature type: The length is 1 byte,
and the value can be 0 or 1.
– 0: The timestamp is not verified using the

HMAC-SHA256 algorithm.
– 1: The timestamp is verified using the HMAC-

SHA256 algorithm.
● Timestamp: The UTC time when the device was

connected to IoTDA. The format is
YYYYMMDDHH. For example, if the UTC time is
2018/7/24 17:56:20, the timestamp is
2018072417.

Range
Up to 256 characters.

UserN
ame

Yes String Definition
The value is the device ID (device_id).
Range
Up to 256 characters.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

Para
meter

Man
dator
y

Type Description

Passw
ord

Yes String Definition
With the timestamp (in YYYYMMDDHH format) as
the key, use the HMAC-SHA256 algorithm to
encrypt the device secret returned by IoTDA upon
successful device registration. The result is the
password. Password = hmacsha256 ("secret",
"timestamp")
Set this parameter only if the device authentication
type is SECRET. Not required for X.509 certificate
authentication (CERTIFICATES).
HMACSHA256 is an HMAC algorithm that uses
SHA-256 to generate a hash value. The generated
hash value is represented by a 64-bit hexadecimal
string. For example, if the device secret is 12345678
and the timestamp is 2025041401, the result is
c75150e6cb841417396819e4d2ee4358a416344a0
3a083e3a8567074ddec820a.
Range
Up to 256 characters.

Each device performs authentication using the MQTT CONNECT message, which
must contain all information of the client ID. After receiving a CONNECT message,
the platform checks the authentication type and password digest algorithm of the
device.

The generated client ID is in the format Device ID_0_0_Timestamp. By default,
the timestamp is not verified.

● If the timestamp needs to be verified, the platform checks whether the
message timestamp is consistent with the platform time and then checks
whether the password is correct.

● If the timestamp does not need to be verified, the timestamp must also be
contained in the CONNECT message, but the platform does not check
whether the time is correct. In this case, only the password is checked.

If the authentication fails, the platform returns an error message and
automatically disconnects the MQTT connections.

Step 3 Open MQTT.fx and click the setting icon.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

Figure 3-161 MQTT.fx - Setting

Step 4 Configure authentication parameters and click Apply.

Figure 3-162 Connection configuration

Parameter Description

Broker Address Enter the device access address (domain name)
obtained from the IoTDA console. For devices that
cannot be connected to the platform using a domain
name, run the ping Domain name command in the CLI
to obtain the IP address. The IP address is variable and
needs to be set using a configuration item.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

Parameter Description

Broker Port For MQTT non-encrypted protocols, the port number is
1883, which is the default value. For MQTTS encrypted
protocols, change the port number to 8883 and obtain
the certificate for verifying the IoT platform identity.
For details, see Using MQTT.fx to Simulate
Communication Between the Smart Street Light and
the Platform.

Client ID Enter the device client ID obtained in 2.

User Name Enter the device ID obtained in 2.

Password Enter the encrypted device secret obtained in 2.

Step 5 Click Connect. If the device authentication is successful, the device is displayed
online on the platform.

Figure 3-163 Device online status

----End

Best Practices
Developing an MQTT-based Simulated Smart Street Light Online

3.5.3 Certificate Authentication

3.5.3.1 Usage

Introduction
MQTT(S) certificate authentication requires you to upload a device Certificate
Authority (CA) certificate on the console first. Then, you can either use the API for
creating a device or register the device on the console to get the device ID. When
the device accesses the IoT platform, it carries the X.509 certificate for
authentication, which is a digital certificate used to authenticate the
communication entity.

Constraints
● Only MQTT(S) devices can use X.509 certificates for identity authentication.
● You can upload up to 100 device CA certificates. Multiple devices can share

one CA certificate.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/qs-iothub/iot_05_00121.html#section6
https://support.huaweicloud.com/intl/en-us/qs-iothub/iot_05_00121.html#section6
https://support.huaweicloud.com/intl/en-us/qs-iothub/iot_05_00121.html#section6
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

Process

Figure 3-164 Process

1. A user uploads a device CA certificate on the IoTDA console.

2. An application calls the API for registering a device. Alternatively, a user uses
the IoTDA console to register a device.

NO TE

During registration, use the MAC address, serial number, or IMEI of the device as the
node ID.

The platform allocates a globally unique device ID to the device.

3. During login, the device sends a connection request carrying the X.509
certificate to the platform.

4. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

Uploading a Device CA certificate

Step 1 In the navigation pane, choose Devices > Device Certificates. On the Device CA
Certificates tab page, select a resource space and click Upload Certificate.

Step 2 In the displayed dialog box, click Select File to add a file, and then click OK.

Figure 3-165 Device CA certificate - Uploading a certificate

NO TE

● Device CA certificates are provided by device vendors. You can prepare a
commissioning certificate during commissioning. For security reasons, you are advised
to replace the commissioning certificate with a commercial certificate during
commercial use.

● CA certificates can no longer be used to verify server certificates upon expiration.
Replace CA certificates before they expire to ensure that devices can connect to the IoT
platform properly.

----End

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section4
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section4

Creating a Device CA Commissioning Certificate

This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format.

1. Download and install OpenSSL.

2. Open the CLI as user admin.

3. Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL
installation directory) to access the OpenSSL view.

4. Generate a public/private key pair.
openssl genrsa -out rootCA.key 2048

5. Use the private key in the key pair to generate a CA certificate.
openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

Figure 3-166 Generating a CA certificate

Enter the following information as prompted. All parameters can be
customized.

– Country Name (2 letter code) [AU]: country, for example, CN

– State or Province Name (full name) []: state or province, for example, GD

– Locality Name (for example, city) []: city, for example, SZ

– Organization Name (for example, company) []: organization, for
example, Huawei

– Organizational Unit Name (for example, section) []: organization unit, for
example, IoT

– Common Name (e.g. server FQDN or YOUR name) []: common name, for
example, zhangsan

– Email Address []: email address, for example, 1234567@163.com

Obtain the generated CA certificate rootCA.pem from the bin folder in the
OpenSSL installation directory.

Uploading a Verification Certificate

If the uploaded certificate is a commissioning certificate, the certificate status is
Unverified. In this case, upload a verification certificate to verify that you have the
CA certificate.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

https://slproweb.com/products/Win32OpenSSL.html

Figure 3-167 Device CA certificate - Unverified certificate

The verification certificate is created based on the private key of the device CA
certificate. Perform the following operations to create a verification certificate:

Step 1 Obtain the verification code to verify the certificate.

Figure 3-168 Device CA certificate - Verifying a certificate

Figure 3-169 Device CA certificate - Obtaining the verification code

Step 2 Generate a key pair for the verification certificate.
openssl genrsa -out verificationCert.key 2048

Step 3 Create a certificate signing request (CSR) for the verification certificate.
openssl req -new -key verificationCert.key -out verificationCert.csr

The system prompts you to enter the following information. Set Common Name
to the verification code and set other parameters as required.

● Country Name (2 letter code) [AU]: country, for example, CN

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

● State or Province Name (full name) []: state or province, for example, GD
● Locality Name (for example, city) []: city, for example, SZ
● Organization Name (for example, company) []: organization, for example,

Huawei
● Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
● Common Name (e.g. server FQDN or YOUR name) []: verification code for

verifying the certificate. For details on how to obtain the verification code, see
Step 1.

● Email Address []: email address, for example, 1234567@163.com
● Password[]: password
● Optional Company Name[]: company name, for example, Huawei

Step 4 Use the CSR to create a verification certificate.
openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
verificationCert.pem -days 500 -sha256

Obtain the generated verification certificate verificationCert.pem from the bin
folder of the OpenSSL installation directory.

Step 5 Select the corresponding certificate, click , and click Upload Verification
Certificate.

Figure 3-170 Device CA certificate - Verifying a certificate

Step 6 In the displayed dialog box, click Select File to add a file, and then click OK.

Figure 3-171 Device CA certificate - Uploading a verified certificate

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

After the verification certificate is uploaded, the certificate status changes to
Verified, indicating that you have the CA certificate.

----End

Presetting an X.509 Certificate

Before registering an X.509 device, preset the X.509 certificate issued by the CA on
the device.

NO TE

The X.509 certificate is issued by the CA. If no commercial certificate issued by the CA is
available, you can create a device CA commissioning certificate.

Creating an X.509 Commissioning Certificate

1. Run cmd as user admin to open the CLI and run cd c:\openssl\bin (replace
c:\openssl\bin with the actual OpenSSL installation directory) to access the
OpenSSL view.

2. Generate a public/private key pair.
openssl genrsa -out deviceCert.key 2048

3. Create a CSR for the device certificate.
openssl req -new -key deviceCert.key -out deviceCert.csr

Enter the following information as prompted. All parameters can be
customized.
– Country Name (2 letter code) [AU]: country, for example, CN
– State or Province Name (full name) []: state or province, for example, GD
– Locality Name (for example, city) []: city, for example, SZ
– Organization Name (for example, company) []: organization, for

example, Huawei
– Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
– Common Name (e.g. server FQDN or YOUR name) []: common name, for

example, zhangsan
– Email Address []: email address, for example, 1234567@163.com
– Password[]: password
– Optional Company Name[]: company name, for example, Huawei

4. Create a device certificate using CSR.
openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
deviceCert.pem -days 500 -sha256

Obtain the generated device certificate deviceCert.pem from the bin folder in
the OpenSSL installation directory.

Registering a Device Authenticated by an X.509 Certificate

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page, click
Register Device, set parameters based on the table below, and click OK.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Figure 3-172 Device - Registering an X.509 device

Parameter Description

Resource
Space

Select the resource space to which a device belongs.

Product Select the product to which the device belongs.

Node ID Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom character string that contains letters
and digits.

Device Name Customize the device name.

Authenticatio
n Type

X.509 certificate: The device uses an X.509 certificate for
identity verification.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

Parameter Description

Fingerprint This parameter is displayed when Authentication Type is set to
X.509 certificate. Import the fingerprint corresponding to the
preset device certificate on the device side. You can run
openssl x509 -fingerprint -sha256 -in deviceCert.pem in the
OpenSSL view to query the fingerprint. Note: Delete the
colons (:) from the obtained fingerprint when filling it.

Figure 3-173 OpenSSL execution example

----End

Performing Connection Authentication
You can activate the device registered with the platform by using MQTT.fx. For
details, see Device Connection Authentication.

Step 1 Download MQTT.fx (64-bit OS) or MQTT.fx (32-bit OS) and install it.

NO TE

● Install the latest MQTT.fx.
● MQTT.fx 1.7.0 and earlier versions have problems in processing topics containing $. Use

the latest version for test.

Step 2 Go to the device details page, click MQTT Connection Parameters, and check the
device connection information (ClientId, Username, and Password).

Figure 3-174 Device - Connection parameters

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows-x64.exe
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows.exe
https://softblade.de/download/

Parame
ter

Mand
atory

Type Description

ClientId Yes String(2
56)

The value of this parameter consists of a device
ID, device type, password signature type, and
timestamp. They are separated by underscores
(_).
● Device ID: A device ID uniquely identifies a

device and is generated when the device is
registered with IoTDA. The value usually
consists of a device's product ID and node ID
which are separated by an underscore (_).

● Device type: The value is fixed at 0, indicating
a device ID.

● Password signature type: The length is 1 byte,
and the value can be 0 or 1.
– 0: The timestamp is not verified using the

HMAC-SHA256 algorithm.
– 1: The timestamp is verified using the

HMAC-SHA256 algorithm.
● Timestamp: The UTC time when the device

was connected to IoTDA. The format is
YYYYMMDDHH. For example, if the UTC time
is 2018/7/24 17:56:20, the timestamp is
2018072417.

Userna
me

Yes String(2
56)

Device ID.

Each device performs authentication using the MQTT CONNECT message, which
must contain all information of the client ID. After receiving a CONNECT message,
the platform checks the authentication type and password digest algorithm of the
device.

The generated client ID is in the format Device ID_0_0_Timestamp. By default,
the timestamp is not verified.

● If the timestamp needs to be verified, the platform checks whether the
message timestamp is consistent with the platform time and then checks
whether the password is correct.

● If the timestamp does not need to be verified, the timestamp must also be
contained in the CONNECT message, but the platform does not check
whether the time is correct. In this case, only the password is checked.

If the authentication fails, the platform returns an error message and
automatically disconnects the MQTT connections.

Step 3 Open MQTT.fx and click the setting icon.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

Figure 3-175 MQTT.fx - Settings

Step 4 Enter Connection Profile information.

Figure 3-176 Using default settings for parameters on the General tab page

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

Parameter Description

Broker Address Enter the device access address (domain name)
obtained from the IoTDA console. For devices that
cannot be connected to the platform using a domain
name, run the ping Domain name command in the CLI
to obtain the IP address. The IP address is variable and
needs to be set using a configuration item.

Broker Port Enter 8883.

Client ID Enter the device client ID obtained in 2.

Step 5 Click User Credentials and specify User Name.

Figure 3-177 Entering the device ID

Parameter Description

User Name Enter the device ID obtained in 2.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

Parameter Description

Password Leave it blank when the X.509 certificate is used for
authentication.

Step 6 Click SSL/TLS, set authentication parameters, and click Apply. Select Enable SSL/
TLS, select Self signed certificates, and enter the certificate information.

Figure 3-178 Setting SSL/TLS parameters

NO TE

● CA File: corresponding CA certificate. Download the certificate from Obtaining
Resources and load the PEM certificate.

● Client Certificate File: device certificate (deviceCert.pem).
● Client Key File: private key (deviceCert.key) of the device.

Step 7 Click Connect. If the device authentication is successful, the device is displayed
online on the platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

Figure 3-179 Device list - Device online status

----End

APIs
● Create a Device

● Reset a Device Secret

● Obtain the Device CA Certificate List

● Upload a Device CA Certificate

● Delete a Device CA Certificate

● Verify a Device CA Certificate

Best Practices

Connecting a Device That Uses the X.509 Certificate Based on MQTT.fx

3.5.3.2 Certificate Validity Verification (OCSP)

Introduction

IoTDA uses Online Certificate Status Protocol (OCSP) to verify the validity of
certificates on the device and server. OCSP checks the revocation status of
certificates at the Transport Layer Security (TLS) layer. It offers several advantages
over the traditional Certificate Revocation List (CRL), including higher scalability,
shorter response time, better real-time performance, and greater suitability for the
Public Key Infrastructure (PKI). Unlike CRL, which is updated less frequently and
has a larger file size, OCSP provides more efficient and timely certificate
verification.

Terms

OCSP verification: used for device certificate validity status check on the platform
side. The IoT platform checks whether the device certificate has been revoked by
the CA.

OCSP stapling: also known as server OCSP, is a TLS certificate status query
extension that serves as an alternative to traditional OCSP for checking the status
of X.509 certificates. With OCSP stapling, the server takes the initiative to check its
certificate revocation status (continuously) and includes a cached OCSP response
during the TLS handshake. This eliminates the need to send a separate request to
the CA and speeds up the handshake process, as you only need to verify the
validity of the response.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0093.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0016.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0077.html
https://www.rfc-editor.org/rfc/rfc6960.html

Constraints
● Only enterprise instances support this function.
● When OCSP verification is enabled, the platform will send a request to the

OCSP server during the initial device connection to the platform. This may
result in a longer duration for establishing the connection, which is a normal
occurrence. Subsequent connection establishment is not affected.

● Cache duration for the platform to respond to the OCSP server: 24 hours.
● Timeout interval for the platform to respond to the OCSP server: 5 seconds;

max. response size: 4 KB.

Process

Figure 3-180 OCSP working process

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > Device Certificates. On the displayed
page, click the corresponding CA certificate and click the button for certificate
settings.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 3-181 Device CA certificate - OCSP verification enabled

Step 3 If the OCSP server accesses the platform using HTTPS, choose Rules Server
Certificates in the navigation pane, click Upload Certificate, and upload the CA
certificate of the OCSP server.

Return to the IoTDA console, select the corresponding instance, and access its
details page. Click Update Certificate to enable OCSP stapling. If the OCSP server
accesses the platform using HTTPS, click SSL Verification and associate the server
certificate.

Figure 3-182 Instance management - Enabling OCSP stapling

NO TE

● To enable OCSP stapling, the certificate chain must contain the upper-layer CA
certificate.

● The OCSP signature certificate information must contain the OCSP URL extension field.

Step 4 Use the MQTT simulator that supports OCSP to connect to the platform, check the
OCSP stapling information of the platform certificate, use the packet capture tool
to capture TLS handshake packets for connection establishment, and check the
OCSP response of the platform certificate. There are three certificate status types:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

good, revoked, and unknown. The device determines whether to establish a
connection based on the platform certificate status. For example, the device
establishes a connection with the platform only when the certificate status is
good.

Figure 3-183 TLS-Certificate Status good

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

Figure 3-184 TLS-Certificate Status revoked

Figure 3-185 TLS-Certificate Status unknown

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

NO TE

The server returns certificate status only when the Client Hello packet sent by the client
carries the status_request extended field.

Figure 3-186 status request

Step 5 In the navigation pane, choose Devices > All Devices. On the displayed page, find
the target device to access its details page. Click the Message Trace tab and
enable message tracing. Use the MQTT simulator certificate for two-way
authentication. Check the message tracing error details. If the device certificate
has been revoked, use a new valid certificate for access. Ensure to promptly revoke
any leaked certificates.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

Figure 3-187 Device certificate - Revoked

Figure 3-188 Message tracing - OCSP verification failure details

----End

3.5.4 Custom Authentication

Introduction

You can use FunctionGraph to implement custom authentication logic to
authenticate devices connected to the platform.

Before connecting a device to the platform, you can use the application to
configure custom authentication on the console, and then configure related
functions by using FunctionGraph. When the device connects to the platform, the
platform obtains parameters such as the device ID and custom authentication
function name, and sends an authentication request to FunctionGraph. You
implement the authentication logic to complete access authentication.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0110.html

Figure 3-189 Custom authentication architecture

Scenarios
● Device migration from third-party cloud platforms to IoTDA: You can

configure the custom logic to make it compatible with the original
authentication mode. No modification is required on the device side.

● Native access: Custom authentication logics are available for multiple
scenarios.

Constraints
● The device must use TLS and support Server Name Indication (SNI). The SNI

must carry the domain name allocated by the platform.

● By default, each user can configure up to 10 custom authenticators.

● Max. processing time: 5 seconds. If the function does not return any result
within 5 seconds, the authentication fails.

● For the TPS limit of each user, see Product Specifications. The TPS limit of
custom authentication is 50% of the total authentication TPS (excluding
device self-registration).

● If you have enabled the function of caching FunctionGraph authentication
results, the modification takes effect only after the cache expires.

● The custom authentication mode is preferentially used for device access if
conditions are met, for example, the custom authenticator name carried by
the device is matched or a default custom authenticator has been configured.

NO TE

Our custom authentication mode enables device access without requiring reconstruction on
the device side. It is important to avoid weak or verification-free modes. If the security level
of your custom template is too low, it may lead to security issues. The platform does not
assume any security responsibilities in such cases.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html

Process

Figure 3-190 Custom authentication process

Procedure

Step 1 Use FunctionGraph to create a custom authentication function. Access the
console, search for FunctionGraph, and create a function.

Figure 3-191 Function list - Creating a function

Figure 3-192 Creating a function - Parameters

Step 2 Configure custom authentication on the console for storage, management, and
maintenance. Max. 10 custom authenticators can be configured.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0110.html

Figure 3-193 Custom authentication - Entry

Figure 3-194 Custom authentication - Creating an authenticator

Table 3-28 Custom authentication parameters

Parameter Mandat
ory

Description

Authenticatio
n Name

Yes Enter a custom authenticator name.

Function Yes Select the corresponding function from the list created with
FunctionGraph in Step 1.

Status Yes To use an authenticator, you must first enable it as it is disabled by
default.

Signature
Authenticatio
n

Yes After this function is enabled (by default), authentication information
that does not meet signature requirements will be rejected to reduce
invalid function calls.

Token No Token for signature authentication. Used to check whether a device's
signature information is valid.

Public Key No Public key for signature authentication. Used to check whether a
device's signature information is valid.

Default Mode Yes After this function is enabled (disabled by default), if the username in
an authentication request does not contain the authorizer_name
parameter, this authenticator is used.

Caching Yes Whether to cache FunctionGraph authentication results (disabled by
default). The cache duration ranges from 300 minutes to 1 day.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

Step 3 The device initiates a CONNECT request using MQTT. The request must carry the
username parameter, which contains optional parameters related to custom
authentication.
● Username format requirements: Remove braces ({}) and separate each

parameter by a vertical bar (|). Do not add vertical bars (|) in the parameter
content.
{device-identifier}|authorizer-name={authorizer-name}|authorizer-signature={token-signature}|
signing-token={token-value}
Example:
659b70a0bd3f665a471e5ec9_auth|authorizer-name=Test_auth_1|authorizer-signature=***|signing-
token=tokenValue

Table 3-29 Description of the username parameter

Parameter Man
dato
ry

Description

device-
identifier

Yes Device identifier. You are advised to set it to the
device ID.

authorizer-
name

No Custom authenticator name, which must be the
same as the configured authenticator. If this
parameter is not carried, the system will use either
the default custom authenticator (if configured) or
the original secret/certificate authentication mode.

authorizer-
signature

No This parameter is mandatory when the signature
verification function is enabled. Obtain the value by
encrypting the private key and signing-token. The
value must be the same as the authentication name
used in Step 2.

signing-token No This parameter is mandatory when the signature
verification function is enabled. The value is used
for signature verification and must be the same as
the token value used in Step 2.

● Run the following command to obtain authorizer-signature:

echo -n {signing-token} | openssl dgst -sha256 -sign {private key} | openssl base64

Table 3-30 Command parameters

Parameter Description

echo -n {signing-
token}

Run the echo command to output the value of
signing-token and use the -n parameter to
remove the newline character at the end. The
value of signing-token must be the same as that
of the token in Step 2.

openssl dgst -sha256 -
sign

Hash the input data with the SHA-256 algorithm.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Parameter Description

{private key} Private key encrypted using the RSA algorithm.
You can upload a private key file in .pem or .key
format.

openssl base64 Encode the signature result using Base64 for
transmission and storage.

Step 4 When receiving an authentication request, IoTDA determines whether to use the
custom authentication mode based on the username parameter and related
configuration.

1. The system checks whether the username carries the custom authentication
name. If yes, the authenticator processing function is matched based on the
name. If no, the default custom authenticator is used to match the
authentication processing function. If no matching is found, the original key/
certificate authentication mode is used.

2. The system checks whether signature verification is enabled. If yes, the system
checks whether the signature information carried in the username can be
verified. If the verification fails, an authentication failure message is returned.

3. After the function matching, the system sends an authentication request to
FunctionGraph using the Uniform Resource Name (URN) of the function and
the device authentication information (the input parameter event in Step 5).

Step 5 Develop based on the processing function created with FunctionGraph in Step 1.
Example for using the function and the JSON format of the returned result:
exports.handler = async (event, context) => {
 console.log("username=" + event.username);
 // Enter the validation logic.

 // Returned JSON format (fixed)
 const authRes = {
 "result_code": 200,
 "result_desc": "successful",
 "refresh_seconds": 300,
 "device": {
 "device_id": "myDeviceId",
 "provision_enable": true,
 "provisioning_resource": {
 "device_name": "myDeviceName",
 "node_id": "myNodeId",
 "product_id": "myProductId",
 "app_id": "customization0000000000000000000",
 "policy_ids": ["657a4e0c2ea0cb2cd831d12a", "657a4e0c2ea0cb2cd831d12b"]
 }
 }
 }
 return JSON.stringify(authRes);
}

Request parameters (event, in JSON format) of the function:

{
 "username": "myUserName",
 "password": "myPassword",
 "client_id": "myClientId",
 "certificate_info": {
 "common_name": "",

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

 "fingerprint": "123"
 }
}

Table 3-31 Request parameters

Parameter Type Mandator
y

Description

username String Yes The username field in the MQTT
CONNECT message. Its format is the
same as that of the username field in
Step 3.

password String Yes password parameter in the MQTT
CONNECT message.

client_id String Yes clientId parameter in the MQTT
CONNECT message.

certificate_in
fo

JsonObject No Device certificate information in the
MQTT CONNECT message.

Table 3-32 certificate_info parameters

Parameter Type Man
dato
ry

Description

common_name String Yes Common name parsed from the device
certificate carried by the device.

fingerprint String Yes Fingerprint information parsed from the
device certificate carried by the device.

Table 3-33 Returned parameters

Parameter Type Mandator
y

Description

result_code Integer Yes Authentication result code. If 200 is
returned, the authentication is
successful.

result_desc String No Description of the authentication
result.

refresh_seco
nds

Integer No Cache duration of the authentication
result, in seconds.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

Parameter Type Mandator
y

Description

device JsonObject No Device information when the
authentication is successful. If the
device ID in the device information
does not exist and device self-
registration is enabled, the platform
automatically creates a device based
on the device information.

Table 3-34 Device parameters

Parameter Type Mandator
y

Description

device_id String Yes Definition: Globally unique device ID.
Mandatory in both self-registration
and non-self-registration scenarios. If
this parameter is carried, the platform
sets the device ID to the value of this
parameter. Recommended format:
product_id_node_id. Range: The value
can contain up to 128 characters. Only
letters, digits, underscores (_), and
hyphens (-) are allowed. You are
advised to use at least 4 characters.

provision_ena
ble

Boolean No Definition: Whether to enable self-
registration. Default value: false.

provisioning_r
esource

JsonObje
ct

Mandator
y in the
self-
registratio
n scenario

Definition: Self-registration
parameters.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html

Table 3-35 provisioning_resource self-registration parameters

Parameter Type Mandator
y

Description

device_name String No Definition: Device name, which
uniquely identifies a device in a
resource space. Range: The value can
contain up to 256 characters. Only
letters, digits, and special characters
(_?'#().,&%@!-) are allowed. You are
advised to use at least 4 characters.
Min. characters: 1
Max. characters: 256

node_id String Yes Definition: Device identifier. This
parameter is set to the IMEI, MAC
address, or serial number. It contains 1
to 64 characters, including letters,
digits, hyphens (-), and underscores
(_). (Note: Information cannot be
modified once it is hardcoded to NB-
IoT modules. Therefore, the node ID of
an NB-IoT must be globally unique.)
Range: The value can contain up to 64
characters. Only letters, digits,
underscores (_), and hyphens (-) are
allowed. You are advised to use at
least 4 characters.

product_id String Yes Definition: Unique ID of the product
associated with the device. The value
is allocated by IoTDA after the product
is created. Range: The value can
contain up to 256 characters. Only
letters, digits, and special characters
(_?'#().,&%@!-) are allowed. You are
advised to use at least 4 characters.
Min. characters: 1
Max. characters: 256

app_id String Yes Definition: Resource space ID, which
specifies the resource space to which
the created device belongs. Range:
The value can contain up to 36
characters. Only letters, digits,
underscores (_), and hyphens (-) are
allowed.

policy_ids List<String
>

No Definition: Topic policy ID.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

Figure 3-195 Compiling a function - Deployment

Step 6 After receiving the result, FunctionGraph checks whether the self-registration is
required. If yes, FunctionGraph triggers automatic device registration. By default,
all self-registered devices are authenticated using secrets, which are randomly
generated. After receiving the authentication result, IoTDA proceeds with the
subsequent process.

----End

3.5.5 Custom-Template Authentication

3.5.5.1 Usage

Introduction
In addition to the default authentication mode, you can also use the internal
functions provided by the platform to flexibly orchestrate authentication modes
for devices connecting to the platform.

Scenarios
● Device migration from third-party IoT platforms to IoTDA: You can configure a

custom template to be compatible with the original authentication mode. No
modification is required on the device side.

● Native access: Custom templates can support more devices.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

Process

Figure 3-196 Process of authentication based on custom templates

Constraints
1. The device must use TLS and support Server Name Indication (SNI). The SNI

must carry the domain name allocated by the platform.
2. Max. templates: five for a user. Only one template can be enabled at a time.
3. Max. functions nested: five layers.
4. Max. content length: 4,000 characters. Chinese character not allowed.
5. When the device uses secret authentication, the template password function

must contain the original secret parameter (iotda::device:secret).
6. The format of the template authentication parameter username cannot be

the same as that of the custom function authentication parameter username.
Otherwise, the custom function authentication is used. For example:
{deviceId}|authorizer-name={authorizer-name}|xxx

7. As custom authentication templates have higher priority, once you activate a
custom authentication template, the platform uses the template instead of
the default mode.

NO TE

Our custom authentication mode enables device access without requiring reconstruction on
the device side. It is important to avoid weak or verification-free modes. If the security level
of your custom template is too low, it may lead to security issues. The platform does not
assume any security responsibilities in such cases.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1

Procedure

Step 1 Create an authentication template. Specifically, log in to the IoTDA console, in the
navigation pane, choose Devices > Custom Authentication, click Custom
Template, and click Create Template. The authentication template used in this
example is the same as that used in the default authentication.

Figure 3-197 Custom authentication - Creating a template

The overall content of the template is as follows:

{
 "template_name": "system-default-auth",
 "description": "Example of the default authentication template of Huawei Cloud IoTDA",
 "status": "ACTIVE",
 "template_body": {
 "parameters": {
 "iotda::mqtt::client_id": {
 "type": "String"
 },
 "iotda::mqtt::username": {
 "type": "String"
 },
 "iotda::device::secret": {
 "type": "String"
 }
 },
 "resources": {
 "device_id": {
 "Ref": "iotda::mqtt::username"
 },
 "timestamp": {
 "type": "FORMAT",
 "pattern": "yyyyMMddHH",
 "value": {
 "Fn::SubStringAfter": [
 "${iotda::mqtt::client_id}",
 "_0_1_"
]
 }
 },
 "password": {
 "Fn::HmacSHA256": [
 "${iotda::device::secret}",
 {
 "Fn::SubStringAfter": [
 "${iotda::mqtt::client_id}",

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

 "_0_1_"
]
 }
]
 }
 }
 }
}

Table 3-36 Authentication template parameters

Parameter Item Ma
nda
tory

Description

template_n
ame

Template
name

Yes Template name. The name must be unique
for a single user. Max. length: 128 characters.
Use only letters, digits, underscores (_), and
hyphens (-).

description Descriptio
n

No Template description. Max. length: 2,048
characters. Use only letters, digits, and special
characters (_?'#().,&%@!-).

status Status No Template status. By default, a template is not
enabled. A user can only have one enabled
template at a time.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

Parameter Item Ma
nda
tory

Description

parameters Parameter Yes MQTT connection parameters predefined by
the platform. When a device uses password
authentication, the template must contain
the original secret parameter
(iotda::device:secret).
The platform predefines the following
parameters:
iotda::mqtt::client_id: Client Id in the MQTT
connection parameter triplet
iotda::mqtt::username: User Name in the
MQTT connection parameter triplet
iotda::certificate::country: device certificate
(country/region, C)
iotda::certificate::organization: device
certificate (organization, O)
iotda::certificate::organizational_unit:
device certificate (organization unit, OU)
iotda::certificate::distinguished_name_qualif
ier: device certificate (distinguishable name
qualifier, dnQualifier)
iotda::certificate::state_name:
device_certificate (province/city, ST)
iotda::certificate::common_name: device
certificate (common name, CN)
iotda::certificate::serial_number: device
certificate (serial number, serialNumber)
iotda::device::secret: original secret of the
device

device_id Device ID
function

Yes Function for obtaining the device ID, in JSON
format. The platform parses this function to
obtain the corresponding device information.

timestamp Timestamp
verification

No Whether to verify the timestamp in the
device connection information.
Recommended: Enable this function if the
device connection parameters (clientId and
username) contain the timestamp.
Verification process: The platform compares
the timestamp carried by the device with the
platform system time. If the timestamp plus
1 hour is less than the platform system time,
the verification fails.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

Parameter Item Ma
nda
tory

Description

type Timestamp
type

No UNIX: Unix timestamp. Long integer, in
seconds.
FORMAT: formatted timestamp, for example,
2024-03-28 11:47:39 or 2024/03/28
03:49:13.

pattern Timestamp
format

No Time format template. Mandatory when the
timestamp type is FORMAT.
y: year
M: month
d: day
H: hour
m: minute
s: second
S: millisecond
Example: yyyy-MM-dd HH:mm:ss and
yyyy/MM/dd HH:mm:ss

value Timestamp
function

No Function for obtaining the timestamp when
the device establishes a connection.
Mandatory when timestamp verification is
enabled.

password MQTT
password
function

No Password function. Mandatory when the
device authentication type is secret
authentication. The template parameters
must contain the original device secret
parameter (iotda::device:secret). For details
about the device authentication type, see
Registering an Individual Device.
Verification process: The platform uses
parameters such as the original secret of the
device in the function to calculate. If the
result is the same as the password carried in
the connection establishment request, the
authentication is successful. Otherwise, the
authentication fails.

Step 2 Select a device debugging template. Click Debug, select a device for debugging,
enter MQTT connection parameters, and click Debug to check the result. Note: If
clientId in the standard format is used, the platform verifies whether the value of
username is the same as the prefix of clientId.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

Figure 3-198 Custom template - Debugging

After the device debugging is successful, click Enable to enable the template.
Once the template is enabled, it will be used for authentication of all devices, and
the enabled template cannot be modified. You are advised to make modification
on the copy of the target template and debug it. Switch to the modified template
only after the debugging is successful.

Step 3 Use MQTT.fx to simulate device connection setup. Set Broker Address to the
platform access address, choose Overview > Access Information, and set port to
8883.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01003.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01003.html

Figure 3-199 Device connection establishment

Figure 3-200 Device list - Device online status

----End

3.5.5.2 Examples

Example 1
When a certificate is used to authenticate a device, the values of UserName and
ClientId are not limited. The device ID is obtained from the common name of the
device certificate.

Table 3-37 Authentication parameters

Parameter Description

Client ID Any value

User Name Any value

Password Empty value

Authentication template:

{
 "template_name": "template1",
 "description": "template1",
 "template_body": {
 "parameters": {
 "iotda::certificate::common_name": {
 "type": "String"
 }
 },

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

 "resources": {
 "device_id": {
 "Ref": "iotda::certificate::common_name"
 }
 }
 }
}

Example 2
The device ID follows the format of ${ProductId}_${NodeId} and the
authentication parameters are as outlined in the table below.

Table 3-38 Authentication parameters

Parameter Description

Client ID Fixed format:
${ClientId}|securemode=2,signmethod=hmacsha256,timestamp=${timestamp}|

● ${ClientId} (fixed format): ${ProductId}.${NodeId}
– ${NodeId}: device node ID
– ${ProductId}: product ID

● ${timestamp}: Unix timestamp, in milliseconds

User Name Fixed format:
${NodeId}&${ProductId}

Password Result value after encrypting the combination of device
parameter and parameter value, with the device password as the
key and HMAC-SHA256 algorithm as the tool.
Encryption string format:
clientId${clientId}deviceName${nodeId}productKey${productId}timestamp$
{timestamp}

● ${ClientId} (fixed format): ${ProductId}.${NodeId}
● ${NodeId}: device node ID
● ${ProductId}: product ID
● ${timestamp}: timestamp

Authentication template:

{
 "template_name": "template2",
 "description": "template2",
 "template_body": {
 "parameters": {
 "iotda::mqtt::client_id": {
 "type": "String"
 },
 "iotda::mqtt::username": {
 "type": "String"
 },
 "iotda::device::secret": {
 "type": "String"
 }
 },
 "resources": {

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

 "device_id": {
 "Fn::Join": [{
 "Fn::SplitSelect": [
 "${iotda::mqtt::username}",
 "&",
 1
]
 }, "_", {
 "Fn::SplitSelect": [
 "${iotda::mqtt::username}",
 "&",
 0
]
 }]
 },
 "timestamp": {
 "type": "UNIX",
 "value": {
 "Fn::MathDiv": [{
 "Fn::ParseLong": {
 "Fn::SplitSelect": [{
 "Fn::SubStringAfter": [{
 "Fn::SplitSelect": ["${iotda::mqtt::client_id}", "|", 1]
 }, "timestamp="]
 }, ",", 0]
 }
 }, 1000]
 }
 },
 "password": {
 "Fn::HmacSHA256": [{
 "Fn::Sub": [
 "clientId${clientId}deviceName${deviceName}productKey${productKey}timestamp$
{timestamp}",
 {
 "clientId": {
 "Fn::SplitSelect": [
 "${iotda::mqtt::client_id}",
 "|",
 0
]
 },
 "deviceName": {
 "Fn::SplitSelect": [
 "${iotda::mqtt::username}",
 "&",
 0
]
 },
 "productKey": {
 "Fn::SplitSelect": [
 "${iotda::mqtt::username}",
 "&",
 1
]
 },
 "timestamp": {
 "Fn::SplitSelect": [{
 "Fn::SubStringAfter": [{
 "Fn::SplitSelect": ["${iotda::mqtt::client_id}", "|", 1]
 }, "timestamp="]
 }, ",", 0]
 }
 }
]
 },
 "${iotda::device::secret}"
]
 }

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

 }
 }
}

Example 3
The device ID follows the format of ${productId}_${nodeId} and the authentication
parameters are as outlined in the table below.

Table 3-39 Authentication parameters

Parameter Description

Client ID Fixed format:
${productId}${nodeId}

● ${productId}: product ID
● ${nodeId}: node ID

User Name Fixed format:
${productId}${nodeId};12010126;${connid};${expiry}

● ${productId}: product ID
● ${nodeId}: node ID
● ${connid}: random string
● ${expiry}: Unix timestamp, in seconds

Password Fixed format:
${token};hmacsha256

● ${token}: result value after encrypting the User Name field,
with the HMAC-SHA256 algorithm as the tool and the
Base64-decoded device password as the key.

Authentication template:

{
 "template_name": "template3",
 "description": "template3",
 "template_body": {
 "parameters": {
 "iotda::mqtt::client_id": {
 "type": "String"
 },
 "iotda::mqtt::username": {
 "type": "String"
 },
 "iotda::device::secret": {
 "type": "String"
 }
 },
 "resources": {
 "device_id": {
 "Ref": "iotda::mqtt::client_id"
 },
 "timestamp": {
 "type": "UNIX",
 "value": {
 "Fn::ParseLong": {
 "Fn::SplitSelect": ["${iotda::mqtt::username}", ";", 3]
 }

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

 }
 },
 "password": {
 "Fn::Sub": [
 "${token};hmacsha256",
 {
 "token": {
 "Fn::HmacSHA256": [
 "${iotda::mqtt::username}",
 {
 "Fn::Base64Decode": "${iotda::device::secret}"
 }
]
 }
 }
]
 }
 }
 }
}

3.5.5.3 Internal Functions

Introduction
Huawei Cloud IoTDA provides multiple internal functions to use in templates. This
section introduces these functions, including the input parameter type, parameter
length, and return value type.

NO TE

● The entire function must be in valid JSON format.
● In a function, the variable placeholders (${}) or the Ref function can be used to

reference the value defined by the input parameter.
● The parameters used by the function must be declared in the template.
● A function with a single input parameter is followed by a parameter, for example,

"Fn::Base64Decode": "${iotda::mqtt::username}".
● A function with multiple input parameters is followed by an array, for example,

"Fn::HmacSHA256": ["${iotda::mqtt::username}", "${iotda::device::secret}"].
● Functions can be nested. That is, the parameter of a function can be another function.

Note that the return value of a nested function must match its parameter type in the
outer function, for example, {"Fn::HmacSHA256": ["${iotda::mqtt::username}",
{"Fn::Base64Encode": "${iotda::device::secret}"}]}.

● The hash function (Fn::HmacSHA256) can be used twice at most in an authentication
template.

● The total number of Base64 functions (Fn::Base64Decode and Fn::Base64Encode) in an
authentication template cannot exceed 2.

● After applying the HmacSHA256 function to the password in the authentication
template, the functions Fn::Split, Fn::SplitSelect, Fn::SubStringAfter, and
Fn::SubStringBefore cannot be executed.

Fn::ArraySelect
The internal function Fn::ArraySelect returns a string element whose index is
index in a string array.

JSON

{"Fn::ArraySelect": [index, [StringArray]]}

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

Table 3-40 Parameters

Parameter Type Description

index int Index of an array element. The value is
an integer and starts from 0.

StringArray String[] String array element.

Return value String Element whose index is index.

Example:

{
 "Fn::ArraySelect": [1, ["123", "456", "789"]]
}
return: "456"

Fn::Base64Decode
The internal function Fn::Base64Decode decodes a string into a byte array using
Base64.

JSON

{ "Fn::Base64Decode" : "content" }

Table 3-41 Parameters

Parameter Type Description

content String String to be decoded.

Return value byte[] Base64-decoded byte array.

Example:

{
 "Fn::Base64Decode": "123456"]
}
return: d76df8e7 // The value is converted into a hexadecimal string for display.

Fn::Base64Encode
The internal function Fn::Base64Encode encodes a string using Base64.

JSON

{"Fn::Base64Encode": "content"}

Table 3-42 Parameters

Parameter Type Description

content String String to be encoded.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

Parameter Type Description

Return value String Base64-encoded string.

Example:

{
 "Fn::Base64Encode": "testvalue"
}
return: "dGVzdHZhbHVl"

Fn::GetBytes

The internal function Fn::GetBytes returns a byte array encoded from a string
using UTF-8.

JSON

{"Fn::GetBytes": "content"}

Table 3-43 Parameters

Parameter Type Description

content String String to be encoded.

Return value byte[] Byte array converted from a string
encoded using UTF-8.

Example:

{
 "Fn::GetBytes": "testvalue"
}
return: "7465737476616c7565" // The value is converted into a hexadecimal string for display.

Fn::HmacSHA256

The internal function Fn::HmacSHA256 encrypts a string using the HmacSHA256
algorithm based on a given secret.

JSON

{"Fn::HmacSHA256": ["content", "secret"]}

Table 3-44 Parameters

Parameter Type Description

content String String to be encrypted.

secret String or byte[] Secret key, which can be a string or
byte array.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

Parameter Type Description

Return value String Value encrypted using the
HmacSHA256 algorithm.

Example:

{
 "Fn::HmacSHA256": ["testvalue", "123456"]
}
return: "0f9fb47bd47449b6ffac1be951a5c18a7eff694940b1a075b973ff9054a08be3"

Fn::Join
The internal function Fn::Join can concatenate up to 10 strings into one string.

JSON

{"Fn::Join": ["element", "element"...]}

Table 3-45 Parameters

Parameter Type Description

element String String to be concatenated.

Return value String String obtained by concatenating
substrings.

Example:

{
 "Fn::Join": ["123", "456", "789"]
}
return: "123456789"

Fn::MathAdd
The internal function Fn::MathAdd performs mathematical addition on two
integers.

JSON

{"Fn::MathAdd": [X, Y]}

Table 3-46 Parameters

Parameter Type Description

X long Augend.

Y long Augend.

Return value long Sum of X and Y.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

Example:

{
 "Fn::MathAdd": [1, 1]
}
return: 2

Fn::MathDiv

The internal function Fn::MathDiv performs a mathematical division on two
integers.

JSON

{"Fn::MathDiv": [X, Y]}

Table 3-47 Parameters

Parameter Type Description

X long Dividend.

Y long Divisor.

Return value long Value of X divided by Y.

Example:

{
 "Fn::MathDiv": [10, 2]
}
return: 5

{
 "Fn::MathDiv": [10, 3]
}
return: 3

Fn::MathMod

The internal function Fn::MathMod performs the mathematical modulo on two
integers.

JSON

{"Fn::MathMod": [X, Y]}

Table 3-48 Parameters

Parameter Type Description

X long Dividend.

Y long Divisor.

Return value long Residue of X modulo Y.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Example:

{
 "Fn::MathMod": [10, 3]
}
return: 1

Fn::MathMultiply
The internal function Fn::MathMultiply performs mathematical multiplication on
two integers.

JSON

{"Fn::MathMultiply": [X, Y]}

Table 3-49 Parameters

Parameter Type Description

X long Multiplicand.

Y long Multiplicand.

Return value long Value of X multiplied by Y.

Example:

{
 "Fn::MathMultiply": [3, 3]
}
return: 9

Fn::MathSub
The internal function Fn::MathSub performs mathematical subtraction on two
integers.

JSON

{"Fn::MathSub": [X, Y]}

Table 3-50 Parameters

Parameter Type Description

X long Minuend.

Y long Subtrahend.

Return value long Value of X minus Y.

Example:

{
 "Fn::MathSub": [9, 3]

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

}
return: 6

Fn::ParseLong

The internal function Fn::ParseLong converts a numeric string into an integer.

JSON

{"Fn::ParseLong": "String"}

Table 3-51 Parameters

Parameter Type Description

String String String to be converted.

Return value long Value obtained after a string is
converted into an integer.

Example:

{
 "Fn::ParseLong": "123"
}
return: 123

Fn::Split

The internal function Fn::Split splits a string into a string array based on the
specified separator.

JSON

{ "Fn::Split" : ["String", "Separator"] }

Table 3-52 Parameters

Parameter Type Description

String String String to be split.

Separator String Separator.

Return value String[] String array obtained after String is
split by Separator.

Example:

{
 "Fn::Split": ["a|b|c", "|"]
}
return: ["a", "b", "c"]

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

Fn::SplitSelect
The internal function Fn::SplitSelect splits a string into a string array based on the
specified separator, and then returns the elements of the specified index in the
array.

JSON

{ "Fn::SplitSelect" : ["String", "Separator", index] }

Table 3-53 Parameters

Parameter Type Description

String String String to be split.

Separator String Separator.

index int Index value of the target element in
the array, starting from 0.

Return value String Substring of the specified index after a
string is split by the specified separator.

Example:

{
 "Fn::SplitSelect": ["a|b|c", "|", 1]
}
return: "b"

Fn::Sub
The internal function Fn::Sub replaces variables in an input string with specified
values. You can use this function in a template to construct a dynamic string.

JSON

{ "Fn::Sub" : ["String", { "Var1Name": Var1Value, "Var2Name": Var2Value }] }

Table 3-54 Parameters

Parameter Type Description

String String A string that contains variables.
Variables are defined using
placeholders (${}).

VarName String Variable name, which must be defined
in the String parameter.

VarValue String Variable value. Function nesting is
supported.

Return value String Value of string after replacement in
the original String parameter.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

Example:

{
 "Fn::Sub": ["${token};hmacsha256", {
 "token": {
 "Fn::HmacSHA256": ["${iotda::mqtt::username}", {
 "Fn::Base64Decode": "${iotda::mqtt::client_id}"
 }]
 }
 }]
}
If:
${iotda::mqtt::username}="test_device_username"
${iotda::device::client_id}="OozqTPlCWTTJjEH/5s+T6w=="
return: "0773c4fd6c92902a1b2f4a45fdcdec416b6fc2bc6585200b496e460e2ef31c3d"

Fn::SubStringAfter

The internal function Fn::SubStringAfter extracts a substring after a specified
separator.

JSON

{ "Fn::SubStringAfter" : ["content", "separator"] }

Table 3-55 Parameters

Parameter Type Description

content String String to be extracted.

separator String Separator.

Return value String Substring after the specified separator
that separates the string.

Example:

{
 "Fn::SubStringAfter": ["content:123456", ":"]
]
return: "123456"

Fn::SubStringBefore

The internal function Fn::SubStringBefore extracts a substring before a specified
separator.

JSON

{ "Fn::SubStringBefore" : ["content", "separator"] }

Table 3-56 Parameters

Parameter Type Description

content String String to be extracted.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

Parameter Type Description

separator String Separator.

Return value String Substring before the specified
separator that separates the string.

Example:

{
 "Fn::SubStringBefore": ["content:123456", ":"]
]
return: "content"

Fn::ToLowerCase
The internal function Fn::ToLowerCase converts a string to the lowercase format.

JSON

{ "Fn::ToLowerCase" : content }

Table 3-57 Parameters

Parameter Type Description

content String String to be converted.

Return value String Value of a string after it is converted
to the lowercase format.

Example:

{
 "Fn::ToLowerCase": "ABC"
]
return: "abc"

Fn::ToUpperCase
The internal function Fn::ToUpperCase converts a string to the uppercase format.

JSON

{ "Fn::ToUpperCase" : content }

Table 3-58 Parameters

Parameter Type Description

content String String to be converted.

Return value String Value of a string after it is converted
to the uppercase format.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

Example:

{
 "Fn::ToUpperCase": "abc"
]
return: "ABC"

Ref
The internal function Ref returns the value of the specified referenced parameter.
The referenced parameter must be declared in the template.

JSON

{ "Ref" : "paramName" }

Table 3-59 Parameters

Parameter Type Description

paramName String Name of the referenced parameter.

Return value String Value of the referenced parameter.

Example:

{
 "Ref": "iotda::mqtt::username"
}
If iotda::mqtt::username="device_123"
return: "device_123"

3.6 HTTP(S) Access

Introduction
IoTDA supports HTTPS, a secure communication protocol derived from HTTP and
secured with SSL encryption. HTTPS is commonly employed for data collection and
analysis due to HTTP's efficiency in transmitting and processing structured data.
Additionally, it is utilized in scenarios where devices require non-persistent
connections and unidirectional data upload.

In HTTPS-based authentication, a device utilizes the HTTPS-based device
authentication API to securely transmit the device ID and secret. The secret is
encrypted using an algorithm. After the authentication is successful, the
connection between the device and the platform is established, and the platform
returns an access token.

Constraints
● An access token is required when HTTPS APIs for property reporting and

message reporting are called.
● If an access token expires, you need to authenticate the device again to

obtain an access token.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

● If you obtain a new access token before the old one expires, the old access
token will be valid for 30 seconds before expiration.

Table 3-60 Constraints

Description Constraint

Supported HTTP version HTTP 1.0
HTTP 1.1

Supported HTTPS The platform supports only the HTTPS
protocol. For details about how to
download a certificate, see Certificates.

Supported TLS version TLS 1.2

Body length 1 MB

API specifications Specifications

Number of child devices of which
properties can be reported by a
gateway at a time

50

Data delivery Not supported

Endpoints
For details about the platform endpoint, see Platform Connection Information.

NO TE

Use the endpoint of IoTDA and the HTTPS port number 443.

Process

Figure 3-201 HTTPS access authentication process

1. An application calls the API for registering a device. Alternatively, a user uses
the IoTDA console to register a device.

2. The platform allocates a globally unique device ID and secret to the device.

NO TE

The secret can be defined during device registration. If no secret is defined, the
platform allocates one.

3. When a device attempts to connect to the platform, the device calls the
HTTPS device authentication API to send an access authentication request to
the platform. The request carries the device ID and the secret generated using
the HMACSHA256 algorithm. The secret is the value obtained after the

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

password allocated by the platform is signed using the timestamp as the key.
For details, see Huawei Cloud IoTDA MQTT ClientId Generator.

4. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

Procedure
When a device connects to the platform through HTTPS, HTTPS APIs are used for
their communication. These APIs can be used for device authentication as well as
message and property reporting.

Table 3-61 Message type

Message Type Description

Device authentication Devices obtain access tokens.

Device property
reporting

Devices report property data in the format defined in
the product model.

Device message
reporting

Devices report custom data to IoTDA, which then
forwards reported messages to an application or other
Huawei Cloud services for storage and processing.

Gateway batch
property reporting

A gateway reports property data of multiple child
devices to the platform.

1. Create a product on the IoTDA console or by calling the API for creating a
product.

2. Register a device on the IoTDA console or calling the API for creating a
device.

3. After the device is registered, obtain the access token of the device through
the API for device authentication.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7008.html

Figure 3-202 Obtaining the access token

4. Use the access token in the message header to report device messages or
properties. The following figures use property reporting as an example.

Figure 3-203 Reporting properties

Figure 3-204 Reporting properties

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7010.html

3.7 LwM2M/CoAP Access

Introduction

Lightweight Machine to Machine (LwM2M), proposed by the Open Mobile
Alliance (OMA), is a lightweight, standard, and universal IoT device management
protocol that can be used to quickly deploy IoT services in client/server mode.
LwM2M establishes a set of standards for IoT device management and
application. It provides lightweight, compact, and secure communication interfaces
and efficient data models for M2M device management and service support.

LwM2M/CoAP authentication supports both encrypted and non-encrypted access
modes. Non-encrypted mode: Devices connect to IoTDA carrying the node ID
through port 5683. Encrypted mode: Devices connect to IoTDA carrying node ID
and secret through port 5684 by the DTLS/DTLS+ channel.

You are advised to use the encrypted access mode for security purposes.

NO TE

For details about LwM2M syntax and APIs, see specifications.

IoTDA supports the plain text, opaque, Core Link, TLV, and JSON encoding formats specified
in the protocol. In the multi-field operation (for example, writing multiple resources), the
TLV format is used by default.

Constraints

Table 3-62 Constraints on LwM2M/CoAP access

Description Constraint

Supported LwM2M version 1.1

Supported DTLS version DTLS 1.2

Supported cryptographic algorithm
suite

TLS_PSK_WITH_AES_128_CCM_8 and
TLS_PSK_WITH_AES_128_CBC_SHA256

Body length 1 KB

API specifications Specifications

Endpoints

For details about the platform endpoint, see Platform Connection Information.

NO TE

Use the endpoint corresponding to CoAP (5683) or CoAPS (5684) and port 5683 (non-
encrypted) or 5684 (encrypted) for device access.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

http://openmobilealliance.org/release/LightweightM2M/V1_1-20171208-C/
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

Authentication Process

Figure 3-205 LwM2M/CoAP access authentication process

1. An application calls the API for registering a device. Alternatively, a user uses
the IoTDA console to register a device.

2. The platform allocates a secret to the device and returns timeout.

NO TE

● The secret can be defined during device registration. If no secret is defined, the
platform allocates one.

● If the device is not connected to the platform within the duration specified by
timeout, the platform deletes the device registration information.

3. During login, the device sends a connection authentication request carrying
the node ID (such as the IMEI) and secret if it is a security device, or carrying
the node ID if it is a non-security device.

4. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

Development Process
1. Development on the platform: Create products, develop product models and

codecs on the platform, and register devices. For details, see Creating a
Product, Developing a Product Model, Developing a Codec, and
Registering a Device.

2. Development on the device: Use modules and Tiny SDKs on the device side
for access. For details, see IoT Device SDK Tiny (C) User Guide.

Best Practices
Developing a Smart Street Light Using NB-IoT BearPi

FAQ
LwM2M/CoAP access FAQ:

● How Do I Know the Strength of the NB-IoT Network Signal?
● What Do I Do If an NB-IoT Module Failed to Be Bound to a Device?
● What Do I Do If an NB-IoT Module Failed to Be Bound to a Device?
● What Can I Do If an NB-IoT Module Cannot Report Data?
● Why Was a 513 Message Reported During the Connection of an NB-IoT

Device?
● Why Does Data Reporting Fails When an NB-IoT Card Is Used in Another

Device?

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_9980.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0007.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section1
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section2
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section4
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section5
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section5
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section6
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section6

3.8 Access Using MQTT Demos

3.8.1 MQTT Usage Guide

Overview
Message Queuing Telemetry Transport (MQTT) is a publish/subscribe messaging
protocol that transports messages between clients and servers. It is suitable for
remote sensors and control devices (such as smart street lamps) that have limited
computing capabilities and work in low-bandwidth, unreliable networks through
persistent device-cloud connections. MQTT clients publish or subscribe to
messages through topics. MQTT brokers centrally manage message routing and
ensure end-to-end message transmission reliability based on the preset quality of
service (QoS). In this process, the client that sends messages (publisher) and the
client that receives messages (subscriber) are decoupled, eliminating the need for
a direct connection between them. MQTT has emerged as a top protocol in the
IoT domain by meeting the lightweight, reliable, bidirectional, and scalable
communication protocol needs of IoT applications. To learn more about the MQTT
syntax and interfaces, click here.

MQTTS is a variant of MQTT that uses TLS encryption. MQTTS devices
communicate with the platform using encrypted data transmission.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/

Service Flow
MQTT devices communicate with the platform without data encryption. For
security purposes, MQTTS access is recommended.

You are advised to use the IoT Device SDK to connect devices to the platform
over MQTTS.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1001.html

1. Create a product on the IoTDA console or by calling the API Creating a
Product.

2. Register a device on the IoTDA console or calling the API Creating a Device.
3. The registered device can report messages and properties, receive commands,

properties, and messages, perform OTA upgrades, and report data using
custom topics. For details about preset topics of the platform, see Topic
Definition.

NO TE

You can use MQTT.fx to debug access using the native MQTT protocol. For details, see
Developing an MQTT-based Smart Street Light Online.

Constraints
Description Constraint

Number of concurrent connections to a directly
connected MQTT device

1

Connection setup requests of an account per second
on the device side

● Basic edition: 100
● Standard edition: See

Specifications.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

Description Constraint

Number of upstream requests for an instance per
second on the device side (when average message
payload is 512 bytes)

● Basic edition: 500
● Standard edition: See

Specifications.

Number of upstream messages for an MQTT
connection

50 per second

Bandwidth of an MQTT connection (upstream
messages)

1 MB (default)

Length of a publish message sent over an MQTT
connection (Oversized messages will be rejected.)

1 MB

Standard MQTT protocol MQTT v5.0, MQTT v3.1.1,
and MQTT v3.1

Differences from the standard MQTT protocol ● Not supported: QoS 2
● Not supported: will

and retain msg

Security levels supported by MQTT TCP channel and TLS
protocols (TLS v1, TLS
v1.1, TLS v1.2, and TLS
v1.3)

Recommended heartbeat interval for MQTT
connections

Range: 30s to 1200s;
recommended: 120s

MQTT message publish and subscription A device can only publish
and subscribe to
messages of its own
topics.

Number of subscriptions for an MQTT connection 100

Length of a custom MQTT topic 128 bytes

Number of custom MQTT topics added to a product 10

Number of CA certificates uploaded for an account
on the device side

100

Communication Between MQTT Devices and the Platform
The platform communicates with MQTT devices through topics, and they
exchange messages, properties, and commands using preset topics. You can also
create custom topics for connected devices to meet specific requirements.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

Data
Type

Message
Type

Description

Upstr
eam
data

Reporting
device
properties

Devices report property data in the format defined in the
product model.

Reporting
device
messages

If a device cannot report data in the format defined in
the product model, the device can report data to the
platform using the device message reporting API. The
platform forwards the messages reported by devices to
an application or other Huawei Cloud services for
storage and processing.

Gateway
reporting
device
properties in
batches

A gateway reports property data of multiple devices to
the platform.

Reporting
device
events

Devices report event data in the format defined in the
product model.

Down
strea
m
data

Delivering
platform
messages

The platform delivers data in a custom format to devices.

Setting
device
properties

A product model defines the properties that the platform
can configure for devices. The platform or application
can modify the properties of a specific device.

Querying
device
properties

The platform or application can query real-time property
data of a specific device.

Delivering
platform
commands

The platform or application delivers commands in the
format defined in the product model to devices.

Delivering
platform
events

The platform or application delivers events in the format
defined in the product model to devices.

Preset Topics

The following table lists the preset topics of the platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

Category Function Topic Publ
isher

Subsc
riber

Device
message
related
topics

Device
Reporting
a Message

$oc/devices/{device_id}/sys/
messages/up

Devi
ce

Platfo
rm

Platform
Delivering
a Message

$oc/devices/{device_id}/sys/
messages/down

Platf
orm

Devic
e

Device
command
related
topics

Platform
Delivering
a
Command

$oc/devices/{device_id}/sys/
commands/request_id={request_id}

Platf
orm

Devic
e

Device
Returning
a
Command
Response

$oc/devices/{device_id}/sys/
commands/response/
request_id={request_id}

Devi
ce

Platfo
rm

Device
property
related
topics

Device
Reporting
Properties

$oc/devices/{device_id}/sys/
properties/report

Devi
ce

Platfo
rm

Reporting
Property
Data by a
Gateway

$oc/devices/{device_id}/sys/
gateway/sub_devices/properties/
report

Devi
ce

Platfo
rm

Setting
Device
Properties

$oc/devices/{device_id}/sys/
properties/set/
request_id={request_id}

Platf
orm

Devic
e

Returning
a Response
to Property
Settings

$oc/devices/{device_id}/sys/
properties/set/response/
request_id={request_id}

Devi
ce

Platfo
rm

Querying
Device
Properties

$oc/devices/{device_id}/sys/
properties/get/
request_id={request_id}

Platf
orm

Devic
e

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html

Category Function Topic Publ
isher

Subsc
riber

Device
Returning
a Response
for a
Property
Query The
response
does not
affect
device
properties
and
shadows.

$oc/devices/{device_id}/sys/
properties/get/response/
request_id={request_id}

Devi
ce

Platfo
rm

Obtaining
Device
Shadow
Data from
the
Platform

$oc/devices/{device_id}/sys/
shadow/get/request_id={request_id}

Devi
ce

Platfo
rm

Returning
a Response
to a
Request for
Obtaining
Device
Shadow
Data

$oc/devices/{device_id}/sys/
shadow/get/response/
request_id={request_id}

Platf
orm

Devic
e

Device
event
related
topics

Reporting
a Device
Event

$oc/devices/{device_id}/sys/
events/up

Devi
ce

Platfo
rm

Delivering
an Event

$oc/devices/{device_id}/sys/events/
down

Platf
orm

Devic
e

You can create custom topics on the console to report personalized data. For
details, see Custom Topic Communications.

TLS Support for MQTT
TLS is recommended for secure transmission between devices and the platform.
Currently, TLS v1.1, v1.2, v1.3, and GMTLS are supported. TLS v1.3 is
recommended. TLS v1.1 will not be supported in the future. GMTLS is supported
only by the enterprise edition using Chinese cryptographic algorithms.

When TLS connections are used for the basic edition, standard edition, and
enterprise edition that support general cryptographic algorithms, the IoT platform
supports the following cipher suites:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html

● TLS_AES_256_GCM_SHA384
● TLS_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
● TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

When the enterprise edition that supports Chinese cryptographic algorithms uses
TLS connections, the IoT platform supports the following cipher suites:

● ECC_SM4_GCM_SM3
● ECC_SM4_CBC_SM3
● ECDHE_SM4_GCM_SM3
● ECDHE_SM4_CBC_SM3
● TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

NO TE

CBC cipher suites may pose security risks.

FAQ

MQTT-based Device Access

3.8.2 Java Demo Usage Guide

Overview

This topic uses Java as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have obtained the device access address from the IoTDA console. For

details about how to obtain the address, see Platform Connection
Information.

● You have created a product and a device on the IoTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html

Preparations
Installing IntelliJ IDEA

1. Go to the IntelliJ IDEA website to download and install a desired version.
The following uses Windows 64-bit IntelliJ IDEA 2019.2.3 Ultimate as an
example.

2. After the download is complete, run the installation file and install IntelliJ
IDEA as prompted.

Importing Sample Code

Step 1 Download the Java demo.

Step 2 Open the IDEA developer tool and click Import Project.

Step 3 Select the downloaded Java demo and click Next.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

https://www.jetbrains.com/idea/
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip

Step 4 Import the sample code.

----End

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

1. Before establishing a connection, modify the following parameters:
// MQTT connection address of the platform (Replace it with the domain name of the IoT platform
that the device is connected to.)
static String serverIp = "xxx.myhuaweicloud.com";
// Device ID and secret obtained during device registration (Replace them with the actual values.)
static String deviceId = "722cb****************";
static String secret = "******";

– serverIp indicates the device connection address of the platform. To
obtain this address, see Platform Connection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

– deviceId and secret indicate the device ID and secret, which can be
obtained after the device is registered.

2. Use MqttClient to set up a connection. The recommended heartbeat interval
for MQTT connections is 120 seconds. For details, see Constraints.
MqttConnectOptions options = new MqttConnectOptions();
options.setCleanSession(false);
options.setKeepAliveInterval(120); // Set the heartbeat interval from 30 to 1200 seconds.
options.setConnectionTimeout(5000);
options.setAutomaticReconnect(true);
options.setUserName(deviceId);
options.setPassword(getPassword().toCharArray());
client = new MqttAsyncClient(url, getClientId(), new MemoryPersistence());
client.setCallback(callback);

Port 1883 is a non-encrypted MQTT access port, and port 8883 is an
encrypted MQTTS access port (that uses SSL to load a certificate).
if (isSSL) {
 url = "ssl://" + serverIp + ":" + 8883; // MQTTS connection
} else {
 url = "tcp://" + serverIp + ":" + 1883; // MQTT connection
}

To establish an MQTTS connection, load the SSL certificate of the server and
add the SocketFactory parameter. The DigiCertGlobalRootCA.jks file is
stored in the resources directory of the demo. It is used by the device to verify
the platform identity when the device connects to the platform. You can
download the certificate file using the link provided in Certificates.
options.setSocketFactory(getOptionSocketFactory(MqttDemo.class.getClassLoader().getResource("Digi
CertGlobalRootCA.jks").getPath()));

3. Call client.connect(options, null, new IMqttActionListener()) to initiate a
connection. The MqttConnectOptions parameter is passed.
client.connect(options, null, new IMqttActionListener()

4. The password passed by calling options.setPassword() is encrypted during
creation of MqttConnectOptions. getPassword() is used to obtain the
encrypted password.
public static String getPassword() {
 return sha256_mac(secret, getTimeStamp());
}
/* Call the SHA-256 algorithm for hash calculation. */
public static String sha256_mac(String message, String tStamp) {
 String passWord = null;
 try {
 Mac sha256_HMAC = Mac.getInstance("HmacSHA256");
 SecretKeySpec secret_key = new SecretKeySpec(tStamp.getBytes(), "HmacSHA256");
 sha256_HMAC.init(secret_key);byte[] bytes = sha256_HMAC.doFinal(message.getBytes());
 passWord = byteArrayToHexString(bytes);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return passWord;

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

5. After the connection is established, the device becomes online.

Figure 3-206 Device list - Device online status

If the connection fails, the onFailure function executes backoff
reconnection. The example code is as follows:
@Override
public void onFailure(IMqttToken iMqttToken, Throwable throwable) {
 System.out.println("Mqtt connect fail.");

 // Backoff reconnection
 int lowBound = (int) (defaultBackoff * 0.8);
 int highBound = (int) (defaultBackoff * 1.2);
 long randomBackOff = random.nextInt(highBound - lowBound);
 long backOffWithJitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff +
lowBound);
 long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithJitter) > maxBackoff ?
maxBackoff : (minBackoff + backOffWithJitter);
 System.out.println("---- " + waitTImeUntilNextRetry);
 try {
 Thread.sleep(waitTImeUntilNextRetry);
 } catch (InterruptedException e) {
 System.out.println("sleep failed, the reason is" + e.getMessage().toString());
 }
 retryTimes++;
 MqttDemo.this.connect(true);
}

Subscribing to a Topic for Receiving Commands
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics. For
details about the API, see Platform Delivering a Command.

// Subscribe to a topic for receiving commands.
client.subscribe(getCmdRequestTopic(), qosLevel, null, new IMqttActionListener();

getCmdRequestTopic() is used to obtain the topic for receiving commands from
the platform and subscribe to the topic.
public static String getCmdRequestTopic() {
 return "$oc/devices/" + deviceId + "/sys/commands/#";
}

Reporting Properties
Devices can report their properties to the platform. For details, see Reporting
Device Properties.

// Report JSON data. service_id must be the same as that defined in the product model.
String jsonMsg = "{\"services\": [{\"service_id\": \"Temperature\",\"properties\": {\"value\": 57}},{\"service_id
\": \"Battery\",\"properties\": {\"level\": 80}}]}";
MqttMessage message = new MqttMessage(jsonMsg.getBytes());
client.publish(getRreportTopic(), message, qosLevel, new IMqttActionListener();

The message body jsonMsg is assembled in JSON format, and service_id must be
the same as that defined in the product model. properties indicates a device

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

property, and 57 indicates the property value. event_time indicates the UTC time
when the device reports data. If this parameter is not specified, the system time is
used by default.

After a device or gateway is connected to the platform, you can call
MqttClient.publish(String topic,MqttMessage message) to report device
properties to the platform.

getRreportTopic() is used to obtain the topic for reporting data.
public static String getRreportTopic() {
 return "$oc/devices/" + deviceId + "/sys/properties/report";
}

Viewing Reported Data
After the main method is called, you can view the reported device property data
on the device details page. For details about the API, see Device Reporting
Properties.

Figure 3-207 Viewing reported data - level

Figure 3-208 Viewing reported data - temperature_value

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

NO TE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

Related Resources

You can refer to the MQTT or MQTTS API Reference on the Device Side to
connect MQTT devices to the platform. You can also develop an MQTT-based
smart street light online to quickly verify whether they can interact with the IoT
platform to publish or subscribe to messages.

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.8.3 Python Demo Usage Guide

Overview

This topic uses Python as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed Python by following the instructions provided in Installing

Python.

● You have installed a development tool (for example, PyCharm) by following
the instructions provided in Installing PyCharm.

● You have obtained the device access address from the IoTDA console. For
details about how to obtain the address, see Platform Connection
Information.

● You have created a product and a device on the IoTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
● Installing Python

a. Go to the Python website to download and install a desired version.
(The following uses Windows OS as an example to describe how to install
Python 3.8.2.)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://www.python.org/downloads/windows/

b. After the download is complete, run the .exe file to install Python.

c. Select Add python 3.8 to PATH (if it is not selected, you need to
manually configure environment variables), click Customize installation,
and install Python as prompted.

d. Check whether Python is installed.

Press Win+R, enter cmd, and press Enter to open the CLI. In the CLI,
enter python –V and press Enter. If the Python version is displayed, the
installation is successful.

● Installing PyCharm (If you have already installed PyCharm, skip this step.)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

a. Visit the PyCharm website, select a version, and click Download.

The professional edition is recommended.
b. Run the .exe file and install PyCharm as prompted.

Importing Sample Code

Step 1 Download the QuickStart (Python).

Step 2 Run PyCharm, click Open, and select the sample code downloaded.

Step 3 Import the sample code.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

https://www.jetbrains.com/pycharm/download/#section=windows
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip

Description of the directories:

● IoT_device_demo: MQTT demo files
message_sample.py: Demo for devices to send and receive messages
command_sample.py: Demo for devices to respond to commands delivered
by the platform
properties_sample.py: Demo for devices to report properties

● IoT_device/client: Used for paho-mqtt encapsulation.
IoT_client_config.py: client configurations, such as the device ID and secret
IoT_client.py: MQTT-related function configurations, such as connection,
subscription, publish, and response

● IoT_device/Utils: utility methods, such as those for obtaining the timestamp
and encrypting a secret

● IoT_device/resources: Stores certificates.
DigiCertGlobalRootCA.crt.pem is used by the device to verify the platform
identity when the device connects to the platform. You can download the
certificate file using the link provided in Certificates.

● IoT_device/request: Encapsulates device properties, such as commands,
messages, and properties.

Step 4 (Optional) Install the paho-mqtt library, which is a third-party library that uses the
MQTT protocol in Python. If the paho-mqtt library has already been installed, skip
this step. You can install paho-mqtt using either of the following methods:
● Method 1: Use the pip tool to install paho-mqtt in the CLI. (The tool is already

provided when installing Python.)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

In the CLI, enter pip install paho-mqtt and press Enter. If the message
Successfully installed paho-mqtt is displayed, the installation is successful. If
a message is displayed indicating that the pip command is not an internal or
external command, check the Python environment variables. See the figure
below.

● Method 2: Install paho-mqtt using PyCharm.

a. Open PyCharm, choose File > Settings > Project Interpreter, and click
the plus icon (+) on the right side to search for paho-mqtt.

b. Click Install Package in the lower left corner.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

----End

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Before establishing a connection, modify the following parameters. The
IoTClientConfig class is used to configure client information.
Client configurations
client_cfg = IoTClientConfig(server_ip='iot-mqtts.cn-north-4.myhuaweicloud.com',
device_id='5e85a55f60b7b804c51ce15c_py123', secret='******', is_ssl=True)
Create a device.
iot_client = IotClient(client_cfg)

– server_ip indicates the device connection address of the platform. To
obtain this address, see Platform Connection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

– device_id and secret are returned after the device is registered.
– is_ssl: True means to establish an MQTTS connection and False means to

establish an MQTT connection.
2. Call the connect method to initiate a connection.

iot_client.connect()

If the connection is successful, the following information is displayed:
 -----------------Connection successful !!!

If the connection fails, the retreat_reconnection function executes backoff
reconnection. The example code is as follows:
Backoff reconnection
def retreat_reconnection(self):
 print("---- Backoff reconnection")

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

 global retryTimes
 minBackoff = 1
 maxBackoff = 30
 defaultBackoff = 1
 low_bound = (int)(defaultBackoff * 0.8)
 high_bound = (int)(defaultBackoff * 1.2)
 random_backoff = random.randint(0, high_bound - low_bound)
 backoff_with_jitter = math.pow(2.0, retryTimes) * (random_backoff + low_bound)
 wait_time_until_next_retry = min(minBackoff + backoff_with_jitter, maxBackoff)
 print("the next retry time is ", wait_time_until_next_retry, " seconds")
 retryTimes += 1
 time.sleep(wait_time_until_next_retry)
 self.connect()

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The message_sample.py file provides functions such as subscribing to topics,
unsubscribing from topics, and reporting device messages.

To subscribe to a topic for receiving commands, do as follows:

 iot_client.subscribe(r'$oc/devices/' + str(self.__device_id) + r'/sys/commands/#')

If the subscription is successful, information similar to the following is displayed.
(topic indicates a custom topic, for example, Topic_1.)

 ------You have subscribed: topic

Responding to a Command
The command_sample.py file provides the function of responding to commands
delivered by the platform. For details about the API, see Platform Delivering a
Command.

Responding to commands delivered by the platform
def command_callback(request_id, command):
 # If the value of result_code is 0, the command is delivered . If the value is 1, the command fails to be
delivered.
 iot_client.respond_command(request_id, result_code=0)
iot_client.set_command_callback(command_callback)

Reporting Properties
Devices can report their properties to the platform. For details about the API, see
Device Reporting Properties.

The properties_sample.py file provides the functions of reporting device
properties, responding to platform settings, and querying device properties.

In the following code, the device reports properties to the platform every 10
seconds. service_property indicates a device property object. For details, see the
services_properties.py file.

Reporting properties periodically
while True:
 # Set properties based on the product model.
 service_property = ServicesProperties()
 service_property.add_service_property(service_id="Battery", property='batteryLevel', value=1)
 iot_client.report_properties(service_properties=service_property.service_property, qos=1)
 time.sleep(10)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

If the reporting is successful, the reported device properties are displayed on the
device details page.

Figure 3-209 Viewing reported data - Battery_batteryLevel

NO TE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

Reporting a Message

Message reporting is the process in which a device reports messages to the
platform. The message_sample.py file provides the message reporting function.

Sending a message to the platform using the default topic
iot_client.publish_message('raw message: Hello Huawei cloud IoT')

If the message is reported, the following information is displayed:

 Publish success---mid = 1

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.8.4 Android Demo Usage Guide

Overview

This topic uses Android as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

Prerequisites
● You have installed Android Studio. If not, install Android Studio by following

the instructions provided on the Android Studio website and then install the
JDK.

● You have obtained the device access address from the IoTDA console. For
details about how to obtain the address, see Platform Connection
Information.

● You have created a product and a device on the IoTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
● Install Android Studio.

Go to the Android Studio website to download and install a desired version.
The following uses Android Studio 3.5 running on 64-bit Windows as an
example.

● Install the JDK. You can also use the built-in JDK of the IDE.

a. Go to the Oracle website to download a desired version. The following
uses JDK 8 for Windows x64 as an example.

b. After the download is complete, run the installation file and install the
JDK as prompted.

Importing Sample Code

Step 1 Download the sample code quickStart(Android).

Step 2 Run Android Studio, click Open, and select the sample code downloaded.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

https://developer.android.google.cn/studio/#downloads
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://developer.android.google.cn/studio/#downloads
https://www.oracle.com/java/technologies/javase-downloads.html
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip

Step 3 Import the sample code.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 263

Description of the directories:

● manifests: configuration file of the Android project
● java: Java code of the project

MainActivity: demo UI class
ConnectUtils: MQTT connection auxiliary class

● asset: native file of the project
DigiCertGlobalRootCA.bks: certificate used by the device to verify the
platform identity. It is used for login authentication when the device connects
to the platform.

● res: project resource file (image, layout, and character string)
● gradle: global Gradle build script of the project
● libs: third-party JAR packages used in the project

org.eclipse.paho.android.service-1.1.0.jar: component for Android to start
the background service component to publish and subscribe to messages
org.eclipse.paho.client.mqttv3-1.2.0.jar: MQTT java client component

Step 4 (Optional) Understand the key project configurations in the demo. (By default,
you do not need to modify the configurations.)
● AndroidManifest.xml: Add the following information to support the MQTT

service.
<service android:name="org.eclipse.paho.android.service.MqttService" />

● build.gradle: Add dependencies and import the JAR packages required for the
two MQTT connections in the libs directory. (You can also add the JAR
package to the website for reference.)
implementation files('libs/org.eclipse.paho.android.service-1.1.0.jar')
implementation files('libs/org.eclipse.paho.client.mqttv3-1.2.0.jar')

----End

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

UI Display

1. The MainActivity class provides UI display. Enter the device ID and secret,
which are obtained after the device is registered on the IoTDA console or by
calling the API Creating a Device.

2. In the example, the domain name accessed by the device is used by default.
(The domain name must match and be used together with the corresponding
certificate file during SSL-encrypted access.)
private final static String IOT_PLATFORM_URL = "iot-mqtts.cn-north-4.myhuaweicloud.com";

3. Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS 2 is not supported.
For details, see Constraints.
checkbox_mqtt_connet_ssl.setOnCheckedChangeListener(new
CompoundButton.OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 if (isChecked) {
 isSSL = true;
 checkbox_mqtt_connet_ssl.setText ("SSL encryption");
 } else {
 isSSL = false;
 checkbox_mqtt_connet_ssl.setText ("no SSL encryption");
 }
 }
})

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Call the MainActivity class to establish an MQTT or MQTTS connection. By
default, MQTT uses port 1883, and MQTTS uses port 8883 (a certificate must
be loaded).
if (isSSL) {
 editText_mqtt_log.append("Starting to establish an MQTTS connection" + "\n");
 serverUrl = "ssl://" + IOT_PLATFORM_URL + ":8883";
} else {
 editText_mqtt_log.append("Starting to establish an MQTT connection" + "\n");
 serverUrl = "tcp://" + IOT_PLATFORM_URL + ":1883";
}

2. Call the getMqttsCertificate method in the ConnectUtils class to load an
SSL certificate. This step is required only if an MQTTS connection is
established.
DigiCertGlobalRootCA.bks: certificate used by the device to verify the
platform identity for login authentication when the device connects to the
platform. You can download the certificate file using the link provided in
Certificates.
SSLContext sslContext = SSLContext.getInstance("SSL");
KeyStore keyStore = KeyStore.getInstance("bks");
The keyStore.load(context.getAssets().open("DigiCertGlobalRootCA.bks"), null);// Load the certificate
in the libs directory.
TrustManagerFactory trustManagerFactory = TrustManagerFactory.getInstance("X509");
trustManagerFactory.init(keyStore);
TrustManager[] trustManagers = trustManagerFactory.getTrustManagers();
sslContext.init(null, trustManagers, new SecureRandom());
sslSocketFactory = sslContext.getSocketFactory();

3. Call the intitMqttConnectOptions method in the MainActivity class to
initialize MqttConnectOptions. The recommended heartbeat interval for
MQTT connections is 120 seconds. For details, see Constraints.
mqttAndroidClient = new MqttAndroidClient(mContext, serverUrl, clientId);
private MqttConnectOptions intitMqttConnectOptions(String currentDate) {
 String password =
ConnectUtils.sha256_HMAC(editText_mqtt_device_connect_password.getText().toString(),
currentDate);
 MqttConnectOptions mqttConnectOptions = new MqttConnectOptions();
 mqttConnectOptions.setAutomaticReconnect(true);
 mqttConnectOptions.setCleanSession(true);
 mqttConnectOptions.setKeepAliveInterval(120);
 mqttConnectOptions.setConnectionTimeout(30);
 mqttConnectOptions.setUserName(editText_mqtt_device_connect_deviceId.getText().toString());
 mqttConnectOptions.setPassword(password.toCharArray());
 return mqttConnectOptions;
}

4. Call the connect method in the MainActivity class to set up a connection and
the setCallback method to process the message returned after the
connection is set up.
mqttAndroidClient.connect(mqttConnectOptions, null, new IMqttActionListener()
mqttAndroidClient.setCallback(new MqttCallBack4IoTHub());

If the connection fails, the onFailure function in initMqttConnects executes
backoff reconnection. Sample code:

@Override
public void onFailure(IMqttToken asyncActionToken, Throwable exception) {
 exception.printStackTrace();
 Log.e(TAG, "Fail to connect to: " + exception.getMessage());
 editText_mqtt_log.append("Failed to set up the connection: "+ exception.getMessage() + "\n");

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

 // Backoff reconnection
 int lowBound = (int) (defaultBackoff * 0.8);
 int highBound = (int) (defaultBackoff * 1.2);
 long randomBackOff = random.nextInt(highBound - lowBound);
 long backOffWithJitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff + lowBound);
 long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithJitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithJitter);
 try {
 Thread.sleep(waitTImeUntilNextRetry);
 } catch (InterruptedException e) {
 System.out.println("sleep failed, the reason is" + e.getMessage().toString());
 }
 retryTimes++;
 MainActivity.this.initMqttConnects();
}

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The MainActivity class provides the methods for delivering subscription
commands to topics, subscribing to topics, and unsubscribing from topics.

String mqtt_sub_topic_command_json = String.format("$oc/devices/%s/sys/commands/#",
editText_mqtt_device_connect_deviceId.getText().toString());
mqttAndroidClient.subscribe(getSubscriptionTopic(), qos, null, new IMqttActionListener()
mqttAndroidClient.unsubscribe(getSubscriptionTopic(), null, new IMqttActionListener()

If the connection is established, you can subscribe to the topic using a callback
function.

mqttAndroidClient.connect(mqttConnectOptions, null, new IMqttActionListener() {
 @Overridepublic void onSuccess(IMqttToken asyncActionToken) {

 subscribeToTopic();
}

After the connection is established, the following information is displayed in the
log area of the application page:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html

Reporting Properties
Devices can report their properties to the platform. For details about the API, see
Device Reporting Properties.

The MainActivity class implements the property reporting topic and property
reporting.

String mqtt_report_topic_json = String.format("$oc/devices/%s/sys/properties/report",
editText_mqtt_device_connect_deviceId.getText().toString());
MqttMessage mqttMessage = new MqttMessage();
mqttMessage.setPayload(publishMessage.getBytes());
mqttAndroidClient.publish(publishTopic, mqttMessage);

If the reporting is successful, the reported device properties are displayed on the
device details page.

Figure 3-210 Viewing reported data - PeriodicalReportConfig

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

Figure 3-211 Viewing reported data - Battery_level

NO TE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

Receiving a Command
The MainActivity class provides the methods for receiving commands delivered by
the platform. After an MQTT connection is established, you can deliver commands
on the device details page of the IoTDA console or by using the demo on the
application side. For example, deliver a command carrying the parameter name
command and parameter value 5. After the command is delivered, a result is
received using the MQTT callback.

private final class MqttCallBack4IoTHub implements MqttCallbackExtended {

 @Overridepublic void messageArrived(String topic, MqttMessage message) throws Exception {
 Log.i(TAG, "Incoming message: " + new String(message.getPayload(), StandardCharsets.UTF_8));
 editText_mqtt_log.append("MQTT receives the delivered command: " + message + "\n")
 }

On the device details page, you can view the command delivery status. In this
example, timeout is displayed because this demo does not return a response to
the platform.

If the property reporting and command receiving are successful, the following
information is displayed in the log area of the application:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

3.8.5 C Demo Usage Guide

Overview
This topic uses C as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed the Linux operating system (OS) and GCC (4.8 or later).
● You have obtained OpenSSL (required in MQTTS scenarios) and Paho library

dependencies.
● You have obtained the device access address from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and a device on the IoTDA console. For details,

see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
● Compiling the OpenSSL library

a. Visit the OpenSSL website (https://www.openssl.org/source/), download
the latest OpenSSL version (for example, openssl-1.1.1d.tar.gz), upload it

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://www.openssl.org/source/

to the Linux compiler (for example, to the /home/test directory), and run
the following command to decompress the package:
tar -zxvf openssl-1.1.1d.tar.gz

b. Generate a makefile.
Run the following command to access the OpenSSL source code
directory:
cd openssl-1.1.1d

Run the following configuration command:
./config shared --prefix=/home/test/openssl --openssldir=/home/test/openssl/ssl

In this command, prefix is the installation directory, openssldir is the
configuration file directory, and shared is used to generate a dynamic-
link library (.so library).
If an exception occurs during the compilation, add no-asm to the
configuration command (indicating that the assembly code is not used).
./config no-asm shared --prefix=/home/test/openssl --openssldir=/home/
test/openssl/ssl

c. Generate library files.
Run the following command in the OpenSSL source code directory:
make depend

Run the following command for compilation:
make

Install OpenSSL.
make install

Find the lib directory in home/test/openssl under the OpenSSL
installation directory.
The library files libcrypto.so.1.1, libssl.so.1.1, libcrypto.so, and libssl.so
are generated. Copy these files to the lib folder of the demo and copy the
content in /home/test/openssl/include/openssl to include/openssl of
the demo.

Note: Some compilation tools are 32-bit. If these tools are used on a 64-
bit Linux computer, delete -m64 from the makefile before the
compilation.

● Compiling the Eclipse Paho library file

a. Visit https://github.com/eclipse/paho.mqtt.c to download the source
code paho.mqtt.c.

b. Decompress the package and upload it to the Linux compiler.
c. Modify the makefile.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

https://github.com/eclipse/paho.mqtt.c

i. Run the following command to edit the makefile:
vim Makefile

ii. Search for the string.
/DOXYGEN_COMMAND =

iii. Add the following two lines (customized OpenSSL header files and
library files) under /DOXYGEN_COMMAND =doxygen:
CFLAGS += -I/home/test/openssl/include
LDFLAGS += -L/home/test/openssl/lib -lrt

iv. Replace the OpenSSL addresses of CCDLAGS_SO, LDFLAGS_CS,
LDFLAGS_AS and FLAGS_EXES to the actual ones.

d. Start the compilation.

i. Run the following command:
make clean

ii. Run the following command:
make

e. After the compilation is complete, you can view the libraries that are
compiled in the build/output directory.

f. Copy the Paho library file.

Currently, only libpaho-mqtt3as is used in the SDK. Copy the libpaho-
mqtt3as.so and libpaho-mqtt3as.so.1 files to the lib folder of the demo.
Go back to the Paho source code directory, and copy MQTTAsync.h,
MQTTClient.h, MQTTClientPersistence.h, MQTTProperties.h,
MQTTReasonCodes.h, and MQTTSubscribeOpts.h in the src directory to
the include/base directory of the demo.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

NO TE

Some Paho versions have the MQTTExportDeclarations.h header file. You are
advised to add all MQTT-related header files to the folder.

Importing Sample Code

Step 1 Download the sample code quickStart(C).

Step 2 Copy the code to the Linux runtime environment. The following figure shows the
code file hierarchy.

Description of the directories:

● src: source code directory
mqtt_c_demo: core source code of the demo
util/string_util.c: utility resource file

● conf: certificate directory
rootcert.pem is used by the device to verify the platform identity when the
device connects to the platform. For not basic edition instance, copy the
content of the c/ap-southeast-1-device-client-rootcert.pem file in the
certificate file to the conf/rootcert.pem file.

● include: header files
base: dependent Paho header files
openssl: dependent OpenSSL header files
util: header files of the dependent tool resources

● lib: dependent library file
libcrypto.so*/libssl.so*: OpenSSL library file
libpaho-mqtt3as.so*: Paho library file

● Makefile: Makefile

----End

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Set parameters.
char *uri = "ssl://iot-mqtts.cn-north-4.myhuaweicloud.com:8883";
int port = 8883;
char *username = "********"; //deviceId
char *password = "********";

Note: MQTTS uses port 8883 for access. If MQTT is used for access, the URL is
tcp://Domain name space:1883 and the port is 1883. For details about how
to obtain the domain name space, see Platform Connection Information.
The default heartbeat interval is 120 seconds. To change it, modify the
keepAliveInterval parameter. For details about the heartbeat interval range,
see Constraints.

2. Start the connection.
– Add -lm to the end of the 15th line in Makefile and run the make

command for compilation. Delete -m64 from the makefile in a 32-bit
OS.

– Run export LD_LIBRARY_PATH=./lib/ to load the library file.
– Run ./MQTT_Demo.o.

//connect
int ret = mqtt_connect();
if (ret != 0) {
 printf("connect failed, result %d\n", ret);
}

3. If the connection is successful, the message "connect success" is displayed.
The device is also displayed as Online on the console.

Figure 3-212 Device list - Device online status

If the connection fails, the mqtt_connect_failure function executes
backoff reconnection. The example code is as follows:
void mqtt_connect_failure(void *context, MQTTAsync_failureData *response) {
 retryTimes++;
 printf("connect failed: messageId %d, code %d, message %s\n", response->token, response->code,
response->message);
 // Backoff reconnection
 int lowBound = defaultBackoff * 0.8;
 int highBound = defaultBackoff * 1.2;
 int randomBackOff = rand() % (highBound - lowBound + 1);
 long backOffWithJitter = (int)(pow(2.0, (double)retryTimes) - 1) * (randomBackOff + lowBound);
 long waitTImeUntilNextRetry = (int)(minBackoff + backOffWithJitter) > maxBackoff ? (minBackoff
+ backOffWithJitter) : maxBackoff;

 TimeSleep(waitTImeUntilNextRetry);

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

 //connect
 int ret = mqtt_connect();
 if (ret != 0) {
 printf("connect failed, result %d\n", ret);
 }
}

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

Subscribe to a topic.

//subscribe
char *cmd_topic = combine_strings(3, "$oc/devices/", username, "/sys/commands/#");
ret = mqtt_subscribe(cmd_topic);
free(cmd_topic);
cmd_topic = NULL;
if (ret < 0) {
 printf("subscribe topic error, result %d\n", ret);
}

If the subscription is successful, the message "subscribe success" is displayed in the
demo.

Reporting Properties
Devices can report their properties to the platform. For details, see Reporting
Device Properties.

//publish data
char *payload = "{\"services\":[{\"service_id\":\"parameter\",\"properties\":{\"Load\":\"123\",\"ImbA_strVal
\":\"456\"}}]}";
char *report_topic = combine_strings(3, "$oc/devices/", username, "/sys/properties/report");
ret = mqtt_publish(report_topic, payload);
free(report_topic);
report_topic = NULL;
if (ret < 0) {
 printf("publish data error, result %d\n", ret);
}

If the property reporting is successful, the message "publish success" is displayed
in the demo.

The reported properties are displayed on the device details page.

Figure 3-213 Viewing reported data - Parameter

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

NO TE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

Receiving a Command

After subscribing to a command topic, you can deliver a synchronous command on
the console. For details, see Command Delivery to an Individual MQTT Device.

If the command delivery is successful, the command received is displayed in the
demo:

The code for receiving commands in the demo is as follows:

//receive message from the server
int mqtt_message_arrive(void *context, char *topicName, int topicLen, MQTTAsync_message *message) {
 printf("mqtt_message_arrive() success, the topic is %s, the payload is %s \n", topicName, message-
>payload);
 return 1; // cannot return 0 here, otherwise the message will not update or something wrong would
happen
}

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.8.6 C# Demo Usage Guide

Overview

This topic uses C# as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed Microsoft Visual Studio. If not, follow the instructions

provided in Install Microsoft Visual Studio.

● You have obtained the device access address from the IoTDA console. For
details, see Platform Connection Information.

● You have created a product and a device on the IoTDA console. For details,
see Create a Product, Registering an Individual Device, and Registering a
Batch of Devices.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0339.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html

Preparations
● Go to the Microsoft website to download and install Microsoft Visual Studio

of a desired version. (The following uses Windows 64-bit, Microsoft Visual
Studio 2017, and .NET Framework 4.5.1 as examples.)

● After the download is complete, run the installation file and install Microsoft
Visual Studio as prompted.

Importing Sample Code

Step 1 Download the sample code quickStart(C#).

Step 2 Run Microsoft Visual Studio 2017, click Open Project/Solution, and select the
sample code downloaded.

Step 3 Import the sample code.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

https://visualstudio.microsoft.com/
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip

Description of the directories:

● App.config: configuration file containing the server address and device
information

● C#: C# code of the project

EncryptUtil.cs: auxiliary class for device secret encryption

FrmMqttDemo.cs: window UI

Program.cs: entry for starting the demo

● dll: third-party libraries used in the project

MQTTnet v3.0.11 is a high-performance, open-source .NET library based on
MQTT. It supports both MQTT servers and clients. The reference library files
include MQTTnet.dll.

MQTTnet.Extensions.ManagedClient v3.0.11 is an extension library that uses
MQTTnet to provide additional functions for the managed MQTT client.

Step 4 Set the project parameters in the demo.

● App.config: Set the server address, device ID, and device secret. When the
demo is started, the information is automatically written to the demo main
page.

<add key="serverUri" value="serveruri"/>

<add key="deviceId" value="deviceid"/>

<add key="deviceSecret" value="secret"/>

<add key="PortIsSsl" value="8883"/>

<add key="PortNotSsl" value="1883"/>

----End

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

UI Display

1. The FrmMqttDemo class provides a UI. By default, the FrmMqttDemo class
automatically obtains the server address, device ID, and device secret from the
App.config file after startup. Set the parameters based on the actual device
information.
– Server address: domain name. For details on how to obtain the domain

name, see Platform Connection Information.
– Device ID and secret: obtained after the device is registered on the

IoTDA console or the API Creating a Device is called.
2. In the example, enter the server address. (The server address must match and

be used together with the corresponding certificate file during SSL-encrypted
access.)
<add key="serverUri" value="iot-mqtts.cn-north-4.myhuaweicloud.com"/>;

3. Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS 2 is not supported.
For details, see Constraints.

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. The FrmMqttDemo class provides methods for establishing MQTT or MQTTS
connections. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS connections, you must load the
DigiCertGlobalRootCA.crt.pem certificate for verifying the platform identity.
This certificate is used for login authentication when the device connects to
the platform. You can download the certificate file from Obtaining
Resources.) Call the ManagedMqttClientOptionsBuilder class to set the
initial KeepAlivePeriod. The recommended heartbeat interval for MQTT
connections is 120 seconds. For details, see Constraints.
int portIsSsl = int.Parse(ConfigurationManager.AppSettings["PortIsSsl"]);
int portNotSsl = int.Parse(ConfigurationManager.AppSettings["PortNotSsl"]);

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html

if (client == null)
{
 client = new MqttFactory().CreateManagedMqttClient();
}

string timestamp = DateTime.Now.ToString("yyyyMMddHH");
string clientID = txtDeviceId.Text + "_0_0_" + timestamp;

// Encrypt passwords using HMAC SHA256.
string secret = string.Empty;
if (!string.IsNullOrEmpty(txtDeviceSecret.Text))
{
 secret = EncryptUtil.HmacSHA256(txtDeviceSecret.Text, timestamp);
}

// Check whether the connection is secure.
if (!cbSSLConnect.Checked)
{
 options = new ManagedMqttClientOptionsBuilder()
 .WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
 .WithClientOptions(new MqttClientOptionsBuilder()
 .WithTcpServer(txtServerUri.Text, portNotSsl)
 .WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
 .WithCredentials(txtDeviceId.Text, secret)
 .WithClientId(clientID)
 .WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
 .WithCleanSession(false)
 .WithProtocolVersion(MqttProtocolVersion.V311)
 .Build())
 .Build();
}
else
{
 string caCertPath = Environment.CurrentDirectory + @"\certificate\rootcert.pem";
 X509Certificate2 crt = new X509Certificate2(caCertPath);

 options = new ManagedMqttClientOptionsBuilder()
 .WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
 .WithClientOptions(new MqttClientOptionsBuilder()
 .WithTcpServer(txtServerUri.Text, portIsSsl)
 .WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
 .WithCredentials(txtDeviceId.Text, secret)
 .WithClientId(clientID)
 .WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
 .WithCleanSession(false)
 .WithTls(new MqttClientOptionsBuilderTlsParameters()
 {
 AllowUntrustedCertificates = true,
 UseTls = true,
 Certificates = new List<X509Certificate> { crt },
 CertificateValidationHandler = delegate { return true; },
 IgnoreCertificateChainErrors = false,
 IgnoreCertificateRevocationErrors = false
 })
 .WithProtocolVersion(MqttProtocolVersion.V311)
 .Build())
 .Build();
}

2. Call the StartAsync method in the FrmMqttDemo class to set up a
connection. After the connection is set up, the OnMqttClientConnected is
called to print connection success logs.
Invoke((new Action(() =>
{
 ShowLogs($"{"try to connect to server " + txtServerUri.Text}{Environment.NewLine}");
})));

if (client.IsStarted)
{

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

 await client.StopAsync();
}

// Register an event.
client.ApplicationMessageProcessedHandler = new
ApplicationMessageProcessedHandlerDelegate(new
Action<ApplicationMessageProcessedEventArgs>(ApplicationMessageProcessedHandlerMethod)); //
Called when a message is published.

client.ApplicationMessageReceivedHandler = new
MqttApplicationMessageReceivedHandlerDelegate(new
Action<MqttApplicationMessageReceivedEventArgs>(MqttApplicationMessageReceived)); // Called
when a command is delivered.

client.ConnectedHandler = new MqttClientConnectedHandlerDelegate(new
Action<MqttClientConnectedEventArgs>(OnMqttClientConnected)); // Called when a connection is set
up.

Callback function when the client.DisconnectedHandler = new
MqttClientDisconnectedHandlerDelegate(new
Action<MqttClientDisconnectedEventArgs>(OnMqttClientDisconnected)); // Called when a connection
is released.

// Connect to the platform.
await client.StartAsync(options);

If the connection fails, the OnMqttClientDisconnected function executes
backoff reconnection. Sample code:
private void OnMqttClientDisconnected(MqttClientDisconnectedEventArgs e)
{
 try {
 Invoke((new Action(() =>
 {
 ShowLogs("mqtt server is disconnected" + Environment.NewLine);

 txtSubTopic.Enabled = true;
 btnConnect.Enabled = true;
 btnDisconnect.Enabled = false;
 btnPublish.Enabled = false;
 btnSubscribe.Enabled = false;
 })));

 if (cbReconnect.Checked)
 {
 Invoke((new Action(() =>
 {
 ShowLogs("reconnect is starting" + Environment.NewLine);
 })));

 // Backoff reconnection
 int lowBound = (int)(defaultBackoff * 0.8);
 int highBound = (int)(defaultBackoff * 1.2);
 long randomBackOff = random.Next(highBound - lowBound);
 long backOffWithJitter = (int)(Math.Pow(2.0, retryTimes)) * (randomBackOff + lowBound);
 long waitTImeUtilNextRetry = (int)(minBackoff + backOffWithJitter) > maxBackoff ?
maxBackoff : (minBackoff + backOffWithJitter);

 Invoke((new Action(() =>
 {
 ShowLogs("next retry time: " + waitTImeUtilNextRetry + Environment.NewLine);
 })));

 Thread.Sleep((int)waitTImeUtilNextRetry);

 retryTimes++;

 Task.Run(async () => { await ConnectMqttServerAsync(); });
 }
 }

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

 catch (Exception ex)
 {
 Invoke((new Action(() =>
 {
 ShowLogs("mqtt demo error: " + ex.Message + Environment.NewLine);
 })));
 }
}

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The FrmMqttDemo class provides the method for delivering subscription
commands to topics.

List<MqttTopicFilter> listTopic = new List<MqttTopicFilter>();

var topicFilterBulderPreTopic = new MqttTopicFilterBuilder().WithTopic(topic).Build();
listTopic.Add(topicFilterBulderPreTopic);

// Subscribe to a topic.
client.SubscribeAsync(listTopic.ToArray()).Wait();

After the connection is established and a topic is subscribed, the following
information is displayed in the log area on the home page of the demo:

Receiving a Command
The FrmMqttDemo class provides the method for receiving commands delivered
by the platform. After an MQTT connection is established and a topic is
subscribed, you can deliver a command on the device details page of the IoTDA
console or by using the demo on the application side. After the command is
delivered, the MQTT callback receives the command delivered by the platform.

private void MqttApplicationMessageReceived(MqttApplicationMessageReceivedEventArgs e)
{
 Invoke((new Action(() =>
 {

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

 ShowLogs($"received message is {Encoding.UTF8.GetString(e.ApplicationMessage.Payload)}
{Environment.NewLine}");

 string msg = "{\"result_code\": 0,\"response_name\": \"COMMAND_RESPONSE\",\"paras\": {\"result\":
\"success\"}}";

 string topic = "$oc/devices/" + txtDeviceId.Text + "/sys/commands/response/request_id=" +
e.ApplicationMessage.Topic.Split('=')[1];

 ShowLogs($"{"response message msg = " + msg}{Environment.NewLine}");

 var appMsg = new MqttApplicationMessage();
 appMsg.Payload = Encoding.UTF8.GetBytes(msg);
 appMsg.Topic = topic;
 appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue.ToString()) == 0 ?
MqttQualityOfServiceLevel.AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;
 appMsg.Retain = false;

 // Return the upstream response.
 client.PublishAsync(appMsg).Wait();
 })));
}

For example, deliver a command carrying the parameter name
SmokeDetectorControl: SILENCE and parameter value 50.

Figure 3-214 Command delivery - Synchronous command delivery

After the command is delivered, the following information is displayed on the
demo page:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

Publishing a Topic
Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the API Device Reporting Properties.

The FrmMqttDemo class implements the property reporting topic and property
reporting.

var appMsg = new MqttApplicationMessage();
appMsg.Payload = Encoding.UTF8.GetBytes(inputString);
appMsg.Topic = topic;
appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue.ToString()) == 0 ?
MqttQualityOfServiceLevel.AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;
appMsg.Retain = false;

// Return the upstream response.
client.PublishAsync(appMsg).Wait();

After a topic is published, the following information is displayed on the demo
page:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

If the reporting is successful, the reported device properties are displayed on the
device details page.

Figure 3-215 Viewing reported data - Demo_smokeDetector

NO TE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.8.7 Node.js Demo Usage Guide

Overview

This topic uses Node.js as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed Node.js by following the instructions provided in Install

Node.js.
● You have obtained the device access address from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and a device on the IoTDA console. For details,

see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
1. Go to the Node.js website to download and install a desired version. The

following uses Windows 64-bit and Node.js v12.18.0 (npm 6.14.4) as an
example.

2. After the download is complete, run the installation file and install Node.js as
prompted.

3. Verify that the installation is successful.
Press Win+R, enter cmd, and press Enter. The command-line interface (CLI) is
displayed.
Enter node -v and press Enter. The Node.js version is displayed. Enter npm -v.
If any version information is displayed, the installation is successful.

Importing Sample Code

Step 1 Download the sample code quickStart(Node.js) and decompress the package.

Step 2 Press Win+R, enter cmd, and press Enter to open the CLI. Run the following
commands to install the global module:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://nodejs.org/en/download/
https://obs-pipeline.obs.cn-north-4.myhuaweicloud.com/sdkDeploy/quickStart/quickStart%28nodejs%29.zip

npm install mqtt -g: This command is used to install the MQTT protocol module.

npm install crypto-js -g: This command is used to install the device secret
cryptographic algorithm module.

npm install fs -g: This command is used to load the platform certificate.

Step 3 Find the directory where the package is decompressed.

Code directory:
● DigiCertGlobalRootCA.crt.pem: platform certificate file
● MqttDemo.js: Node.js source code for MQTT or MQTTS connection to the

platform, property reporting, and command delivery.

Step 4 Set the project parameters in the demo. In MqttDemo.js, set the server address,
device ID, and device secret for connecting to the device registered on the console
when the demo is started.
● Server address: domain name. For details on how to obtain the server address,

see Platform Connection Information. The server address must match and
be used together with the corresponding certificate file during SSL-encrypted
access.

● Device ID and secret: obtained after the device is registered on the IoTDA
console or the API Creating a Device is called.

var TRUSTED_CA = fs.readFileSync("DigiCertGlobalRootCA.crt.pem");// Obtain a certificate.

// MQTT connection address of the platform (Replace it with the domain name of the IoT platform that
the device is connected to.)
var serverUrl = "xxx.myhuaweicloud.com"; // Enter the access address of the platform that the device is
connected to.

// Device ID and secret obtained during device registration (Replace them with the actual values.)
var deviceId = "722cb****************";
var secret = "****";
var timestamp = dateFormat("YYYYmmddHH", new Date());

var propertiesReportJson = {'services':[{'properties':
{'alarm':1,'temperature':12.670784,'humidity':18.37673,'smokeConcentration':19.97906},'service_id':'smokeDet
ector','event_time':null}]};
var responseReqJson = {'result_code': 0,'response_name': 'COMMAND_RESPONSE','paras': {'result': 'success'}};

Step 5 Select different options from mqtt.connect(options) to determine whether to
perform SSL encryption during connection establishment on the device. You are
advised to use the default MQTTS connection.
// MQTTS connection
var options = {

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

 host: serverUrl,
 port: 8883,
 clientId: getClientId(deviceId),
 username: deviceId,
 password:HmacSHA256(secret, timestamp).toString(),
 ca: TRUSTED_CA,
 protocol: 'mqtts',
 rejectUnauthorized: false,
 keepalive: 120,
 reconnectPeriod: 10000,
 connectTimeout: 30000
}

// MQTT connection is insecure and is not recommended.
var option = {
 host: serverUrl,
 port: 1883,
 clientId: getClientId(deviceId),
 username: deviceId,
 password: HmacSHA256(secret, timestamp).toString(),
 keepalive: 120,
 reconnectPeriod: 10000,
 connectTimeout: 30000
 //protocol: 'mqtts'
 //rejectUnauthorized: false
}

// By default, options is used for secure connection.
var client = mqtt.connect(options);

----End

Starting the Demo
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. This demo provides methods such as establishing an MQTT or MQTTS
connection. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS connections, you must load the certificate for verifying the
platform identity. The certificate is used for login authentication when the
device connects to the platform.) Call the mqtt.connect(options) method to
establish an MQTT connection.
var client = mqtt.connect(options);

client.on('connect', function () {
 log("connect to mqtt server success, deviceId is " + deviceId);
 // Subscribe to a topic.
 subScribeTopic();
 // Publish a message.
 publishMessage();
})

// Respond to the command.
client.on('message', function (topic, message) {
 log('received message is ' + message.toString());

 var jsonMsg = responseReq;
 client.publish(getResponseTopic(topic.toString().split("=")[1]), jsonMsg);
 log('response message is ' + jsonMsg);
})

Find the Node.js demo source code directory, modify key project parameters,
and start the demo.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

Before the demo is started, the device is in the offline state.

Figure 3-216 Device list - Device offline status

After the demo is started, the device status changes to online.

Figure 3-217 Device list - Device online status

If the connection fails, the reconnect function executes backoff
reconnection. The example code is as follows:
client.on('reconnect', () => {

 log("reconnect is starting");

 // Backoff reconnection
 var lowBound = Number(defaultBackoff)*Number(0.8);
 var highBound = Number(defaultBackoff)*Number(1.2);

 var randomBackOff = parseInt(Math.random()*(highBound-lowBound+1),10);

 var backOffWithJitter = (Math.pow(2.0, retryTimes)) * (randomBackOff + lowBound);

 var waitTImeUtilNextRetry = (minBackoff + backOffWithJitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithJitter);

 client.options.reconnectPeriod = waitTImeUtilNextRetry;

 log("next retry time: " + waitTImeUtilNextRetry);

 retryTimes++;
})

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

2. Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics. This
demo calls the subScribeTopic method to subscribe to a topic. After the
subscription is successful, wait for the platform to deliver a command.
// Subscribe to a topic for receiving commands.
function subScribeTopic() {
 client.subscribe(getCmdRequestTopic(), function (err) {
 if (err) {
 log("subscribe error:" + err);
 } else {
 log("topic : " + getCmdRequestTopic() + " is subscribed success");
 }
 })
}

3. Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the API Device Reporting
Properties. After the connection is successful, call the publishMessage
method to report properties.
// Report JSON data. serviceId must be the same as that defined in the product model.
function publishMessage() {
 var jsonMsg = propertiesReport;
 log("publish message topic is " + getReportTopic());
 log("publish message is " + jsonMsg);
 client.publish(getReportTopic(), jsonMsg);
 log("publish message successful");
}

Reported properties in the JSON format are as follows:
var propertiesReportJson = {'services':[{'properties':
{'alarm':1,'temperature':12.670784,'humidity':18.37673,'smokeConcentration':19.97906},'service_id':'smo
keDetector','event_time':null}]};

The following figure shows the CLI.

If the properties are reported, the following information is displayed on the
IoTDA console:

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

Figure 3-218 Viewing reported data - Demo_smokeDetector

NO TE

If the latest data is not displayed on the device details page, check whether the
services and properties reported by the device are the same as those in the product
model.

Receiving a Command
The demo provides the method for receiving commands delivered by the platform.
After an MQTT connection is established and a topic is subscribed, you can deliver
a command to a device of specific ID on the device details page of the IoTDA
console or by using the demo on the application side. After the command is
delivered, the MQTT callback function receives the command delivered by the
platform.

For example, deliver a command carrying the parameter name smokeDetector:
SILENCE and parameter value 50.

Figure 3-219 Command delivery - SILENCE

After the command is delivered, the demo receives a 50 message. The following
figure shows the command execution page.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.9 OTA Upgrade Adaptation on the Device Side

3.9.1 Adaptation Development on the Device Side

Overview

Software OTA is implemented using the Huawei proprietary PCP protocol. You
must perform adaptation development on devices in accordance with the
interaction process defined in the protocol. The following describes how a device
constructs a PCP request and response based on the software upgrade interactions
between the IoT platform and device. This helps you better develop software
upgrade functions on the devices.

PCP requests and responses have the same message structure, as shown below.

For details on each field in the message structure, see the table below.

Field Type Description

Start ID WORD The value is fixed at 0XFFFE.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4

Field Type Description

Version BYTE The four most significant bits are
reserved. The four least significant
bits indicate the protocol version.
Currently, the version is 1.

Message code BYTE Type of the request exchanged
between the platform and device.
The message code of a response is
the same as that of the request. The
following message codes have been
defined:
● 0-18: reserved
● 19: device version query
● 20: software package notification
● 21: software package download
● 22: download result reporting
● 23: upgrade execution
● 24: upgrade result reporting
● 25-127: reserved

Check code WORD CRC16 check value calculated from
the start ID to the last byte of the
data zone. Before the calculation,
this field is set to 0. The result is then
written to the field after the CRC16
calculation.
NOTE

CRC16 algorithm: CRC16/CCITT
x16+x12+x5+1

Data zone length WORD Length of the data zone.

Data zone BYTE[n] Variable length, which is defined by
each instruction. For details, see the
definitions of the request and
response corresponding to each
instruction.

Data Type Description

BYTE Unsigned 1-byte integer

WORD Unsigned 2-byte integer

DWORD Unsigned 4-byte integer

BYTE[n] Hexadecimal number of n bytes

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

Data Type Description

STRING String

Query on the Device Version
In the software upgrade process, the platform delivers a version query request to
the device and the device responds to the request. (The process below includes
only the PCP interactions between the platform and device.)

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
request as follows:

● Start ID: The value is fixed at the first two bytes of a message stream, that is,
FFFE.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

● Version: The value is a 1-byte integer and is fixed at 1 (hexadecimal value:
01).

● Message code: The value is a 1-byte integer. The message code for device
version query is 19 (hexadecimal value: 13).

● Check code: The value is a 2-byte integer. The system sets the check code to
0000, calculates the complete message stream by using the CRC16 algorithm
to obtain a new check code, and then replaces 0000 with the new code.

● Data zone length: The value is a 2-byte integer, indicating the length of the
data zone. Based on the structure of the data zone, a version query request
has no data zone. Therefore, the length is 0000.

● Data zone: indicates the data to be sent to the device. Based on the structure
of the data zone, this message does not contain the data to send. The data
zone field is null.

Field Data Type Description

No data zone

Therefore, the combined code stream is FFFE 01 13 0000 0000. This stream is
calculated using the CRC16 algorithm to obtain check code 4C9A. (The platform
provides CRC16 code examples based on Java and C.) Then, the generated check
code is used to replace 0000 in the original code stream to obtain FFFE 01 13
4C9A 0000. This code stream is sent by the platform to the device to query its
version.

Message Sent by the Device

After receiving the version query request from the platform, the device returns the
query result. The fields in the response are as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

● Message code: The value is 13 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 17 bytes (hexadecimal value: 0011).

● Data zone: Based on the structure of the data zone, the result code of
successful processing is 00. Assume that the version is V0.9, which is
converted to ASCII characters 56302E39. The data type of the version is
BYTE[16], which indicates 16 bytes. The version 56302E39 has only 4 bytes.
Therefore, 0 is appended to obtain 56302E39000000000000000000000000.
The data zone is 0056302E39000000000000000000000000.

Field Data Type Description

Result code BYTE The value is 0X00,
indicating that the
processing was
successful.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

Field Data Type Description

Current version BYTE[16] The version is described
using ASCII characters.
If there are not enough
available digits, 0X00 is
appended.

The combined code stream is FFFE 01 13 0000 0011
0056302E39000000000000000000000000. The check code after CRC16 calculation
is 8DE3. Therefore, the device returns the code stream FFFE 01 13 8DE3 0011
0056302E39000000000000000000000000 to the platform.

Notification of a New Software Package
After obtaining the software version, the platform notifies the device of the
software package of the new version.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
notification as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

● Message code: Based on the message code, the message code of the new
software package notification is 20 (hexadecimal value: 14).

● Check code: The value 0000 is used before CRC16 calculation.
● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 22 bytes (hexadecimal value: 0016).
● Data zone:

– Target version: The value consists of 16 bytes. If the target version is
v1.0, the hexadecimal value appended with 0 is
56312E30000000000000000000000000.

– Upgrade package segment size: The value consists of two bytes. You
can manually enter the size of the upgrade package segment when
uploading the software package. The default value is 500 bytes. The size
ranges from 32 bytes to 500 bytes. For example, if the value is 500 bytes,
the hexadecimal value is 01F4.

– Number of upgrade package segments: The value consists of two bytes.
The value is obtained by rounding up the result of the software package
size divided by the segment size. If the software package size is 500
bytes, the number of segments is 1 (hexadecimal value: 0001).

– Check code: The value consists of two bytes. This field has been
deprecated. The fixed value is 0000.

Field Data Type Description

Target version BYTE[16] The version is
described using ASCII
characters. If there
are not enough
available digits, 0X00
is appended.

Upgrade package
segment size

WORD Size of each segment.

Number of upgrade
package segments

WORD Number of upgrade
package segments.

Check code WORD The value is fixed at
0000.

The combined code stream is FFFE 01 14 0000 0016
56312E30000000000000000000000000 01F4 0001 0000. The check code after
CRC16 calculation is 02F7. Therefore, the code stream in the message sent by
the platform to instruct the device to download the new software package is
FFFE 01 14 02F7 0016 56312E3000000000000000000000000001F400010000.
Message Sent by the Device
After receiving the notification, the device returns a response to the platform,
indicating whether to allow the upgrade. The fields in the response are as
follows:
– Start ID: The value is fixed at FFFE.
– Version: The value is fixed at 01.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

– Message code: The value is 14 (the same as that in the request).
– Check code: The value 0000 is used before CRC16 calculation.
– Data zone length: In accordance with the data type of the fields in the

data zone, the length is 1 byte (hexadecimal value: 0001).
– Data zone: The device responds to the new software package notification

based on the actual situation. In this example, the device responds with
"The upgrade is allowed". The data zone is 00. The other result codes
must be adapted accordingly.

Field Data Type Description

Result code BYTE 0X00: The upgrade is
allowed.
0X01: The device is in
use.
0X02: The signal is
weak.
0X03: The latest
version is in use.
0X04: The battery
power is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.
0X7F: An internal
error has occurred.

The combined code stream is FFFE 01 14 0000 0001 00. The check code after
CRC16 calculation is D768. Therefore, the code stream in the message
returned by the device is FFFE 01 14 D768 000100.

Downloading the Software Package
After the platform notifies the device of the new software package, the device
requests to download the package according to the sequence number of each
segment.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

Message Sent by the Device

The device sends the first message to the platform to request packet
segmentation. In accordance with the PCP message structure, the device fills
each field in the first message as follows:

● Start ID: The value is fixed at FFFE.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

● Version: The value is fixed at 01.
● Message code: In accordance with the message code, the message code for

requesting the software package is 21 (hexadecimal value: 15).
● Check code: The value 0000 is used before CRC16 calculation.
● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 18 bytes (hexadecimal value: 0012).
● Data zone: The target version is the version in the notification delivered by

the platform, v1.0 (hexadecimal value:
56312E30000000000000000000000000). The segment sequence number is 0
(hexadecimal value: 0000).

Field Data Type Description

Target version BYTE[16] The version is described
using ASCII characters.
If there are not enough
available digits, 0X00 is
appended.

Segment sequence
number

WORD Sequence number of
the requested segment.
The value starts from 0.
The total number of
segments is obtained
by rounding up the
result of the software
package size divided by
the segment size. The
device can save the
received segments and
request for the missing
segments next time.
Resumable download is
supported.

The combined code stream is FFFE 01 15 0000 0012
56312E30000000000000000000000000 0000. The check code after CRC16
calculation is 5618. Therefore, the code stream in the first segment request sent by
the device is FFFE 01 15 5618 0012 56312E300000000000000000000000000000.

For the code stream in other segment requests, only the segment sequence
number needs to be replaced, and the check code needs to be replaced after
CRC16 calculation. Details are not provided.

Message Sent by the Platform

After receiving a segment request, the platform delivers the segmented data to
the device. The fields in the response to the first segment request are as follows:

● Start ID: The value is fixed at FFFE.
● Version: The value is fixed at 01.
● Message code: The value is 15 (the same as that in the request).

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

● Check code: The value 0000 is used before CRC16 calculation.
● Data zone: The result code is 00. The segment sequence number is 0000. The

segment data depends on the content defined in the software package. If the
software package content is HELLO, IoT SOTA!, the hexadecimal value
converted through ASCII code is 48454C4C4F2C20496F5420534F544121, 16
bytes in total. When uploading a software package, you need to manually
enter the size of the upgrade package segment, which is 500 bytes. In this
case, no 0 needs to be appended.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 19 bytes (hexadecimal value: 0013).

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.
0X81: The specified
segment does not exist.

Segment sequence
number

WORD Sequence number of a
returned segment.

Segment data BYTE[n] Content of the
segment. n indicates
the segment size. If the
result code is not 0, this
field is not included.

The combined code stream is FFFE 01 15 0000 0013 00 0000
48454C4C4F2C20496F5420534F544121. The check code after CRC16 calculation is
E107. The code stream in the message sent by the platform to respond to the first
segment request is FFFE 01 15 E107 0013 00 0000
48454C4C4F2C20496F5420534F544121.

For the code stream in responses to the other segment requests, the segment
sequence number and segment data need to be replaced, and the check code
needs to be replaced after CRC16 calculation. Details are not provided.

Download Result Reporting
After receiving all segments and assembling them, the device reports the
download result to the platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

Message Sent by the Device

In accordance with the PCP message structure, the device fills each field in the
message as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

● Message code: The value is 16 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

● Data zone: carries the software package download results. For example, if the
download was successful, the device reports 00.

Field Data Type Description

Download status BYTE 0X00: The upgrade
package has been
downloaded.
0X05: The remaining
space is insufficient.
0X06: The download
timed out.
0X07: The upgrade
package failed to be
verified.
0X08: The upgrade
package is not
supported.

The combined code stream is FFFE 01 16 0000 0001 00. The check code after
CRC16 calculation is 850E. The code stream in the download result message sent
by the device is FFFE 01 16 850E 0001 00.

Message Sent by the Platform

After receiving the software package download results from the device, the
platform returns a response. The fields in the response are as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

● Message code: The value is 16 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

● Data zone: If the processing is successful, 00 is returned. If the processing
fails, 80 is returned. In this example, 00 is returned.

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

The combined code stream is FFFE 01 16 0000 0001 00. The check code after
CRC16 calculation is 850E. The code stream in the message sent by the platform is
FFFE 01 16 850E 0001 00.

Upgrade Execution
After receiving the software package download result from the device, the
platform instructs the device to start the upgrade.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
instruction as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

● Message code: The value is 17 (the same as that in the request).
● Check code: The value 0000 is used before CRC16 calculation.
● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 0 bytes (hexadecimal value: 0000).
● Data zone: This field is not carried.

Field Data Type Description

No data zone

The combined code stream is FFFE 01 17 0000 0000. The check code after CRC16
calculation is CF90. The code stream in the message sent by the platform is FFFE
01 17 CF90 0000.

Message Sent by the Device

After receiving the upgrade execution message from the platform, the device
responds to the message. The fields in the message are as follows:

● Start ID: The value is fixed at FFFE.
● Version: The value is fixed at 01.
● Message code: The value is 17 (the same as that in the request).
● Check code: The value 0000 is used before CRC16 calculation.
● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 1 byte (hexadecimal value: 0001).
● Data zone: If the processing is successful, 00 is returned. For other processing

results, see the data zone definition. In this example, 00 is returned.

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X01: The device is in
use.
0X04: The battery
power is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.

The combined code stream is FFFE 01 17 0000 0001 00. The check code after
CRC16 calculation is B725. The code stream in the message returned by the device
is FFFE 01 17 B725 0001 00.

Reporting the Upgrade Result
After executing the software upgrade, the device reports the upgrade result to the
platform.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

Message Sent by the Device

In accordance with the PCP message structure, the platform fills each field in an
upgrade result message as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

● Message code: The value is 18 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 17 bytes (hexadecimal value: 0011).

● Data zone: carries the result code and current version. In this example, the
result code is 00, indicating that the upgrade was successful. The current
version is the same as the software version delivered by the platform, v1.0
(hexadecimal value: 56312E30000000000000000000000000).

Field Data Type Description

Result code BYTE 0X00: The upgrade was
successful.
0X01: The device is in
use.
0X04: The battery
power is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.
0X0A: The upgrade
package failed to be
installed.
0X7F: An internal error
has occurred.

Current version BYTE[16] Current version of the
device.

The combined code stream is FFFE 01 18 0000 0011
0056312E30000000000000000000000000. The check code after CRC16 calculation
is C7D2. The code stream in the upgrade result message reported by the device is
FFFE 01 18 C7D2 0011 0056312E30000000000000000000000000.

Message Sent by the Platform

After receiving the upgrade result message, the platform responds to the device.
The fields of each message are as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

● Message code: The value is 18 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

● Data zone: If the processing is successful, 00 is returned. If the upgrade task
does not exist, 80 is returned. In this example, 00 is returned.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.

The combined code stream is FFFE 01 18 0000 0001 00. The check code after
CRC16 calculation is AFA1. The code stream in the response returned by the
platform is FFFE 01 18 AFA1 0001 00.

CRC16 Code Examples
Code example using the Java-based CRC16 algorithm:
public class CRC16 {

 /*
 * CCITT standard CRC16(1021) remainder table CRC16-CCITT ISO HDLC, ITU X.25, x16+x12+x5+1
polynomial
 * Polynomial generated in the case of highest order first: Gm=0x11021; polynomial generated in the
case of lowest order first: Gm=0x8408. In this example, highest order first is used.
 */
 private static int[] crc16_ccitt_table = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252,
 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509,
 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7,
 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e,
 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4,
 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3,
 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589,
 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0,
 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e,
 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45,
 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 };

 /**
 *
 * @param reg_init
 * initial value during the CRC
 * @param message
 * check code
 * @return
 */
 private static int do_crc(int reg_init, byte[] message) {
 int crc_reg = reg_init;
 for (int i = 0; i < message.length; i++) {
 crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ message[i]) & 0xff];
 }
 return crc_reg;
 }

 /**
 * Generate a CRC code based on the data.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 311

 *
 * @param message
 * byte data
 *
 * @return int verification code
 */
 public static int do_crc(byte[] message) {
 // The initial value of the CRC starts from 0x0000.
 int crc_reg = 0x0000;
 return do_crc(crc_reg, message);
 }
}

Code example using the C-based CRC16 algorithm:

/**
* CCITT standard CRC16(1021) remainder table CRC16-CCITT ISO HDLC, ITU X.25, x16+x12+x5+1 polynomial
* Polynomial generated in the case of highest order first: Gm=0x11021; polynomial generated in the case of
lowest order first: Gm=0x8408. In this example, highest order first is used.
*/
const unsigned short crc16_table[256] = {
 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};

int do_crc(int reg_init, byte* data, int length)
{
 int cnt;
 int crc_reg = reg_init;
 for (cnt = 0; cnt < length; cnt++)
 {
 crc_reg = (crc_reg >> 8) ^ crc16_table[(crc_reg ^ *(data++)) & 0xFF];
 }
 return crc_reg;
}

int main(int argc, char **argv)
{
 // FFFE011300000000 is represented by a byte array.
 byte message[8] = {0xFF,0xFE,0x01,0x13,0x00,0x00,0x00,0x00};

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 312

 // The initial value of the CRC starts from 0x0000.
 int a = do_crc(0x0000, message, 8);
 printf("a ==> %x\n", a);
}

FAQ
OTA Upgrades

Best Practices
Performing OTA Firmware Upgrade for MQTT Devices

3.9.2 PCP Introduction
The PCP protocol stipulates the communication content and format between the
IoT platform and devices.

PCP runs at the application layer for device upgrade.

Communication Method
1. PCP runs at the application layer. LwM2M, CoAP, MQTT, or other non-

streaming protocols can be used at the underlying layer.
2. PCP messages are not allocated with independent ports and are independent

from protocols at the underlying layer. To differentiate PCP messages from
device service messages, 0XFFFE is used as the start bytes of the PCP
messages, and the first two bytes of the service messages cannot be 0XFFFE.
For details, see PCP Message Identification.

3. PCP uses a question-and-answer communication mode. All request messages
have a response message.

Message Structure
Field Type Description

Start ID WORD Start ID: The value is fixed at
0XFFFE.

Version BYTE The four most significant bits are
reserved. The four least significant
bits indicate the protocol version.
Currently, the version is 1.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0039.html

Field Type Description

Message code BYTE Type of the request exchanged
between the platform and device.
The message code of a response is
the same as that of the request. The
following message codes have been
defined:
● 0-18: reserved
● 19: device version query
● 20: software package notification
● 21: software package download
● 22: download result reporting
● 23: upgrade execution
● 24: upgrade result reporting
● 25-127: reserved

Check code WORD CRC16 check value calculated from
the start ID to the last byte of the
data zone. Before the calculation,
this field is set to 0. The result is then
written to the field after the CRC16
calculation.
NOTE

CRC16 algorithm: CRC16/CCITT
x16+x12+x5+1

Data zone length WORD Length of the data zone.

Data zone BYTE[n] Variable length, which is defined by
each instruction. For details, see the
definitions of the request and
response corresponding to each
instruction.

Data Type
Data Type Description

BYTE Unsigned 1-byte integer

WORD Unsigned 2-byte integer

DWORD Unsigned 4-byte integer

BYTE[n] Hexadecimal number of n bytes

STRING String

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 314

NO TE

PCP uses the network sequence to transmit WORD and DWORD data.

Device Version Query
Request

Direction: from the platform to a device

Field Data Type Description

No data zone

Response

Direction: from a device to the platform

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.

Current version BYTE[16] The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

NO TE

● The platform determines whether the device needs to be upgraded based on the
version. If it does, the platform sends a request to upgrade the device.

● If the response times out, the platform stops the upgrade task.

Software Package Notification
Request

Direction: from the platform to a device

Field Data Type Description

Target version BYTE[16] The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

Upgrade package
segment size

WORD Size of each segment.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

Field Data Type Description

Number of upgrade
package segments

WORD Number of upgrade
package segments

Check code WORD The value is fixed at
0000.

Response

Direction: from a device to the platform

Field Data Type Description

Result code BYTE 0X00: The upgrade is
allowed.
0X01: The device is in
use.
0X02: The signal is weak.
0X03: The latest version
is in use.
0X04: The battery power
is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.
0X7F: An internal error
has occurred.

NO TE

● If the upgrade is not allowed by the device, the platform stops the upgrade task.
● If the response times out, and the request for the upgrade package is not received, the

platform stops the upgrade task.

Software Package Requesting
Request

Direction: from a device to the platform

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

Field Data Type Description

Target version BYTE[16] The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

Segment sequence
number

WORD Sequence number of the
requested segment. The
value starts from 0. The
total number of
segments is obtained by
rounding up the result of
the software package
size divided by the
segment size. The device
can save the received
segments and request
for the missing segments
next time. Resumable
download is supported.

Response

Direction: from the platform to a device

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.
0X81: The specified
segment does not exist.

Segment sequence
number

WORD Sequence number of a
returned segment.

Segment data BYTE[n] Content of the segment.
n indicates the segment
size. If the result code is
not 0, this field is not
included.

Download Result Reporting

Request

Direction: from a device to the platform

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

Field Data Type Description

Download status BYTE 0X00: The upgrade
package has been
downloaded.
0X05: The remaining
space is insufficient.
0X06: The download
timed out.
0X07: The upgrade
package failed to be
verified.
0X08: The upgrade
package is not
supported.

Response

Direction: from the platform to a device

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.

Upgrade Execution
Request

Direction: from the platform to a device

Field Data Type Description

No data zone

Response

Direction: from a device to the platform

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X01: The device is in
use.
0X04: The battery power
is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.

Upgrade Result Reporting
Request

Direction: from a device to the platform

Field Data Type Description

Result code BYTE 0X00: The upgrade was
successful.
0X01: The device is in
use.
0X04: The battery power
is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.
0X0A: The upgrade
package failed to be
installed.
0X7F: An internal error
has occurred.

Current version BYTE[16] Current version of the
device.

Response

Direction: from the platform to a device

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.

PCP Message Identification
PCP messages and device service messages share the same port and URL. When
receiving a message from the device, the platform performs the following steps to
determine whether the message is a PCP message or a service message:

1. Checks whether the device supports software upgrades (defined by
omCapability.upgradeCapability in the product model). If the device does
not support software upgrades, the message is considered to be a service
message.

2. Checks whether the software upgrade protocol is PCP. If the protocol is not
PCP, the message is considered to be a service message.

3. Checks whether the first two bytes of the message are 0XFFFE. If the bytes
are not 0XFFFE, the message is considered to be a service message.

4. Checks whether the version is valid. If the version is invalid, the message is
considered as a service message.

5. Checks whether the message code is valid. If the message code is invalid, the
message is considered as a service message.

6. Checks whether the check code is correct. If the check code is incorrect, the
service message is considered to be a service message.

7. Checks whether the length of the data zone is correct. If the length is
incorrect, the message is considered to be a service message.

8. If all the preceding check items are passed, the message is considered as a
PCP message.

NO TE

The start bytes of a service message cannot be 0XFFFE.

IoT Device Access
Developer Guide 3 Development on the Device Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

4 Development on the Application Side

4.1 API Usage Guide
The IoT platform provides a variety of APIs to make application development
easier and more efficient. You can call these open APIs to quickly integrate
platform functions, such as management of products, devices, subscriptions,
commands, and rules.

NO TE

The application needs to be authenticated by the IAM service. To obtain a token, see
Debugging the API Obtaining the Token for an IAM User.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

Application Development Resources
The platform provides a wealth of application-side APIs to ease application
development. Applications can call these APIs to implement services such as
secure access, device management, data collection, and command delivery.

Resource Package Description Download Link

Application API Java
Demo

You can call application-
side APIs to experience
service functions and
service processes.

API Java Demo

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 322

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip

Resource Package Description Download Link

Application Java SDK You can use Java
methods to call
application-side APIs to
communicate with the
platform. For details, see
Java SDK.

Application Java SDK

Application .NET SDK You can use .NET
methods to call
application-side APIs to
communicate with the
platform. For details,
see .NET SDK.

Application .NET SDK

Application Python SDK You can use Python
methods to call
application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Application Python SDK

Application Go SDK You can use Go methods
to call application-side
APIs to communicate
with the platform. For
details, see Go SDK.

Application Go SDK

Application Node.js SDK You can use Node.js
methods to call
application-side APIs to
communicate with the
platform. For details, see
Node.js SDK.

Application Node.js
SDK

Application PHP SDK You can use PHP
methods to call
application-side APIs to
communicate with the
platform. For details, see
PHP SDK.

Application PHP SDK

API Introduction
API Group Scenario

Product
manageme
nt

Used to manage product models that have been imported to the
platform. A product model defines the capabilities or features of
all devices under a product.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 323

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html

API Group Scenario

Device
manageme
nt

Used by applications to manage devices, including basic device
details and device data.

Device
message

Used by applications to transparently transmit messages to
devices.

Device
command

Used by applications to deliver commands to devices for control.
A product model defines commands that the platform can
deliver to devices.

Device
property

Used by applications to deliver properties to devices. A product
model defines properties that the platform can deliver to devices.

AMQP
queue
manageme
nt

Used to create, delete, and view queues. AMQP queues can
receive messages through AMQP clients after subscribing to
rules.

Access
credential
manageme
nt

Used for authentication when long connections are established
using protocols such as AMQP and MQTTS.

Data
transfer
rule
manageme
nt APIs and
device
linkage rule
APIs

Used by applications to set rules to implement service linkage or
forward data to other Huawei Cloud services. Device linkage and
data forwarding rules are available.
● A device linkage rule consists of triggers and actions. When

the configured trigger is met, the corresponding action is
triggered, for example, delivering commands, sending
notifications, reporting alarms, and clearing alarms.

● For a data forwarding rule, you need to set forwarding data,
set forwarding targets, and start the rule. Data can be
forwarded to Data Ingestion Service (DIS), Distributed
Message Service (DMS) for Kafka, Object Storage Service
(OBS), ROMA Connect, third-party application (HTTP push),
and AMQP message queue.

Subscriptio
n
manageme
nt APIs

Used by applications to subscribe to resources provided by the
platform. If the subscribed resources change, the platform
notifies the applications of the change.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 324

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html

API Group Scenario

Device
shadow
APIs

Used by applications to operate and manage the device shadow.
A device shadow is a file used to store and retrieve the status of
a device.
● Each device has only one device shadow, which is uniquely

identified by the device ID.
● The device shadow saves only the latest data reported by the

device and the desired data set by an application.
● You can use the device shadow to query and set the device

status regardless of whether the device is online.

Device
group
manageme
nt APIs

Used by applications to manage device groups, including group
details and device members in a group.

Tag
manageme
nt APIs

Used by applications to bind tags to or unbind tags from
resources.
Currently, only devices support tags.

Resource
space
manageme
nt

Used by applications to manage resource spaces, including
adding, deleting, modifying, and querying resource spaces.

Batch task
APIs

Used by applications to perform batch operations on devices
connected to the platform.
● Supported batch operations: upgrading software and

firmware, creating, deleting, updating, freezing, and
unfreezing devices, creating synchronous and asynchronous
commands, creating messages, and setting device shadow.

● Up to 10 unfinished tasks of the same type is allowed for a
user. When the maximum number is reached, new tasks
cannot be created.

Device CA
certificate
manageme
nt APIs

Used by applications to manage device CA certificates, including
uploading, verifying, and querying certificates. The platform
supports device access authentication using certificates.

OTA
upgrade
package
manageme
nt

Used by applications to operate and manage upgrade packages,
including creating, querying, and deleting upgrade packages.

Broadcast
message

Used by applications to broadcast messages to all online devices
that subscribe to specified topics.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 325

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/BroadcastMessage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/BroadcastMessage.html

API Group Scenario

Device
tunnel
manageme
nt

Used for data transmission between applications and devices.

Data stack
policy
manageme
nt

Used by applications to manage stack policies, including creating,
querying, modifying, and deleting stack policies.

Data flow
control
policy
manageme
nt

Used by applications to manage flow control policies, including
creating, querying, modifying, and deleting flow control policies.

FAQ

Application Integration

Message Communications

Subscription and Push

How Does IoTDA Obtain Device Data?

What Should I Do If I Want to Call an API But Have No Permissions to Do So
as an IAM User?

4.2 Debugging Using Postman

Overview

Postman is a visual editing tool for building and testing API requests. It provides
an easy-to-use UI to send HTTP requests, including GET, PUT, POST, and DELETE
requests, and modify parameters in HTTP requests. Postman also returns response
to your requests.

To fully understand APIs, refer to API Reference on the Application Side. The
Postman Collection is already available, in which the structure of API call requests
are ready for use.

This topic uses Postman as an example to describe how to debug the following
APIs when the application simulator connects to the IoT platform using HTTPS:

● Obtaining the Token of an IAM User
● Listing Projects Accessible to an IAM User
● Creating a Product
● Querying a Product

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 326

https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01004.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00225.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00011.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iothub_faq_0002.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iothub_faq_0002.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html

● Creating a Device
● Querying a Device

Prerequisites
● You have installed Postman. If Postman is not installed, install it by following

the instructions provided in Installing and Configuring Postman.
● You have downloaded the Collection.
● You have developed a product model and a codec on the console.

Installing and Configuring Postman

Step 1 Install Postman.

1. Visit the Postman website, and download and install the latest version of
Postman (64-bit) for Windows.

NO TE

– Postman requires the .NET Framework 4.5 component.
– To ensure successful API calls, you are advised to download the latest version of

Postman (32-bit) for Windows.

2. Enter the email address, username, and password to register Postman.

Step 2 Import the Postman environment variables.

1. Click in the upper right corner to open the MANAGE ENVIRONMENTS
window.

2. Click Import. On the page displayed, click Select File to import the
IoTDA.postman_environment.json file (obtained after the Collection
package is decompressed).

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 327

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/PostmanCollection/Collection_environment_of_postman_V5.zip
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://dl.pstmn.io/download/latest/win64
https://www.postman.com/ https://dl.pstmn.io/download/latest/win32
https://www.postman.com/ https://dl.pstmn.io/download/latest/win32
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/PostmanCollection/Collection_environment_of_postman_V5.zip

3. Click the IoTDA environment imported.

4. Configure parameters based on the following table.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 328

Parameter Description

IAMEndpoint IAM endpoint. For details, see Regions and
Endpoints.

IoTDAEndpoint IoTDA endpoint. For details, see Step 2.5.

IAMUserName IAM username, which can be obtained from the My
Credentials page.

IAMPassword Password for logging in to Huawei Cloud.

IAMDoaminId Account name, which can be obtained from the My
Credentials page.

region Region where IoTDA is enabled.

5. Obtain IoTDA endpoints.

Log in to the console. In the navigation pane, choose Overview. Click Access
Details in the Instance Information area. Select the access address based on
the access type and protocol.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 329

https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential

Figure 4-1 Obtaining access information

6. Return to the home page and set the environment variable to the imported
IoTDA.

Step 3 Click Import in the upper left corner and click Choose Files to import the API call
(V5).postman_collection.json file.

After the file is uploaded, the dialog box shown in the following figure is
displayed.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 330

----End

Debugging the API Obtaining the Token for an IAM User
Before using platform APIs, an application must call the API Obtaining the Token
of an IAM User for authentication. After the authentication is successful, Huawei
Cloud returns X-Subject-Token.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens
Content-Type: application/json

{
 "auth": {
 "identity": {
 "methods": [
 "password"
],

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 331

 "password": {
 "user": {
 "name": "username",
 "password": "********",
 "domain": {
 "name": "domainname"
 }
 }
 }
 },
 "scope": {
 "project": {
 "name": "xxxxxxxx"
 }
 }
 }
}

Debug the API by following the instructions provided in Obtaining the Token of
an IAM User.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Configure the body of the API.

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 332

https://support.huaweicloud.com/intl/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_30_0001.html

Step 4 Use the returned X-Subject-Token value in the header field to update X-Auth-
Token in the IoTDA environment so that it can be used in other API calls. If the
token expires, the Authentication API must be called again to obtain a new
token.

The X-Auth-Token parameter is automatically updated in Postman. You do not
need to manually update it.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 333

----End

Debugging the API Listing Projects Accessible to an IAM User
Before accessing platform APIs, the application must call the API Listing Projects
Accessible to an IAM User to obtain the project ID of the user.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iam.cn-north-4.myhuaweicloud.com/v3/auth/projects
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Listing Projects
Accessible to an IAM User.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 334

https://support.huaweicloud.com/intl/en-us/api-iam/iam_06_0003.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_06_0003.html

Step 3 The returned body contains a list of projects. Search for the item whose name is
the same as the value of region in the IoTDA environment, and use the id value
to update project_id in the IoTDA environment so that it can be used in other API
calls.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 335

In this example, the project_id parameter is automatically updated in Postman.
You do not need to manually update it.

----End

Debugging the API Creating a Product
Before connecting a device to the platform, an application must call the API
Creating a Product. The product created will be used during device registration.

To call this API, the application constructs an HTTP request. An example request is
as follows:

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 336

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products
Content-Type: application/json
X-Auth-Token: ********

{
 "name" : "Thermometer",
 "device_type" : "Thermometer",
 "protocol_type" : "MQTT",
 "data_format" : "binary",
 "manufacturer_name" : "ABC",
 "industry" : "smartCity",
 "description" : "this is a thermometer produced by Huawei",
 "service_capabilities" : [{
 "service_type" : "temperature",
 "service_id" : "temperature",
 "description" : "temperature",
 "properties" : [{
 "unit" : "centigrade",
 "min" : "1",
 "method" : "R",
 "max" : "100",
 "data_type" : "decimal",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : true,
 "property_name" : "temperature",
 "max_length" : 100
 }],
 "commands" : [{
 "command_name" : "reboot",
 "responses" : [{
 "response_name" : "ACK",
 "paras" : [{
 "unit" : "km/h",
 "min" : "1",
 "max" : "100",
 "para_name" : "force",
 "data_type" : "string",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : false,
 "max_length" : 100
 }]
 }],
 "paras" : [{
 "unit" : "km/h",
 "min" : "1",
 "max" : "100",
 "para_name" : "force",
 "data_type" : "string",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : false,
 "max_length" : 100
 }]
 }],
 "option" : "Mandatory"
 }],
 "app_id" : "jeQDJQZltU8iKgFFoW060F5SGZka"
}

Debug the API by following the instructions provided in Creating a Product.

Note: Only the parameters used in the debugging example are described in the
following steps.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 337

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Configure the body of the API.

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

Step 4 Use the returned product_id value to update the product_id parameter in the
IoTDA environment so that it can be used in other API calls.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 338

Note: The product_id parameter is automatically updated in Postman. You do not
need to manually update it.

----End

Debugging the API Querying a Product
An application can call the API Querying a Product to query details about a
product.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Querying a Product.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 339

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0052.html

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

----End

Debugging the API Creating a Device
Before connecting a device to the platform, an application must call the API
Registering a Device. Then, the device can use the unique identification code to
get authenticated and connect to the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices
Content-Type: application/json
X-Auth-Token: ********

{
 "node_id" : "ABC123456789",

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 340

 "device_name" : "dianadevice",
 "product_id" : "b640f4c203b7910fc3cbd446ed437cbd",
 "auth_info" : {
 "auth_type" : "SECRET",
 "secure_access" : true,
 "fingerprint" : "********",
 "secret" : "********",
 "timeout" : 300
 },
 "description" : "water meter device"
}

Debug the API by following the instructions provided in Creating a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Configure the body of the API.

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 341

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

Step 4 Use the returned device_id value to update the device_id parameter in the IoTDA
environment so that it can be used in other API calls.

Note: The device_id parameter is automatically updated in Postman. You do not
need to manually update it.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 342

----End

Debugging the API Querying a Device
An application can call the API Querying a Device to query details about a device
registered with the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices/{device_id}
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Querying a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 343

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0055.html

----End

IoT Device Access
Developer Guide 4 Development on the Application Side

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 344

	Contents
	1 Before You Start
	2 Obtaining Resources
	3 Development on the Device Side
	3.1 Device Access
	3.2 Product Development
	3.2.1 Product Development Guide
	3.2.2 Creating a Product
	3.2.3 Developing a Product Model
	3.2.3.1 Product Model Definition
	3.2.3.2 Developing a Product Model Online
	3.2.3.3 Developing a Product Model Offline
	3.2.3.4 Exporting and Importing a Product Model

	3.2.4 Developing a Codec
	3.2.4.1 Codec Definition
	3.2.4.2 Online Development
	3.2.4.3 JavaScript Script-based Development
	3.2.4.4 FunctionGraph-based Development
	3.2.4.4.1 Overview
	3.2.4.4.2 MQTT(S) Codec Example
	3.2.4.4.3 NB-IoT (CoAP) Codec Example

	3.2.5 Online Debugging

	3.3 Device Registration
	3.3.1 Registering a Device
	3.3.2 Registering a Batch of Devices
	3.3.3 Registering a Device Authenticated by an X.509 Certificate
	3.3.4 Device Self-Registration

	3.4 Device SDK Access
	3.5 MQTT(S) Access
	3.5.1 Protocol Introduction
	3.5.2 Secret Authentication
	3.5.3 Certificate Authentication
	3.5.3.1 Usage
	3.5.3.2 Certificate Validity Verification (OCSP)

	3.5.4 Custom Authentication
	3.5.5 Custom-Template Authentication
	3.5.5.1 Usage
	3.5.5.2 Examples
	3.5.5.3 Internal Functions

	3.6 HTTP(S) Access
	3.7 LwM2M/CoAP Access
	3.8 Access Using MQTT Demos
	3.8.1 MQTT Usage Guide
	3.8.2 Java Demo Usage Guide
	3.8.3 Python Demo Usage Guide
	3.8.4 Android Demo Usage Guide
	3.8.5 C Demo Usage Guide
	3.8.6 C# Demo Usage Guide
	3.8.7 Node.js Demo Usage Guide

	3.9 OTA Upgrade Adaptation on the Device Side
	3.9.1 Adaptation Development on the Device Side
	3.9.2 PCP Introduction

	4 Development on the Application Side
	4.1 API Usage Guide
	4.2 Debugging Using Postman

