loT Device Access

Developer Guide

Issue 1.0
Date 2025-07-29

V.

HUAWEI

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

loT Device Access
Developer Guide Contents

Contents

T BefOre YOU STArt...... e oieeeeciecctcntcecseeeteseceseesnessessnsssnesssssssssssssessssssssssssasssssssssssssasssaasass 1
2 ODbEAINING RESOUICES.......cueccueeeeeeeeeeeeneecreesseeseesaesseesasessessessssssessssssessassssesassssesssssassasssassassses 5
3 Development on the Device Side.........iiieiiinniininneiiinninnnnsnsesnsesssnsessssssesssssssssssnns 12
3.1 DIBVICE ACCESS....eeueeeirerieeeeeeirisises et ssstsssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssasssssssessssessssessssessssssssessesnssessssesnssesans 12
3.2 PrOAUCE DEVELOPIMENT ...ttt st ss s s bbbt st sss s s s st s s sssensssssssssssssssensenssssesssssnsans 16
3.2.1 Product DeVelOPMENT GUIE..........cuieeiieeeieerieeeieee ettt s st s s sas s s s s e s s s s sss e sassesassesassssassssanes 16
3.2.2 CrEatiNg @ PrOTUCT ...ttt se st bbb s s s bbb bbb s s s bbb s s s nsensnes 18
3.2.3 DeVveloping @ ProdUCE MOGEL. ...t sssss sttt sss st st sssssssssssssssssnsssssssensnsssssnses 19
3.2.3.71 Product MOdel DefiNITION......coieerrireireee ettt ses st es st sneas 19
3.2.3.2 Developing @ Product MOdel ONlINE..........ceeieirininiee ettt stssessss s st sssssssas s st sssssssses 21
3.2.3.3 Developing @ Product MOdel OffliNe........vriririeeeisesssssss st sss s st sssssssssssssssasssssenes 25
3.2.3.4 Exporting and Importing @ ProdUCt MOGEL.........c.ceuieiirieiceceecees st sssss e sasss s sees 38
3.2.4 DEVELOPING @ COUEC....u ittt sttt b bbb s b s bbb bbb s s bbbt b s ssessssansensas 40
3.2.4.1 COARC DEFINITION. ...ttt sttt s st ss s bbbt s s s s s bbb st s s s s sss s bas s st s ssnsessesas 40
3.2.4.2 ONLINE DEVELOPIMENT ..ottt s e bbb s s s s s s s s st esss s s s s s sssessssesssssssesenassessnssnsnssnssas 43
3.2.4.3 JavaScript Script-based DEVELOPMENT.......ciiieieeeeeeeeeeisieiee sttt sss bbbt sas bbbt st ssnsssassansas 86
3.2.4.4 FunctionGraph-based DeVELOPMENT........ccvrririrrinrerienesinisisississ s sssesssessnes 103
B.2.4.4.7 OVEIVIEW..c.ueiiiiirieiseeiree sttt sttt sttt st st et et ettt £ttt ettt bbbt et beeas 103
3.2.4.4.2 MQTT(S) COAEC EXAMPLE....uiiiieeeeiieieieietee ettt ssssssss s bbb sssssssss s b s st s s s s s sassassnsensnns 117
3.2.4.4.3 NB-IOT (COAP) COAEC EXAMIPLE.....ceieririeeiririreissiriereis sttt sessss s ssssss s st ssssssssssssssssssssesssssssssssssssssssanen 124
3.2.5 ONlINE DEDUGGING...ouitiiieririeieieeeieesie sttt s s e st sss st s e s s s s s s s s sesasaessssesasaesassesassessssessnsssnsansss 132
3.3 DBVICE REGISTIATION ...ttt ettt sttt st ss s st s st ss s s s sssessssesassesasteeassensssenssssnsnsnans 137
3.3.1 REQGISTEIING @ DRVICE.....oceeeeeee ettt st ettt ettt et s s sene 138
3.3.2 RegisStering @ BatCh Of DBVICES........oieieeeceecteee ettt ettt sttt s st bbb nansnes 140
3.3.3 Registering a Device Authenticated by an X.509 CertifiCate........coeeeorrrnrereeeeeeeeisse e esieseesessensans 142
3.3.4 DEViCE Slf-REGISTIAtION.....ooieieeiireririeietetes ettt sttt s st ss s s s bbbt sn s sssssssssssssnsensans 148
3.4 DEVICE SDK ACCESS....cuuiuiirineeritirieirteis ettt tsts et ta sttt et et bttt ettt b et b et bt beeas 154
3.5 MQTTS) ACCESS....ououeeeeeieeeeeeeeieeeete ettt s s st e s s st sasasassssasassesssasassssasssassesesssasasessesasasssssasassssssasassessssasan 175
3.5.71 ProOtOCOL INErOAUCLION. ...ttt sttt s s st st s st s s s s s s s s st snssnsensnssnsans 175
3.5.2 SECret AULNENTICATION. ...ttt sttt sttt snsenses 182
3.5.3 Certificate AULNENEICATION. ...ttt bbb bbb s s 187
35307 USAQ ettt et ettt a ettt ettt a ettt aene 187

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

loT Device Access

Developer Guide Contents
3.5.3.2 Certificate Validity VerificCation (OCSP).......cocvririrrirrnrireeneinssesesssens 199
3.5.4 CUSTOM AULNENEICATION ... ettt sttt sanen 205
3.5.5 Custom-Template AULNENTICATION. ..ottt s bbb sesaen 214
35507 USAQE..iieee ettt Rttt bttt ettt et aeae 214
3.5.5.2 EXAIMIPLES...er ettt et e R At bbb enen 221
3.5.5.3 INLEINAL FUNCLIONS......oveieeeeeiee ittt sttt bbbt s s bbbt s s s bbb st es s sassansas 225
T I LI I X3 235
3.7 LWIM2IM/COAP ACCESS....eoeveeeeeeereeeeeeteteeeeeseeeteseses e seses e s ss s ss s s ses s st s s sassesessasastessasassesasasassesesasassesssasassesesasassesas 239
3.8 ACCESS USING MQTT DEIMOS....cuiririeriiieiierisirisisesisestseassesssssssssssssssssssssssssssssssesssesssesans 241
3.8.1 MQTT USQQE GUIE......eeieriiereereeirieisietseiseesesssss sttt sssssss sttt ssssssss s s s sssssssssssssssssssssssssasssssessnsssssnsas 241
3.8.2 JaVa DEMO USAGE GUIE.......oieieereereee ittt ettt st es sttt st eee 248
3.8.3 PYthon DemO USAQE GUITE........ouiiririricieeieieniiese st sessisssssas s s sttt sssssssssssss s st sssssssssssssssassnssssssensesanes 254
3.8.4 ANAroid DEmMO USAGE GUITE........covrieeeirireineiseeniiseesietsstss s sesess s sssss st ssnsans 261
3.8.5 C DEMO USAQE GUIAE......cc ittt ettt st es sttt bbbt tae s s bassetas 270
3.8.6 C# DEMO USAQE GUIAE. ...ttt sttt se s s bbbt ssssss s ssss s b s st s sessessssssssssssssesssssnssnsans 276
3.8.7 NOdE.jS DEMO USAGE GUIAE........coreeerererireereeriesieisisissessesssssss st st ssnsssssssessssssssssansans 285
3.9 OTA Upgrade Adaptation 0n the DeVICE Side.........crrrirrineinereineeeeeeises ettt esssasessssseans 292
3.9.1 Adaptation Development 0N the DEVICE SIde........reieieirinieeeiseieee st sesssssssssssesss s ssesssssnsans 292
3.9.2 PCP INTFOQUCTION...cettrierieeireireiietseieeisetse e ees et esse s es s ts st ettt st ssee st e et 313
4 Development on the Application Side..........ieeerinneereeeereeceereeceereeeeesaeeseessesaennes 321
A1 APL USQQE GUITE......e ettt ssssssssssass sttt ssssssssss s s s ssssssessessessssass st st ensessesssassssnsassnsssnsnssneas 321
4.2 Debugging USING POSTM@N...... ettt es sttt st es st easenssassastas 326

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

loT Device Access
Developer Guide

1 Before You Start

Before You Start

Overview

To create an loT solution based on Huawei Cloud I0TDA, perform the operations
described in the table below.

Operation

Description

Product
Development

Manage products, develop product models and codecs, and
perform online debugging on the 10T Device Access (IoTDA)
console.

Development
on the
Application
Side

Carry out development for connection between applications
and the platform, including calling APIs, obtaining service
data, and managing HTTPS certificates.

Development
on the Device
Side

Carry out development for connection between devices and
the platform, including connecting devices to the platform,
reporting service data to the platform, and processing
commands delivered by the platform.

Service Process

The following describes the complete process of using I0TDA, including product

development, device-side development, application-side development, and routine

management.

e Product development: You can perform development operations on the [oTDA

console. For example, you can create a product or device, develop a product
model or codec, and perform online debugging.

e Application-side development: The platform provides robust device
management capabilities through APIs. You can develop applications based
on the APIs to meet requirements in different industries such as smart city,
smart campus, smart industry, and loV.

e Device-side development: You can connect devices to the platform by
integrating SDKs or modules, or using native protocols.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

IoT Device Access
Developer Guide 1 Before You Start

e Routine management: After a physical device is connected, you can perform
routine device management on the IoTDA console or by calling APIs.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

loT Device Access
Developer Guide

1 Before You Start

Figure 1-1 Flowchart

Developers

Development on

the application
=iz Subscription& | | 0 F--——--—=—=-=- o
Product creation™ — * API integration . Commercial use
debugging :
Development :
on the 1
console :
1
1
Model definition :
1
1
[1
1
' i
!]
Loy 1
1
1
== 1
Device Online: Device Commercialusel == === = === === 4
integration debugging registration

Access mode

N Development on
selection

the device side

Module

MNativ

protocol a
MOTT, M
and Modbus

p IoT Device SDK (C) |
f'
f/ » IoT Device SDK (Java) |
o .
T IoT Device SDK (C#)

\

R

| S IoT Device SDK Tiny |
| _loT Device SDKTiny)

*{_IoT Device SDK (Android)

SDK
selection

,[Cemﬂcat&d modul
P %
s
Module selectior
N
[Non-certncated)
module J

__module

Routine management
in the cloud

| Subscription/Push I‘\
.

n
Property reporting N
\

A
Details 13 Message reporting (1
1
: - \
Reporis ‘ . Command delivery \\
\ ~
b Software/Firmware
Cperation records \\ rades
' ;
\\ Storage managemen]
Message trace Y i
“ i
. L I
e 41 Device monitoring | h
- i
Alarms p ,
y - Groups and tags J’
-
Auditlogs |- i

File uploads
i
e -~ =~ _ Rules r
== i

4 /
/
¥

Huawei Cloud

........ Data forwarding
services

7
Device shadows

Device linkage

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd

loT Device Access
Developer Guide 1 Before You Start

FAQ
In What Scenarios Can the loT Platform Be Applied?
Which Regions of Huawei Cloud Are Supported by the loT Platform?
Does Huawei Provide Modules, Hardware Devices, and Application Software?

How Does IoTDA Obtain Device Data?

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00250.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00006.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00009.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00011.html

IoT Device Access
Developer Guide 2 Obtaining Resources

Obtaining Resources

Platform Connection Information

1. Log in to the IoTDA console. In the navigation pane, choose loTDA
Instances, and click the target instance card.

Figure 2-1 Instance management - Changing instance

IoT Device
Access

iotda_instance © Running 100 400,000 10,000 @ Details & Modify =++
{oTDA Instances, Standarc- Standard. ST* 1| default Messages TPS ax Messag Max Devices Pay-per-use | Greated on Jul 09, 2024 19:18:00 GMT+08:00
© Ruming 1,000 - 100,000 @ Details & Modity
oToA fessages TP Max Messages Max Devices Yearyhontly
Documen c
©O Running 1,000 100,000 @ Details & Modify
oT0A Messages TPs Mo ax Devices earyhion
<
© Ruming 1,000 - 100,000 @ Details & Modity
aeteut o o Max Devies
100 400,000 10,000 @ Detalls & Mody -+~
Standare- st tessages TPS x Messages Vax Devices earyhonthy | 21 cays und explaton

2. In the navigation pane, choose Overview. In the Instance Information area,
click Access Details.

Figure 2-2 Obtaining access information

<@ ¢ -
nnnnn
,,,,, :
.
,,,,,,
(@ ressirsao x

Reyereaeries 6

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

loT Device Access
Developer Guide

2 Obtaining Resources

Device Development Resources

You can connect devices to IoTDA using MQTT, LwM2M/CoAP, and HTTPS, as well
as connect devices that use Modbus, OPC UA, and OPC DA through loT Edge. You
can also connect devices to I0TDA by calling APIs or integrating SDKs.

Resource Package

Description

Download Link

loT Device Java SDK

Devices can connect to
the platform by
integrating the loT
Device Java SDK. The
demo provides the
sample code for calling
SDK APIs. For details, see
loT Device Java SDK.

loT Device Java SDK

loT Device C SDK for
Linux/Windows

Devices can connect to
the platform by
integrating the loT
Device C SDK. The demo
provides the sample code
for calling SDK APIs. For
details, see l1oT Device C
SDK.

loT Device C SDK for
Linux/Windows

loT Device C# SDK

Devices can connect to
the platform by
integrating the loT
Device C# SDK. The
demo provides the
sample code for calling
SDK APIs. For details, see
loT Device C# SDK.

loT Device C# SDK

loT Device Android SDK

Devices can connect to
the platform by
integrating the loT
Device Android SDK. The
demo provides the
sample code for calling
SDK APIs. For details, see
loT Device Android
SDK.

loT Device Android SDK

Device loT Device Go
SDK (Community
Edition)

Devices can connect to
the platform by
integrating the loT
Device Go SDK. The
demo provides the code
sample for calling the
SDK APIs. For details, see
loT Device Go SDK.

loT Device Go SDK
(Community Edition)

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0089.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go

loT Device Access
Developer Guide

2 Obtaining Resources

Resource Package

Description

Download Link

loT Device Python SDK

Devices can connect to
the platform by
integrating the loT
Device Python SDK. The
demo provides the code
sample for calling the
SDK APIs. For details, see

loT Device Python SDK.

loT Device Python SDK

loT Device Tiny C SDK
for Linux/Windows

Devices can connect to
the platform by
integrating the loT
Device Tiny C SDK. The
demo provides the
sample code for calling
SDK APIs. For details, see
loT Device Tiny C SDK
for Linux/Windows.

loT Device Tiny C SDK
for Linux/Windows

loT Device ArkTS
(OpenHarmony) SDK

Devices can connect to
the platform by
integrating the loT
Device ArkTS SDK. The
demo provides the code
sample for calling the
SDK APIs. For details, see

loT Device ArkTS
(OpenHarmony) SDK.

loT Device ArkTS
(OpenHarmony) SDK

Native MQTT or MQTTS
access

Devices can be
connected to the
platform using the native
MQTT or MQTTS
protocol. The demo
provides the sample code
for SSL-encrypted link
setup, TCP link setup,
data reporting, and topic
subscription.

Examples: Java, Python,
Android, C, C#, and
Node.js

quickStart(Java)
quickStart(Android)
quickStart(Python)
quickStart(C)
quickStart(C#)
quickStart(Node.js)

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/blob/main/huaweicloud_iot_device_library/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/blob/main/huaweicloud_iot_device_library/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(nodejs).zip

loT Device Access
Developer Guide

2 Obtaining Resources

Resource Package

Description

Download Link

Product model template

Product model templates
of typical scenarios are
provided. You can
customize product
models based on the
templates.

For details, see
Developing a Product
Model Offline.

Product Model Example

Codec example

Demo codec projects are
provided for you to
perform secondary
development.

Codec Example

Codec test tool

The tool is used to check
whether the codec
developed offline is
normal.

Codec Test Tool

NB-loT device simulator

The tool is used to
simulate the access of
NB-IoT devices to the
platform using LwM2M
over CoAP for data
reporting and command
delivery.

For details, see
Connecting and
Debugging an NB-loT
Device Simulator.

NB-loT Device
Simulator

Application Development Resources

The platform provides a wealth of application-side APIs to ease application
development. Applications can call these APIs to implement services such as
secure access, device management, data collection, and command delivery.

Resource Package

Description

Download Link

Application API Java
Demo

You can call application-
side APIs to experience
service functions and
service processes.

API Java Demo

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/ProfileDemo/ProfileSample.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/tool/CodecDemo/CodecDemoV2.zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/pluginDetector/IoT_Codec_Test_Tool.zip
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip

loT Device Access
Developer Guide

2 Obtaining Resources

Certificates

Resource Package

Description

Download Link

Application Java SDK

You can use Java
methods to call
application-side APIs to
communicate with the
platform. For details, see
Java SDK.

Application Java SDK

Application .NET SDK

You can use .NET
methods to call
application-side APIs to
communicate with the
platform. For details,
see .NET SDK.

Application .NET SDK

Application Python SDK

You can use Python
methods to call
application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Application Python SDK

Application Go SDK

You can use Go methods
to call application-side
APIs to communicate
with the platform. For
details, see Go SDK.

Application Go SDK

Application Node.js SDK

You can use Node.js
methods to call
application-side APIs to
communicate with the
platform. For details, see
Node.js SDK.

Application Node.js
SDK

Application PHP SDK

You can use PHP
methods to call
application-side APIs to
communicate with the
platform. For details, see
PHP SDK.

Application PHP SDK

The following certificates are used when devices and applications need to verify

[oTDA.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/releases

loT Device Access
Developer Guide

2 Obtaining Resources

(11 NOTE

e The certificates apply only to Huawei Cloud I0TDA and must be used together with the

corresponding domain name.

e CA certificates can no longer be used to verify server certificates upon expiration.
Replace CA certificates before they expire to ensure that devices can connect to the loT
platform properly.

Table 2-1 Certificates

Certificate
Package
Name

Region
and
Edition

Cer
tifi
cat

Typ

Certific
ate
Format

Description

Downloa
d Link

certificate

CN-
Hong
Kong,
AP-
Singapo
re, AP-
Bangko
k, AP-
Jakarta,
AF-
Johanne
sburg,
LA-
Santiag
o, LA-
Sao
Paulo1,
LA-
Mexico
City2,
and
ME-
Riyadh

Dev
ice
cert
ifica
te

pem,
jks, and
bks

Used by a device to
verify the platform
identity. The certificate
must be used together
with the device access
domain name.

Certifica
te file

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

10

https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip

loT Device Access
Developer Guide

2 Obtaining Resources

Certificate
Package
Name

Region
and
Edition

Cer
tifi
cat

Typ

Certific
ate
Format

Description

Downloa
d Link

certificate

CN-
Hong
Kong,
AP-
Singapo
re, AP-
Bangko
k, AP-
Jakarta,
AF-
Johanne
sburg,
LA-
Santiag
o, LA-
Sao
Paulo1,
LA-
Mexico
City2,
and
ME-
Riyadh

App
lica
tion
cert
ifica
te

pem,
jks, and
bks

Application access:
HTTPS/AMQPS/MQTTS
platform CA certificates

Certifica
te file

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

11

https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip

IoT Device Access
Developer Guide 3 Development on the Device Side

Development on the Device Side

3.1 Device Access

Process

You can use various protocols to access Huawei Cloud I0TDA, including:

e Common native protocols: MQTT(S), HTTPS, and LwM2M/CoAP(S)

e Standard protocols for access through gateways or loT Edge: Modbus, OPC
UA, OPC DA, ONVIF, GB28181, and LoRa

e Common protocols in some industries: JT808 (vehicle terminal communication
protocol), SL651 (hydrological monitoring data communication protocol), and
HJ212 (environmental protection industry data transmission standard
protocol)

e TCP proprietary protocols and third-party protocols

For more protocols, see Device Access Protocols.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_01271.html#section1

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-1 Device access development process

Console

Standard
instance
Enterprise
instance

Enable an

DR instance.

Access protocol

Create a Product model (Optional) Codec
product. andsgﬁ::“fg;mat development

Device status: Register a o
il Authentication type
Certificate

Device

loT Device SDK (C)
Access through loT
Device SDK
loT Device SDK (Java)

Select an
access mode.

Access through a Access through MQTT(S),
protocol LwM2ZM/CoAP, or HTTPS

Access through a

gateway/loT Edge

Access through the
integrated Huawei
authentication module

Access through AT
commands provided by the
module

Device status: Authenticate Devices using LwM2M LwM2M/CoAP protocol—
inactive the device. aver CoAP based
—[HTTPS device J—[HTTPS-based]
—[MQTT(S) device Jﬁ‘[Secret-based]

4[Certificate-based
4[Custom mode
4[Custom template—based

Generic/Third-party }
protocol device Protocol-based

Device status: Complete the
online access.

Communicate

with the cloud.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

loT Device Access
Developer Guide

3 Development on the Device Side

TLS

[oTDA supports Transport Layer Security (TLS) for encrypted communication and
secure client connections. When TLS is utilized, clients can transmit the Server

Name Indication (SNI) and access domain name during connection establishment
with the device, which is essential for features like custom domain names, device
self-registration, and custom authentication.

Table 3-1 TLS types supported by common protocols

Protocol Operatio | Supported TLS Port
ns Version
Supporte
d

MQTT Publish/ Not applicable 1883
Subscribe

MQTTS Publish/ 1.1,1.2,and 1.3 8883
Subscribe

MQTT over Publish/ TLS 1.2 443

WebSocket Subscribe

(WSS)

HTTPS Publish TLS 1.2 443

CoAP Report Not applicable 5683
and
deliver

CoAPS Report DTLS 1.2 5684
and
deliver

Access via Device-side SDKs

loTDA offers device SDKs for seamless integration with Huawei Cloud, supporting
functions like file uploading/downloading, automatic reconnection, OTA upgrades,

data reporting, and time synchronization. The SDKs are available in C, C#, Java,
Android, Go, Python, and ArkTS for HarmonyOS development. For details, see
Device SDKs.

Access via Native Protocols

Devices can connect to I0TDA using native protocols such as MQTT(S), HTTPS,

CoAP(S), or LwM2M. When a device employs the binary format, its data must be

converted between binary and JSON formats using the codec deployed on the

platform for communication with IoTDA.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

14

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0089.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0212.html
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0178.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9990.html#section3

loT Device Access
Developer Guide

3 Development on the Device Side

Table 3-2 Native protocols

Proto | Opera | Tra | P | Appli | Feature Common Usage
col tions | nsp | o | cable Scenario
Suppo | ort | w | Net
rted Lay | er | work
er C
o
ns
u
m
pt
io
n
MQT | Upstre | TCP | Lo | Unst | Lightweight and Recommended industry
T(S) | am w | able/ | low power protocol for persistent
and High- | consumption; connection scenarios. It
downs laten | publish/subscribe | can be used in loT
tream cy model for one-to- | systems that require
many bidirectional
communication; communication, device
persistent control, or high
sessions scalability, such as
smart city, Internet of
Vehicles (IoV), energy,
electric power, and
Industry 4.0 solution.
HTTP | Upstre | TCP | Hi | Stabl | Various data Scenarios where data is
S am g | e and | formats available; | integrated with existing
only h | high- | one-way web services (such as
band | communication apps and web pages)
width | for client-intiated | or requires high
requests; stateless | readability.
with independent
requests
CoA | Upstre | UD | Ve | Extre | Designed for This technology is
P(S)/ | am P ry | mely | restricted devices; | commonly employed
LwM | and lo | low lightweight and on low-power devices
2M downs w | band | multicast; low with limited resources,
tream width | costs; binary such as water meters
/High | format (CBOR) and electricity meters,
pack as well as on devices
et with extremely
loss restricted resources like
rate battery-powered
sensors or those
operating solely on
UDP networks.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

loT Device Access
Developer Guide

3 Development on the Device Side

Access via Huawei-certified Modules

Huawei-certified modules are integrated with the loT Device SDK Tiny and have
passed Huawei certification tests. They comply with Huawei AT command
specifications. You can send and receive data with a few clicks using AT
commands, greatly reducing device interconnection workload and device
commissioning period.

3.2 Product Development

3.2.1 Product

Development Guide

In the loT platform integration solution, the loT platform provides open APIs for
applications to connect devices that use various protocols. To better manage
devices, the loT platform needs to understand the device capabilities and the
formats of data reported by devices. Therefore, you need to develop product
models and codecs on the IoT platform.

A product model is a JSON file that describes device capabilities. It defines
basic device properties and message formats for data reporting and command
delivery. To define a product model is to construct an abstract model of a
device in the platform to enable the platform to understand the device
properties.

A codec is developed based on the format of data reported by devices. |IoTDA
uses codecs to convert data between binary and JSON formats as well as
between different JSON formats. The binary data reported by a device is
decoded into the JSON format for the application to read, and the commands
delivered by the application are encoded into the binary or JSON format for
the device to understand and execute. The following figure shows the process.

Figure 3-2 Codec usage process

Devices Applications|

Abstracting in
communications

JSONommand delivery (JSON)
JSON Properties ——JSON——

Binary

Propoerty reporting (binary)

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_9980.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1401.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1401.html

loT Device Access
Developer Guide

3 Development on the Device Side

Product Development Process

The

IoTDA console provides a graphical user interface (GUI) to help you quickly

develop products (product models and codecs) and perform self-service tests.

Figure 3-3 Product development process

IoTDA
console

FAQ

Code development

Custom topic setting

Region A
Device access

Product import

AN

™

\
AN
L y
\\ Y

/
——————————————————— Public mode! library

Region B
Device access

Product import

e
e
/
/
e

No

Device-side integration

Adding to public model

Online debugging

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ACme Custom topic required |
|
|
|
|
|
|
|
L
|
|

Product creation: A product is a collection of devices with the same
capabilities or features. In addition to physical devices, a product includes
product information, product models, and codecs generated during loT
capability building.

Model definition: Product model development is the most important part of
product development. A product model is used to describe the capabilities
and features of a device. You can build an abstract model of a device by
defining a product model on the platform so that the platform can know
what services, properties, and commands are supported by the device.

Codec development: If the data reported by the device is in binary or JSON
format, a codec must be developed to convert data between binary and JSON
formats or between different JSON formats.

Online commissioning: IoTDA provides application and device simulators for
you to commission data reporting and command delivery before developing
real applications and physical devices. You can also use the application
simulator to verify the service flow after the physical device is developed.

(10 NOTE

Currently, only the standard edition supports online debugging of MQTT devices.

Product Models

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01000.html

loT Device Access
Developer Guide

3 Development on the Device Side

3.2.2 Creating a Product

On the loT platform, a product is a collection of devices with the same capabilities

or features.

Procedure

Step 1 Access the 10TDA service page and click Access Console. Click the target instance

card.

Step 2 Choose Products in the navigation pane and click Create Product on the left. Set
the parameters as prompted and click OK.

Set Basic Info

Resource
Space

Select a resource space from the drop-down list box. If a
resource space does not exist, create it first.

Product
Name

Define a product name. The product name must be unique in the
same resource space. The value can contain up to 64 characters.
Only letters, digits, and special characters (_?'#().,.&%@!-) are
allowed.

Protocol

e MQTT: The device data format can be binary or JSON. If the
binary format is used, the codec must be deployed.

e LwM2M over CoAP: Used only by NB-loT devices with limited
resources (including storage and power consumption). The
data format is binary, requiring the codec for device-platform
interaction.

e HTTPS: A secure communication protocol based on HTTP and
encrypted using SSL.

e Modbus: Devices that access the platform with Modbus via
loT edge nodes (or child devices that connect to the platform
through gateways) are indirectly connected devices. For
details about the differences between directly connected
devices and indirectly connected devices, see Gateways and
Child Devices.

e HTTP (TLS-encrypted), ONVIF, OPC UA, OPC DA, TCP, UDP,
and other protocols: 10T Edge is used for connection.

Data Type

e JSON: JSON is used for the communication protocol between
the platform and devices.

e Binary: You need to develop a codec on the IoTDA console to
convert binary code data reported by devices into JSON data.
The devices can communicate with the platform only after the
JSON data delivered by the platform is parsed into binary
code.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0052.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0052.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html

loT Device Access
Developer Guide

3 Development on the Device Side

Set Basic Info

Encoding
Format

When protocol_type is set to MQTT and data_format is set to
binary, set this parameter to specify the encoding format of
messages reported by devices.

e UTF-8 (default value): converts binary code streams into
Unicode strings.

e BASE64: converts binary code streams into Base64 strings.

Industry

Set this parameter based on service requirements.

Device Type

Set this parameter based on service requirements.

Advanced Settings

Product ID

Set a unique identifier for the product. If this parameter is
specified, the platform uses the specified product ID. If this
parameter is not specified, the platform allocates a product ID.

Description

Provide a description for the product. Set this parameter based
on service requirements.

You can click More > Delete to delete a product that is no longer used. After the
product is deleted, its resources such as the product models and codecs will be
cleared. Exercise caution when deleting a product.

--—-End

Follow-Up Procedure

1. In the product list, click the name of a product to access its details page. On
the product details page displayed, you can view basic product information,
such as the product ID, product name, device type, data format, resource
space, and protocol type.

Figure 3-4 Product details

Products

<

EA@EE CovecDeployment Oniine Debugging Topi

Product Detail

2. On the product details page, you can develop a product model, develop a
codec, perform online debugging, and customize topics.

3.2.3 Developing a Product Model

3.2.3.1 Product Model Definition

A product model describes the capabilities and features of a device. You can build
an abstract model of a device by defining a product model on the loT platform so

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0017.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9988.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html

IoT Device Access
Developer Guide 3 Development on the Device Side

that the platform can know what services, properties, and commands are
supported by the device, such as its on/off switches. After defining a product
model, you can use it during device registration.

A product model defines service capabilities.

e Service capabilities

The service capabilities of a device are divided into several services. Properties,
commands, and command parameters are defined for each service.

For example, a water meter has multiple capabilities. It reports the water
flow, alarms, battery life, and connection data, and it receives commands too.
When describing the capabilities of a water meter, the product model includes
five services, each of which has its own properties or commands.

Service Name Description

WaterMeterBasic | Defines parameters reported by the water meter, such
as the water flow, temperature, and pressure. If these
parameters need to be controlled or modified using
commands, these parameters must be defined in the
commands.

WaterMeterAlarm | Defines various scenarios where the water meter will
report an alarm. Commands need to be defined if
necessary.

Battery Defines the voltage and current intensity of the water
meter.

DeliverySchedule | Defines transmission rules for the water meter.
Commands need to be defined if necessary.

Connectivity Defines connectivity parameters of the water meter.

(10 NOTE

You can define the number of services as required. For example, the
WaterMeterAlarm service can be further divided into WaterPressureAlarm and
WaterFlowAlarm services or be integrated into the WaterMeterBasic service. The
platform provides multiple methods for developing product models. You can select a
method as required.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

loT Device Access
Developer Guide

3 Development on the Device Side

e Customize Model (online development): Build a product model from
scratch. For details, see Developing a Product Model Online.

e Import from Local (offline development): Upload a local product model to
the platform. For details, see Developing a Product Model Offline.

e Import from Excel: Define product functions by importing an Excel file. This
method can lower the product model development threshold for developers
because they only need to fill in parameters based on the Excel file. It also
helps high-level developers and integrators improve the development
efficiency of complex models in the industry. For example, the auto-control air
conditioner model contains more than 100 service items. Developing the
product model by editing the excel file greatly improves the efficiency. You
can edit and adjust parameters at any time. For details, see Import from
Excel.

e Import from Library: You can use a preset product model to quickly develop
a product. The platform provides standard and manufacturer-specific product
models. Standard product models comply with industry standards and are
suitable for devices of most manufacturers in the industry. Manufacturer-
specific product models are suitable for devices provided by a small number
of manufacturers. You can select a product model as required.

3.2.3.2 Developing a Product Model Online

Overview

Procedure

Step 1

Step 2

Step 3
Step 4

Before developing a product model online, you must create a product. When
creating a product, enter information such as the product name, protocol type,
data format, industry, and device type. The information will be used to fill in the
device capability fields in the product model. The loT platform provides standard
models and vendor models. These models involve multiple domains and provide
edited product model files. You can modify, add, or delete fields in the product
model as required. If you want to customize a product model, you need to define
a complete product model.

This topic uses a product model that contains a service as an example. The
product model contains functions and fields in scenarios such as data reporting,
command delivery, and command response delivery.

Access the I0TDA service page and click Access Console. Click the target instance
card.

In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

On the Basic Information tab page, click the button for adding a service.

Specify Service ID, Service Type, and Description, and click OK.

e Service ID: The first letter of the value must be capitalized, for example,
WaterMeter and StreetLight.

e Service Type: You are advised to set this parameter to the same value as
Service ID.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://www.huaweicloud.com/intl/en-us/product/iotda.html

loT Device Access
Developer Guide

3 Development on the Device Side

e Description: You can, for example, define the properties of light intensity
(Light_Intensity) and status (Light_Status).

After the service is added, define the properties and commands in the Add Service
area. A service can contain properties and/or commands. Configure the properties
and commands based on your requirements.

Step 5 Click the new service ID added in 4. On the page displayed, click Add Property. In
the dialog box displayed, set the parameters and click OK.

Parameter

Description

Property
Name

Use camel case, for example, batteryLevel and
internalTemperature.

Data Type

e Integer: Select this value if the reported data is an integer
value.

e long: Select this value if the reported data is a long integer.

e Decimal: Select this value if the reported data is a decimal.
You are advised to set this parameter to Decimal when
configuring the longitude and latitude properties.

e String: Select this value if the reported data is a string or an
enumerated value. Use commas (,) to separate values.

e DateTime: Select this value if the reported data is a date or
time.
Property format examples: 2020-09-01T18:50:20Z and
2020-09-01T718:50:20.200Z

e JsonObject: Select this value if the reported data is in JSON
structure.

e enum: Select this value if the reported data is enumerated
values.
If enumerated values are OPEN,CLOSE, property format
examples include OPEN and CLOSE.

e boolean: Select this value if the reported data is a Boolean
value.
Property format examples: true/false and 0/1

e StringList: Select this value if the reported data is a string
list.

Property format examples: ["str1","str2","str3"]

Access
Permissions

e Read: You can query the property through APIs.
e Write: You can modify the property value through APIs.

Value Range

Step

Unit

Set these parameters based on the actual situation of the
device.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-5 Adding a property - batteryLevel

Add Property

Property Name batteryLevel

Description

Data Type nteger A

Access Permissions | Read ‘i | Write ‘:1

100

=]
|

Value Range
Step

Unit
Ty
| Cancel |
(==) D

Step 6 Click Add Command. In the dialog box displayed, set command parameters.

e Command Name: You are advised to capitalize the full command name and
use underscores (_) to separate words, for example, DISCOVERY and
CHANGE_STATUS.

e Command Parameters: Click Add Command Parameter. In the dialog box
displayed, set the parameters of the command to be delivered and click OK.

Parameter | Description

Parameter You are advised to start the name with a lowercase letter
and capitalize the other words, example, valueChange.

Data Type Set these parameters based on the actual situation of the
device.

Value Range

Step

Unit

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-6 Adding a command - CHANGE_STATUS

X
Add Command
. CHANGESTATLS
o o . ™
Command Parameters (__Add Command Parameter)
% fon
Add Parameter
| + Parameter Name valueChange
|
| Description F
0128
Response Parame * Data Type nieger v
ion
Value Range 0 —| B5535
| Step
Unit rst
o Ty
(Cancel)
(e) QS
s ™
(_ Cancel) m

e C(lick Add Response Parameter to add parameters of a command response
when necessary. In the dialog box displayed, set the parameters and click OK.

Parameter | Description

Parameter You are advised to start the name with a lowercase letter
and capitalize the other words, example, valueResult.

Data Type Set these parameters based on the actual situation of the
device.

Value Range

Step

Unit

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-7 Adding a command response parameter - valueAResult

Add Parameter

Parameter Name valusAResult

Description

Data Type nteger

=]

Value Range
Step 1

Unit
o Y
| Cancel |
(e) ()

----End
3.2.3.3 Developing a Product Model Offline

Overview

A product model is essentially a .zip package consisting of a devicetype-
capability.json file and several serviceType-capability.json files. The devicetype-
capability.json file describes the service capabilities contained in the product
model, and the serviceType-capability.json file describes each capability of
service_capabilities in the devicetype-capability.json file. WaterMeter indicates
the device type, TestUtf8Manuld identifies the manufacturer 1D, and
WaterMeterBasic, WaterMeterAlarm, and Battery indicates the service types.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

loT Device Access
Developer Guide

3 Development on the Device Side

WaterMeter_TestUtfaManuld zip

prafile

devicetype-capability. json

service

WaterMeterBasic

profile
servicetype-capability.json
WaterMeterAlarm
profile
servicetype-capability.json
Battery
profile

servicetype-capability json

In offline development, you need to define device capabilities in the devicetype-
capability.json file and service capabilities in the servicetype-capability.json file
based on the platform rules and JSON format specifications.

Developing a Product Model Online is recommended, which is less time-
consuming.

Naming Rules
The

product model must comply with the following naming rules:

Use upper camel case for device types, service types, and service IDs, for
example, WaterMeter and Battery.

Use lower camel case for property names, for example, batteryLevel and
internalTemperature.

For commands, capitalize all characters, with words separated by underscores,
for example, DISCOVERY and CHANGE_COLOR.

Name a device capability profile (.json file) in the format of devicetype-
capability.json.

Name a service capability profile (.json file) in the format of servicetype-
capability.json.

The manufacturer ID must be unique in different product models and can
only be in English.

Names are universal and concise and service capability descriptions clearly
indicate corresponding functions. For example, you can name a multi-sensor
device MultiSensor and name a service that displays the battery level
Battery.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

loT Device Access

Developer Guide 3 Development on the Device Side

Product Model Templates

To connect a new device to the loT platform, you must first define a product
model for the device. The loT platform provides some product model templates. If
the types and functions of devices newly connected to the loT platform are
included in these templates, directly use the templates. If the types and functions
are not included in the product model templates, define your product model.

For example, if a water meter is connected to the loT platform, you can directly
select the corresponding product model on the loT platform and modify the device
service list.

(10 NOTE

The product model templates provided by the loT platform are updated continuously. The
following uses a water meter as an example to describe how to define a product model.

Device identification properties

Property Key (Product Model Value
JSON File)
Device Type deviceType WaterMeter

Manufacturer ID manufacturerld TestUtf8Manuld

Manufacturer Name manufacturerName HZYB
Protocol Type protocolType CoAP

Service list
Service Service ID Service Type Option
Basic water meter | WaterMeterBasic | Water Mandatory
function
Alarm service WaterMeterAlarm | Battery Mandatory
Battery service Battery Battery Optional
Data reporting DeliverySchedule | DeliverySchedule | Mandatory
rule
Connectivity Connectivity Connectivity Mandatory

Device Capability Definition Example

The devicetype-capability.json file records basic information about a device.
{

"devices": [
{
"manufacturerld": "TestUtf8Manuld",
"manufacturerName": "HZYB",

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

loT Device Access
Developer Guide

3 Development on the Device Side

"protocolType": "CoAP",
"deviceType": "WaterMeter",
"omCapability":{
"upgradeCapability" : {
"supportUpgrade":true,
"upgradeProtocolType":"PCP"

"fwUpgradeCapability" : {
"supportUpgrade":true,
"upgradeProtocolType":"LWM2M"

Ui

"configCapability" : {
"supportConfig":true,
"configMethod":"file",
"defaultConfigFile": {

"waterMeterinfo" : {
"waterMeterPirTime" : "300"
}

}
}
b

"serviceTypeCapabilities": [

"serviceld": "WaterMeterBasic",
"serviceType": "WaterMeterBasic",
"option": "Mandatory"

"serviceld": "WaterMeterAlarm",
"serviceType": "WaterMeterAlarm",
"option": "Mandatory"

"serviceld": "Battery",
"serviceType": "Battery",
"option": "Optional"

"serviceld": "DeliverySchedule",
"serviceType": "DeliverySchedule",
"option": "Mandatory"

"serviceld": "Connectivity",
"serviceType": "Connectivity",
"option": "Mandatory"

]
}
1
}

The fields are described as follows:

Fiel | Sub-field Mandatory | Description

d

devi | - - Yes Complete capability information

ces about a device. The root hode cannot

be modified.

- manufactur | - No Manufacturer ID of the device.
erld

- manufactur | - Yes Manufacturer name of the device.
erName The name must be in English.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

loT Device Access
Developer Guide

3 Development on the Device Side

Fiel

Sub-field

Mandatory

Description

protocolTyp
e

Yes

Protocol used by the device to
connect to the loT platform. For
example, the value is CoAP for NB-
loT devices.

deviceType

Yes

Type of the device.

omCapabili
ty

No

Software upgrade, firmware upgrade,
and configuration update capabilities
of the device. For details, see the
description of the omCapability
structure below.

If software or firmware upgrade is
not involved, this field can be
deleted.

serviceType
Capabilities

Yes

Service capabilities of the device.

servic
eld

Yes

Service ID. If a service type includes
only one service, the value of
serviceld is the same as that of
serviceType. If the service type
includes multiple services, the
services are numbered
correspondingly, such as Switch01,
Switch02, and Switch03.

servic
eType

Yes

Type of the service. The value of this
field must be the same as that of
serviceType in the servicetype-
capability.json file.

optio
n

Yes

Type of the service field. The value
can be Master, Mandatory, or
Optional.

This field is not a functional field but
a descriptive one.

Description of the omCapability structure

Field Sub-field Man | Description

dator

y
upgradeCa | - No Software upgrade capabilities of the device.
pability

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

29

loT Device Access
Developer Guide

3 Development on the Device Side

Field Sub-field Man | Description
dator
y
- supportUpg | No true: The device supports software upgrades.
rade false: The device does not support software
upgrades.
- upgradePro | No Protocol type used by the device for
tocolType software upgrades. It is different from
protocolType of the device. For example,
the software upgrade protocol of CoAP
devices is PCP.
fwUpgrad | - No Firmware upgrade capabilities of the device.
eCapabilit
y
- supportUpg | No true: The device supports firmware
rade upgrades.
false: The device does not support firmware
upgrades.
- upgradePro | No Protocol type used by the device for
tocolType firmware upgrades. It is different from
protocolType of the device. Currently, the
loT platform supports only firmware
upgrades of LwWM2M devices.
configCap | - No Configuration update capabilities of the
ability device.
- supportConf| No true: The device supports configuration
ig updates.
false: The device does not support
configuration updates.
- configMeth | No file: Configuration updates are delivered in
od the form of files.
- defaultConf | No Default device configuration information (in
igFile JSON format). The specific configuration
information is defined by the manufacturer.
The loT platform stores the information for
delivery but does not parse the
configuration fields.

Service Capability Definition Example

The servicetype-capability.json file records service information about a device.

{

"services": [

{

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

30

loT Device Access
Developer Guide

3 Development on the Device Side

"serviceType": "WaterMeterBasic",
"description": "WaterMeterBasic",
"commands": [

"commandName": "SET_PRESSURE_READ_PERIOD",
"paras": [

"paraName": "value",
"dataType": "int",
"required": true,
"min"; 1,

"max"; 24,

"step": 1,
"maxLength": 10,
"unit": "hour",
"enumList": null

}
1
"responses": [
{
"responseName": "SET_PRESSURE_READ_PERIOD_RSP",
"paras": [
{
"paraName": "result",
"dataType": "int",
"required": true,
"min": -1000000,
"max": 1000000,
"step": 1,
"maxLength": 10,
"unit": null,
"enumList": null
}
1
}
1

properties": [

"propertyName": "registerFlow",
"dataType": "int",
"required": true,

"min": 0,

"max": 0,

"step": 1,
"maxLength": 0,
"method": "R",
"unit": null,
"enumList": null
"propertyName": "currentReading",
"dataType": "string",
"required": false,
"min": 0,

"max": 0,

"step": 1,
"maxLength": 0,
"method": "W",
"unit": "L",
"enumList": null

"propertyName": "timeOfReading",
"dataType": "string",

"required": false,

"min": 0,

"max": 0,

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

31

IoT Device Access
Developer Guide 3 Development on the Device Side

"step": 1,
"maxLength": 0,
"method": "W",
"unit": null,
"enumlList": null

The fields are described as follows:

Fiel | Sub-field Man | Description
d dat
ory
serv | - - - - Yes | Complete information about a service.
ices The root node cannot be modified.
- ser | - - - Yes | Type of the service. The value of this
vic field must be the same as that of
eTy serviceType in the devicetype-
pe capability.json file.
- des | - - - Yes | Description of the service.
cn This field is not a functional field but a
pti descriptive one. It can be set to null.
on
- co |- - - Yes | Command supported by the device. If
m the service has no commands, set the
ma value to null.
nds
- - com | - - Yes | Name of the command. The command
man name and parameters together form a
dNa complete command.
me
- - para | - - Yes | Parameters contained in the command.
s
- - - para | - Yes | Name of a parameter in the command.
Nam
e

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

loT Device Access
Developer Guide

3 Development on the Device Side

Fiel

Sub-field

Man
dat
ory

Description

dataT
ype

Yes

Data type of the parameter in the
command.

Value: string, int, string list, decimal,
DateTime, jsonObject, enum, or
boolean

Complex types of reported data are as
follows:

e string list:["str1","str2","str3"]

e DateTime: The value is in the format
of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

e jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

requir
ed

Yes

Whether the command is mandatory.
The value can be true or false. The
default value is false, indicating that
the command is optional.

This field is not a functional field but a
descriptive one.

min

Yes

Minimum value.

This field is valid only when dataType is
set to int or decimal.

max

Yes

Maximum value.

This field is valid only when dataType is
set to int or decimal.

step

Yes

Step.
This field is not used. Set it to 0.

maxL
ength

Yes

String length.

This field is valid only when dataType is
set to string, string list, or DateTime.

unit

Yes

Unit, which must be in English.

The value is determined by the
parameter, for example:

Temperature unit: C or K
Percentage unit: %

Pressure unit: Pa or kPa

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

loT Device Access
Developer Guide

3 Development on the Device Side

Fiel | Sub-field Man | Description
d dat
ory
- - - enum | - Yes | Enumerated value.
List For example, the status of a switch can
be set as follows:

"enumlList" : ["OPEN","CLOSE"]

This field is not a functional field but a

descriptive one. It is recommended that

this field be defined accurately.
- - resp | - - Yes | Responses to command execution.
onse
s
- - - respo | - Yes | You can add _RSP to the end of
nseN commandName.
ame
- - - paras | - Yes | Parameters contained in a response.
- - - - pa | Yes | Name of a parameter in the command.
ra
Na
m
e
- - - - da | Yes [Data type.
ta Value: string, string list, decimal,
Ty DateTime, jsonObject, or int
e
P Complex types of reported data are as
follows:

e string list:["str1","str2","str3"]

e DateTime: The value is in the format
of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

e jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

- - - - re | Yes | Whether the command response is
qu mandatory. The value can be true or
ire false. The default value is false,
d indicating that the command response

is optional.

This field is not a functional field but a
descriptive one.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

loT Device Access

Developer Guide 3 Development on the Device Side
Fiel | Sub-field Man | Description
d dat
ory

- - - - mi | Yes Minimum value.

This field is valid only when dataType is
set to int or decimal. The value of a
field of the int or decimal type must be
greater than or equal to the value of
min.

- - - - m | Yes Maximum value.

ax This field is valid only when dataType is

set to int or decimal. The value of a
field of the int or decimal type must be
less than or equal to the value of max.

- - - - ste | Yes | Step.
p This field is not used. Set it to 0.

- - - - m | Yes | String length.

ax This field is valid only when dataType is
Le set to string, string list, or DateTime.
ng

th

- - - - un | Yes Unit, which must be in English.
it The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %

Pressure unit: Pa or kPa

- - - - en | Yes Enumerated value.

u For example, the status of a switch can
IIT'] be set as follows:
is

t "enumList" : ["OPEN","CLOSE"]

This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

- pro | - - - Yes | Reported data. Each sub-node indicates
per a property.
ties
- - prop | - - Yes Property name.
erty
Nam
e

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

loT Device Access
Developer Guide

3 Development on the Device Side

Fiel

Sub-field

Man
dat
ory

Description

- data
Type

Yes

Data type.

Value: string, string list, decimal,
DateTime, jsonObject, or int

Complex types of reported data are as
follows:

e string list:["str1","str2","str3"]

e DateTime: The value is in the format
of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

e jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

- requi
red

Yes

Whether the property is mandatory. The
value can be true or false. The default
value is false, indicating that the
property is optional.

This field is not a functional field but a
descriptive one.

- min

Yes

Minimum value.

This field is valid only when dataType is
set to int or decimal. The value of a
field of the int or decimal type must be
greater than or equal to the value of
min.

- max

Yes

Maximum value.

This field is valid only when dataType is
set to int or decimal. The value of a
field of the int or decimal type must be
less than or equal to the value of max.

- step

Yes

Step.
This field is not used. Set it to 0.

- met
hod

Yes

Access mode.

R indicates reading, W indicates writing,
and E indicates subscription.

Value: R, RW, RE, RWE, or null

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

loT Device Access
Developer Guide

3 Development on the Device Side

Fiel | Sub-field Man | Description
d dat
ory
- - unit | - - Yes Unit, which must be in English.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa
- - max | - - Yes | String length.
Leng This field is valid only when dataType is
th set to string, string list, or DateTime.
- - enu |- - Yes | Enumerated value.
mLis For example, batteryStatus can be set
t as follows:
"enumlList" : [0, 1, 2, 3, 4, 5, 6]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

Product Model Packaging

After the product model is completed, package it in the format shown below.

WaterMeter_TestUtfeManuld zip

profile

service

WaterMeterBasic

WaterMeteralarm

Battery

devicetype-capability.json

profile

servicetype-capability json
profile

servicetype-capability json
profile

servicetype-capability.json

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

37

loT Device Access
Developer Guide

3 Development on the Device Side

The following requirements must be met for product model packaging:

e The product model hierarchy must be the same as that shown above and
cannot be added or deleted. For example, the second level can contain only
the profile and service folders, and each service must contain the profile
folder.

e The product model is compressed in .zip format.

e The product model must be named in the format of
deviceType_manufacturerld. The values of deviceType and manufacturerid
must be the same as those in the devicetype-capability.json file. For
example, the following provides the main fields of the devicetype-
capability.json file.

{

"devices": [

{

"deviceType": "WaterMeter",
"serviceTypeCapabilities": ****
}
]
}
e WaterMeterBasic, WaterMeterAlarm, and Battery in the figure are services

defined in the devicetype-capability.json file.

The product model is in the JSON format. After the product model is edited, you
can use format verification websites on the Internet to check the validity of the
JSON file.

3.2.3.4 Exporting and Importing a Product Model

A product model can be exported from or imported to the loT platform.

e After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

e If you have a complete product model (developed offline or exported from
other projects or platforms) or use an Excel file to develop a product model,
you can import the product model to the platform.

Exporting a Product Model

Step 1

Step 2

Step 3

After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

Access the 10TDA service page and click Access Console. Click the target instance
card.

In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

On the page displayed, click Export to export the product model to the local host.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://www.huaweicloud.com/intl/en-us/product/iotda.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-8 Product Model - Exporting a product model

BasicInformation Codec Deployment Online Debugging Topic Management

--—-End

Importing a Product Model

If you have a complete product model (developed offline or exported from other
projects or platforms) or use an Excel file to develop a product model, you can
import the product model to the platform.

(11 NOTE

IoTDA uses codecs to convert data between binary and JSON formats as well as between
JSON formats (see Codec Definition). The product model imported from the local host
does not contain a codec. If the device reports binary code, go to the I0TDA console to
develop or import a codec.

e Import from Local

a. Access the 10TDA service page and click Access Console. Click the target
instance card.

b. In the navigation pane, choose Products. In the product list, click the
name of a product to access its details.

¢. On the Basic Information tab page, click Import from Local. In the
dialog box displayed, load the local product model and click OK.

Figure 3-9 Product - Uploading a product model

Import from Local

SET_PRESSURE_READ_PERIOD Water. Water Water Volta 0o Level
o

Period Value Result

e Import from Excel

a. Access the IoTDA service page and click Access Console. Click the target
instance card.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

loT Device Access
Developer Guide 3 Development on the Device Side

b. In the navigation pane, choose Products. In the product list, click the
name of a product to access its details.

c. On the Model Definition tab page, click Import from Excel. In the
product template downloaded, enter the service ID in the Device sheet
and set parameters such as properties, commands, and events in the
Parameter sheet. Import the Excel file and click OK.

Figure 3-10 Product - Importing a product model using an Excel file

Import from Excel

3.2.4 Developing a Codec

3.2.4.1 Codec Definition

A codec, as a plug-in within the platform, enables the conversion of data between
binary and JSON formats or between different JSON formats. It manages the
conversion of data from devices to the platform and vice versa.

In the NB-loT scenario, a codec can decode binary data reported by a device into
the JSON format for the application to read, and encode the commands delivered
by the application into the binary format for the device to understand and
execute. CoAP is used for communications between NB-loT devices and the loT
platform. The payload of COAP messages carries data at the application layer, at
which the data type is defined by the devices. As NB-loT devices require low
power consumption, data at the application layer is generally in binary format
instead of JSON. However, the platform sends data in JSON format to applications.
Therefore, codec development is required for the platform to convert data
between binary and JSON formats.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

IoT Device Access
Developer Guide 3 Development on the Device Side

The codec converts application layer data to JSOM data
described in the product madel

Protocol structure

serviceType Property Name Property Type

waterMeter dailyActivityTime int

internalTemperature int

Mesgages in JEON format

described in the fraduct model flow int
reverseFlow int
intervalFlow list
®NB-IoT devices communicate with the platform N
using CoAP over UDP. Payload in CoAP messages [P list
caries the application layer data. temperature list
* The farmat of application layer data is defined by vibration list
device manufacturer, and the manufacturer provides B
Codec of Codec of e e e onE A b
rmanufacturer A manufacturer B highFlowAlarm int
«The codec implements the following two interfaces .
temperAlarm int

String Decode (byte[]);

Byte[] Encode (String);

-
Pnr?fr:l:rﬁgl:aj;gﬁ:l ?Euaf’;ufur?;nﬁm Upstream ‘parbsfs ‘nf CDA‘P e AL L pe— Sends the message to
// \\ message: 0o :Z:‘s \cation layer by the manufacturer. the application
Device of Dievice of Downstream Invokes the cars CeemulEsilin Cos
a — provided
manufacturer A manufacturer B message: s 6 EEEaE by the manufacturer — m““f’:eaé‘:vi?ds 1559

Scenarios
1. Required for device access using LwM2M/CoAP

2. Required for device access using generic protocols, such as TCP, JT808, and
GB32960

3. Not required for device access using MQTT(S) or HTTP(S)
Data Reporting

Figure 3-11 Codecs for data reporting

loTDA Applications

Parse the CoAP message to obtain
payload

Upsiream message
msgType:deviceReq

|

Find target codecs

Decode data
Input: binary data
Qutput: JSON data

—Notify of device data reporting——————»

Respond

|

Encode data
Input: JSON data
Output: binary data

—————-q--g---

b Response to the upsteam message: H
msgType:cloudRsp !
1

In the data reporting process, the codec is used in the following scenarios:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

IoT Device Access
Developer Guide 3 Development on the Device Side

e Decoding binary data reported by a device into JSON data and sending the
decoded data to an application

e Encoding JSON data returned by an application into binary data that can be
identified by the device and sending the encoded data to a device

Command Delivery

Figure 3-12 Codec usage in command delivery

Downstream message:
msgType:deviceReq

Find target codecs

1

1

1

1

1

1

1

1

1

1

1

1

1

1

: Encode data
1 Input: JSON data
! Output: binary data
1
]
]
1
1
1
1
1
[}
1
1
1
1
1

Assemble CoAP packets

1es
g

[
<
@
<

+———Report command resu\1541

1

: Decode data

: Input: binary data
1 Qutput: JSON data
1
1
1
1
1

R, gl g g g g gy

Report notification

In the command delivery process, the codec is used in the following scenarios:
e Encoding JSON data delivered by an application into binary data and sending
the encoded data to a device

e Decoding binary data returned by a device into JSON data and reporting the
decoded data to an application

Graphical Development and Script-based Development
The platform provides multiple methods for developing codecs.
e Online development: The codec of a product can be quickly developed in a
visualized manner on the IoTDA console.

e Script-based development: JavaScript scripts are used to implement
encoding and decoding. After December 1, 2024, JavaScript-based codec
development is no longer available on the platform for new users. You are
advised to use FunctionGraph to write JavaScript scripts. For details, see
Overview.

FAQ

Codecs

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00018.html

IoT Device Access
Developer Guide 3 Development on the Device Side

What Is NB-loT?

Best Practices
Connecting and Debugging an NB-loT Smart Street Light Using a Simulator

3.2.4.2 Online Development
Codecs developed online on 10TDA apply only to devices that report binary data.
On the I0TDA console, you can quickly develop codecs in a visualized manner.

This section uses an NB-loT smoke detector as an example to describe how to
develop a codec that supports data reporting and command delivery as well as
command execution result reporting. The other two scenarios are used as
examples to describe how to develop and commission complex codecs.

e Codec for Data Reporting and Command Delivery

Codec for Strings and Variable-Length Strings

Codec for Arrays and Variable-Length Arrays

Codec for Data Reporting and Command Delivery
Scenario
A smoke detector provides the following functions:

e Reporting smoke alarms (fire severity) and temperature.

e Receiving and running remote control commands, which can be used to
enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

e Reporting command execution results
Product Model

Define the product model on the product details page of the smoke detector.
e level: indicates the fire severity.
e temperature: indicates the temperature at the fire scene.

e SET_ALARM: indicates whether to enable or disable the alarm function. The
value 0 indicates that the alarm function is disabled, and 1 indicates that the
alarm function is enabled.

Figure 3-13 Model definition - smokedetector

uuuuuuuuu

nnnnnn

nnnnnnnnnnnnnnnnnnnn

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00200.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html

loT Device Access
Developer Guide

3 Development on the Device Side

Step 1

Step 2

Developing a Codec

On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Click Add Message to add a smokerinfo message. This step is performed to
decode the binary code stream message uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:

e Message Name: smokerinfo
e Message Type: Data reporting

e Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

e Response: AAAAOOOO (default)
Figure 3-14 Adding a message - smokerinfo

Add Message

Basic Information
a Name Description

smokeinfo

(®) Data reporting

Command delivery

Add Response Field

Fields s X ™
| AddField)
AN J

Offset Field Name Description Data Type Length Tagged as Address Fi... Operation

No table data available.

Mo Fields data available. Add Field first.

.(Add Figld ;\.

Response AAAADDOD

oy

1. Click Add Field, select Tagged as address field, and add the messageld field,
which indicates the message type. In this scenario, the message type for
reporting the fire severity and temperature is 0x0. When a device reports a
message, the first field of each message is messageld. For example, if the
message reported by a device is 0001013A, the first field 00 indicates that the
message is used to report the fire severity and temperature. The subsequent
fields 01 and 013A indicate the fire severity and temperature, respectively. If

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

loT Device Access
Developer Guide

3 Development on the Device Side

2.

there is only one data reporting message and one command delivery
message, the messageld field does not need to be added.

Data Type is configured based on the number of data reporting message
types. The default data type of the messageld field is int8u.

The value of Offset is automatically filled based on the field location and
the number of bytes of the field. messageld is the first field of the
message. The start position is 0, the byte length is 1, and the end position
is 1. Therefore, the value of Offset is 0-1.

The value of Length is automatically filled based on the value of Data
Type.

Default Value can be changed but must be in hexadecimal format. In
addition, the corresponding field in data reporting messages must be the
same as the default value.

Figure 3-15 Adding a field - messageld

Add Field

0 When the field is tagged as address field, the field name is fixed at messageld.
The names of other fields cannot be set to messageld.

Tagged as address field (3)

Field Name messageld
Description —Enter--
124 4
Data Type (Big Endian) int&u "
Offset @
Length (i}
Default Valus 0x0 &

4 ™y
| Cancel |
M A “

Add a level field to indicate the fire severity.

Field Name can contain only letters, digits, underscores (_), and dollar
signs ($) and cannot start with a digit.

Data Type is configured based on the data reported by the device and
must match the type defined in the product model. The level property

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

IoT Device Access
Developer Guide 3 Development on the Device Side

defined in the product model is int, and the maximum value is 9.
Therefore, the value of Data Type is int8u.

- The value of Offset is automatically filled based on the field location and
the number of bytes of the field. The start position of the level field is
the end position of the previous field. The end position of the previous
field messageld is 1. Therefore, the start position of the level field is 1.
The length of the level field is 1 byte, and the end position is 2.
Therefore, the value of Offset is 1-2.

- The value of Length is automatically filled based on Data Type.

- Default Value can be left blank. If you do not set Default Value, the fire
level is not fixed and has no default value.

Figure 3-16 Adding a field - level

Add Field

Tagged as address field (E}

Field Name level
Description —Enter—
124 4
Data Type (Big Endian) int8u o+
Offset Q)
Length &
Default Value ®

4 ™y
| Cancel |
M A m

3. Add the temperature field to indicate the temperature at the fire scene.

- Data Type: In the product model, the data type of the temperature
property is int and the maximum value is 1000. Therefore, the value of
Data Type is int16u in the codec to meet the value range of the
temperature property.

- Offset is automatically configured based on the number of characters
between the first field and the end field. The start position of the
temperature field is the end position of the previous field. The end
position of the previous field level is 2. Therefore, the start position of
the temperature field is 2. The length of the temperature field is 2
bytes, and the end position is 4. Therefore, the value of Offset is 2-4.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

IoT Device Access
Developer Guide 3 Development on the Device Side

- The value of Length is automatically filled based on Data Type.
- If you do not set Default Value, the value of the temperature is not fixed
and has no default value.

Figure 3-17 Adding a field - temperature

Add Field

Tagged as address field (3)

Field Name temperature
Description —Enter—
)24 4
Data Type (Big Endian) int16u W
Offset &
Length &
Default Value &

' ™
| Cancel |
(e) SR

Step 3 Click Add Message to add a SET_ALARM message and set the temperature
threshold for fire alarms. For example, if the temperature exceeds 60°C, the device
reports an alarm. This step is performed to encode the command message in
JSON format delivered by the IoT platform into binary data so that the smoke
detector can understand the message. The following is a configuration example:

e Message Name: SET_ALARM
e Message Type: Command delivery

e Add Response Field: selected. After a response field is added, the device
reports the command execution result after receiving the command. You can
determine whether to add response fields as required.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-18 Adding a message - SET_ALARM

Add Message

Basic Information
*Message Name Description

SET_ALARM

“Message Type

Data repumlg -'_:._'3 Command delivery

01,024 »
Add Response Field

Fields 'd Y
|\ Add Field /\

Offset Field Name Description Data Type Length Tagged as Address Fi... = Operation

No table data available.
No Fields data available. Add Field first.

.C AddFieId)\

Response Field \(Add Response Field >

Offset Field Name Description Data Type = Length Tagged as Address Fi... Operation

o Y
| Cancel)
(o) (D

a. Click Add Field to add the messageld field, which indicates the message
type. For example, set the message type of the fire alarm threshold to
0x3. For details about the message ID, data type, length, default value,
and offset, see 1.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-19 Adding a command field - messageld (0x3)

Add Field

0 When the field is tagged as address field, the field name is fixed at messageld.
The names of other fields cannot be set to messageld.

Tagoed as address field (%)

Tagged as response 1D field (E}

Field Name

Description

Data Type (Big Endian)

Offset

Length

Default Value

messageld
—Enter—
024 4
intBu o
®
©)
0x3 ©)

Ty
[|

b. Add the mid field. This field is generated and delivered by the platform
and is used to associate the delivered command with the command
delivery response. The data type of the mid field is int16u by default. For
details about the length, default value, and offset, see 2.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

loT Device Access

Developer Guide 3 Development on the Device Side

Figure 3-20 Adding a command field - mid

X
Add Field

0 When the field is tagged as response |1D field, the field name must be fixed at
mid. The names of other fields cannot be sef to mid.

Tagged as address field ()

Tagged as response 1D field @

Field Name mid
Description —Enter--
01,024 4
Data Type (Big Endian) int16u V
Offset ®
Length ©)
Default Value ©)

Ty
| Cancel)
(e) ()

¢. Add the value field to indicate the parameter value of the delivered
command. For example, deliver the temperature threshold for a fire

alarm. For details about the data type, length, default value, and offset,
see 2.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-21 Adding a command field - value

Add Field

Tagged as address field ()

Tagged as response ID field @n

* Field Name

Description

Data Type (Big Endian)

Offset

Length

Default Value

value

—Enter—

[1+]

int8u

®

®

®

4 ™
Cancel |
(o) D)

d. Click Add Response Field to add the messageld field, which indicates
the message type. The command delivery response is an upstream
message, which is differentiated from the data reporting message by the
messageld field. The message type for reporting the temperature
threshold of the fire alarm is Ox4. For details about the message ID, data

type, length, default value, and offset, see 1.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

51

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-22 Adding a response field - messageld (0x4)

Add Field

@) When the field is tagged as address field, the field name is fixed at messageld.
The names of other fields cannot be set to messageld.

Tagged as address field (3)
Tagged as response ID field (7)

Tagged as command execution state field ()

Field Name messageld
Description —-Enter--
011,024 4
Data Type (Big Endian) int8u W
Dffset &
Length ©)
Default Value 0x4 &

N
| Cancel |
k. A “

e. Add the mid field. This field must be the same as that in the command
delivered by the loT platform. It is used to associate the delivered
command with the command execution result. The data type of the mid

field is int16u by default. For details about the length, default value, and
offset, see 2.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-23 Adding a response field - mid

Add Field

0 When the field is tagged as response 1D field, the field name must be fixed at
mid. The names of other fields cannot be set to mid.

Tagged as address field (3)
Tagged as responze 1D field @

Tagged as command execution state field (%)

Field Name mid
Description —Enter--
024 %
Data Type (Big Endian) int16u v
Offset ®
Length ®
Default Value O]

Ty
| Cancel |
(o) (D)

f. Add the errcode field to indicate the command execution status. 00
indicates success and 01 indicates failure. If this field is not carried in the
response, the command is executed successfully by default. The data type
of the errcode field is int8u by default. For details about the length,
default value, and offset, see 2.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-24 Adding a response field - errcode

Add Field

@) When the figld is tagged as command execufion state field, the field name is
fixed at errcode. The names of other fields cannot be set to errcode.

Tagged as address field (%)

Tagoed as response 1D field @

Tagoed as command execution state field @

Field Name

Description

Data Type (Big Endian)

Offzet

Length

Default Value

errcode

—Enter—

01,024 +

int8u w

@ @ 6

o Ty
| Cancel |
AN A m

g. Add the result field to indicate the command execution result. For
example, the device returns the current alarm threshold to the platform.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

54

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-25 Adding a response field - result

Add Field

Tagged as address field (%)
Tagoed az rezponse 1D field @

Tagged as command execution state field @

Field Name result
Description —Enter--
01,024 ~
Data Type (Big Endian) int8u o
Dffzet Q)]
Length @
Default Value Q)]

Ty
| Cancel)
. A m

Step 4 Drag the property fields and command fields in Device Model on the right to set
up a mapping between the fields in the data reporting message and those in the
command delivery message.

Figure 3-26 Developing a codec online - smokerdetector

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

loT Device Access
Developer Guide

3 Development on the Device Side

Step 5

Step 1

Step 2

Step 3

Step 4

Click Save and then Deploy to deploy the codec on the platform.

Figure 3-27 Deploying a codec

----End
Testing the Codec

On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a virtual device as
an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

Figure 3-28 Online debugging - Creating a virtual device

Add Test Device
Device Type Physical device Viriual device
Device Name

Mode |ID
Ty
| Cancel |
(==) 2

Click Debug to access the debugging page.

Figure 3-29 Entering debugging

Oniine Debugging

©E©

Use the device simulator to report data. For example, a hexadecimal code stream
(0008016B) is reported. 00 indicates the messageld field. 08 indicates the fire
level, and its length is one byte. 016B indicates the temperature, and its length is
two bytes.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

loT Device Access
Developer Guide 3 Development on the Device Side

View the data reporting result ({level=8, temperature=363}) in Application
Simulator. 8 is the decimal number converted from the hexadecimal number 08
and 363 from the hexadecimal humber 016B.

In the Device Simulator area, the response data AAAA00OO delivered by the loT
platform is displayed.

Figure 3-30 Online debugging - Simulating data reporting (smokerdetector)

uuuuuuuuuuuuuuu

Step 5 Use the application simulator to deliver a command and set value to 1. The
command {"serviceld": "Smokeinfo", "method": "SET_ALARM", "paras": "{\"value
\":1}"} is delivered.

View the command receiving result in Device Simulator, which is 03000101. 03
indicate the messageld field, 0001 indicates the mid field, and 01 is the
hexadecimal value converted from the decimal value 1.

Figure 3-31 Online debugging - Simulating command delivery (smokerdetector)

nnnnnnnnnnnnnnn

mmmmmmmmmmmmmmmmmmmmmmmmmmmm

(11 NOTE

During online debugging of a CoAP virtual device, if the device simulator does not receive
the delivered command, use the device simulator to report the property, and deliver the
command again.

--—-End

Summary

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

loT Device Access
Developer Guide 3 Development on the Device Side

e If the codec needs to parse the command execution result, the mid field must
be defined in the command and the command response.

e The length of the mid field in a command is two bytes. For each device, mid
increases from 1 to 65535, and the corresponding code stream ranges from
0001 to FFFF.

e After a command is executed, the mid field in the reported command
execution result must be the same as that in the delivered command. In this
way, the IoT platform can update the command status.

Codec for Strings and Variable-Length Strings

If the smoke detector needs to report the description information in strings or
variable-length strings, perform the following steps to create messages:

Product Model

Create a smoke sensor product and define the product model on the product
details page.

Figure 3-32 Model definition - smokedetector carrying other_info

aaaaaaaaaaaa

::::::

ssssss

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Step 2 Click Add Message to add the other_info message and report the description of
the string type. This step is performed to decode the binary code stream message
of the string uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:

e Message Name: other_info
e Message Type: Data reporting

e Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

e Response: AAAAOOOO (default)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-33 Adding a message - other_info

Add Message

Basic Information

*Message Name Description
other_info
lessage Type
'ZEZ' Data reporting Command delivery
011,024 %
Add Response Field
Fields n
| AddField |
Offset Field Name Description Data Type Length Tagged as Address Fi... Operation
’ /N \‘\
;J
No table data available.
No Fields data available. Add Field first.
e
|\ Add Field /I
Response AAAADDDD

s ™
C |

1. Click Add Field to add the messageld field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the string type). For details about the message
ID, data type, length, default value, and offset, see 1.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

59

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-34 Adding a field - messageld (0x2)

Add Field

0 When the field is tagged as address field, the field name is fixed at messageld.

The names of other fields cannot be set o messageld.

Tagged as address field (3)

Field Name

Description

Data Type (Big Endian)

Offset

Length

Default Valug

messageld

—Enter—

0/1,024 #

int&u W

0x2

o
C |
D] -

2. Add the other_info field to indicate the description of the string type. In this
scenario, set Data Type to string and Length to 6. For details about the field
name, default value, and offset, see 2.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

60

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-35 Adding a field - other_info

Add Field

Tagged as address field (3)

Field Name other_info
Description —Enter--
124 £
Data Type (Big Endian) string v
Offset)
Length G ©)
Default Value Q)

'd ™y
| Cancel |
(e) (D)

Step 3 Click Add Message, add the other_info2 message name, and configure the data
reporting message to report the description of the variable-length string type. This
step is performed to decode the binary code stream message of variable-length
strings uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:

e Message Name: other_info2
e Message Type: Data reporting

e Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

e Response: AAAAOOOO (default)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-36 Adding a message - other_info2

Add Message

Basic Information

*Message Name Description

other_info2

Command delivery

0/1,024 =

Add Response Field

Fields

e ™
[AddField)
A A

Offset Field Name Description Data Type Length Tagged as Address Fi... Operation

\
(Y

No table data available.

No Fields data available. Add Field first

PPN
Add Field
I\- le /\

Response AAAADDDD

oA Ty
C |

1. Add the messageld field to indicate the message type. In this scenario, the
value 0x0 is used to identify the message that reports the fire severity and
temperature, 0x1 is used to identify the message that reports only the
temperature, and 0x3 is used to identify the message that reports the
description (of the variable-length string type). For details about the message
ID, data type, length, default value, and offset, see 1.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

loT Device Access

Developer Guide 3 Development on the Device Side

Figure 3-37 Adding a field - messageld (0x3)

X
Add Field

o When the field is tagged as address field, the field name is fixed at messageld.
The names of other fields cannot be set to messageld.

Taoged as address field (3)

Field Name messageld
Description —Enter—-
24 4
Data Type (Big Endian) int8u W
Offset Q)]
Length ©)
Default Value [0x3] ®

2. Add the length field to indicate the length of a variable-length string. Data
Type is configured based on the length of the variable-length string. If the
string contains 255 or fewer characters in this scenario, set this parameter to
int8u. For details about the length, default value, and offset, see 2.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-38 Adding a field - length

Add Field

Tagged as address field (3)

Field Name length
Description —Enter--
124 £
Data Type (Big Endian) int8u v
Oifset @
Length)
Default Value @

3. Add the other_info field and set Data Type to varstring, which indicates the
description of the variable-length string type. Set Length Correlation Field to
length, indicating that the length of the current variable-length string is
determined by the reported value of length. The default mask is 0xff, which is
used to calculate the actual length of the field. For example, if the value of
Length Correlation Field is 5, the binary value is 00000101. If the mask is
0xff, the binary value is 11111111. The result of the AND operation on these
two values is 00000101, that is, 5 in decimal format. Therefore, the length of
this field that takes effect is 5 bytes. For example, if the reported data is
03051234567890, its message ID is 03, its length is 5 bytes, and the code
stream corresponding to other_info is 1234567890.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-39 Adding a field - other_info as varstring

Add Field

Tagged as address field (3)

Field Name other_info
Description —Enter—
011,024 =
Data Type (Big Endian) varstring b
Length Correlation Field length v | @
Mask 0xff ®

oy
C I
<] -)

Step 4 Drag the property fields in Device Model on the right to set up a mapping
between the corresponding fields in the data reporting messages.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-40 Developing a codec - Data reporting field mapping

—_—— Froduct Madsl

2@ : g Proparties Commands

eT-:'.slﬂf) = B e

Raspones Co B tspersturs
/ u other_infa

Dista Aepoeting Fields g

1

g et

tsmperaturs

28 . [- [50N Source Cade
cther_info_2 / Smain

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Figure 3-41 Deploying a codec

----End
Testing the Codec

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a virtual device as
an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-42 Online debugging - Creating a virtual device

Add Test Device
Device Type Physical device Virtual device
Device Name

Mode ID
Ty
[Cancel |
(==) D

Step 3 Click Debug to access the debugging page.

Figure 3-43 Entering debugging

wwwwwwwwwwwwwwwwwwwwww

Oniine Debugging

Qe

\\\\\\\\\\\

Step 4 Use the device simulator to report the description of the string type.

In the hexadecimal code stream example (0231), 02 indicates the messageld field
and specifies that this message reports the description of the string type. 31
indicates the description and its length is one byte.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than six bytes. Therefore, the codec cannot parse
the description.

Figure 3-44 Simulating data reporting - other_info too short

Online Debugging

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

loT Device Access
Developer Guide

3 Development on the Device Side

In the hexadecimal code stream example (02313233343536), 02 indicates the
messageld field and specifies that this message reports the description of the
string type. 313233343536 indicates the description and its length is six bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description is six bytes. The description is parsed successfully by

the codec.

Figure 3-45 Simulating data reporting - other_info length proper

Online Debugging

20250525T0120267DeviceSimulator

In the hexadecimal code stream example (023132333435363738), 02 indicates the
messageld field and specifies that this message reports the description of the
string type. 3132333435363738 indicates the description and its length is eight

bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description exceeds six bytes. Therefore, the first six bytes are
intercepted and parsed by the codec.

Figure 3-46 Simulating data reporting - other_info too long

nline Debugging

In the hexadecimal code stream example (02013132333435), 02 indicates the
messageld field and specifies that this message reports the description of the
string type. 013132333435 indicates the description and its length is six bytes.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

loT Device Access
Developer Guide

3 Development on the Device Side

Step 5

View the data reporting result ({other_info=\u000112345}) in Application
Simulator. In the ASCII code table, 01 indicates start of headline which cannot
be represented by specific characters. Therefore, 01 is parsed to \u0001.

Figure 3-47 Simulating data reporting - other_info as ASCII code

line Debugging G oaveson (T

nnnnnnnnnnn

Use the device simulator to report the description of the variable-length string
type.

In the hexadecimal code stream example (030141), 03 indicates the messageld
field and specifies that this message reports the description of the variable-length
string type. 01 indicates the length of the description. 41 indicates the description
content and its length is one byte.

View the data reporting result ({other_info=A}) in Application Simulator. A
corresponds to 41 in the ASCII code table.

Figure 3-48 Simulating data reporting - other_info as variable-length character
string 1

line Debugging G ouverson (T

In the hexadecimal code stream example (03024142), 03 indicates the messageld
field and specifies that this message reports the description of the variable-length
string type. 02 indicates the length of the description. 4142 indicates the
description content and its length is two bytes.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

loT Device Access
Developer Guide

3 Development on the Device Side

View the data reporting result ({other_info=AB}) in Application Simulator. A
corresponds to 41 and B corresponds to 42 in the ASCII code table.

Figure 3-49 Simulating data reporting - other_info as variable-length character
string 2
niine Debugging @ OldVerson

In the hexadecimal code stream example (030341424344), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length string type. The second 03 indicates the length of the description.
41424344 indicates the description content and its length is four bytes.

View the data reporting result ({other_info=ABC}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. In the ASCII code table, A corresponds to 41, B to 42, and
Cto 43.

Figure 3-50 Simulating data reporting - other_info as variable-length character
string 3

uuuuuuuuuuu

In the hexadecimal code stream example (0304414243), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length string type. 04 indicates the string length (four bytes) and its
length is one byte. 414243 indicates the description and its length is four bytes.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

loT Device Access
Developer Guide

3 Development on the Device Side

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than four bytes. The codec fails to parse the
description.

Figure 3-51 Simulating data reporting - other_info as variable-length character
string 4
Online Debugging @ 0ldVersion

----End
Summary

e When data is a string or a variable-length string, the codec processes the data
based on the ASCIl code. When data is reported, the hexadecimal code stream
is decoded to a string. For example, 21 is parsed to an exclamation mark (!),
31to 1, and 41 to A. When a command is delivered, the string is encoded into
a hexadecimal code stream. For example, an exclamation mark (!) is encoded
into 21, 1 into 31, and A into 41.

e When the data type of a field is varstring (variable-length string type), the
field must be associated with the length field. The data type of the length
field must be int.

e For variable-length strings, the codecs for command delivery and data
reporting are developed in the same way.

e Codecs developed online encode and decode strings and variable-length
strings using the ASCIl hexadecimal standard table. During decoding (data
reporting), if the parsing results cannot be represented by specific characters
such as start of headline, start of text, and end of text, the \u+2 byte code
stream values are used to indicate the results. For example, 01 is parsed to
\u0001 and 02 to \u0002. If the parsing results can be represented by specific
characters, specific characters are used.

Codec for Arrays and Variable-Length Arrays

If the smoke detector needs to report the description information in arrays or
variable-length arrays, perform the following steps to create messages:

Product Model

Define the product model on the product details page of the smoke detector.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-52 Model definition - smokedetector carrying other_info

;;;;;;

aaaaa

Readable

temperature Decimal

Readable

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Step 2 Click Add Message to add the other_info message and report the description of
the array type. This step is performed to decode the array binary code stream
message uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:

Message Name: other_info
Message Type: Data reporting

Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

Response: AAAAOOO0O (default)

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-53 Adding a message - other_info

Add Message

Basic Information

*Message Name Description
other_info
lessage Type
'ZEZ' Data reporting Command delivery
011,024 %
Add Response Field
Fields n
| AddField |
Offset Field Name Description Data Type Length Tagged as Address Fi... Operation
’ /N \‘\
;J
No table data available.
No Fields data available. Add Field first.
e
|\ Add Field /I
Response AAAADDDD

s ™
C |

1. Click Add Field to add the messageld field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the array type). For details about the message
ID, data type, length, default value, and offset, see 1.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

73

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-54 Adding a field - messageld (0x2)

Add Field

0 When the field is tagged as address field, the field name is fixed at messageld.
The names of other fields cannot be set o messageld.

Tagoed as address field (3)

Field Name messageld
Description —Enter--
24 4
Data Type (Big Endian) int8u W
Ofiset)
Length @
Default Valug 0x2 @

o
C |
D] -

2. Add the other_info field and set Data Type to array, which indicates the
description of the array type. In this scenario, set Length to 5. For details
about the field name, default value, and offset, see 2.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-55 Adding a field - other_info as array

Add Field

Tagged as address field (%)

Field Name other_info
Description —Enter--
Data Type (Big Endian) array
Ofiget

Length 5

Default Value

®
®

®

'd ™y
| Cancel |
(e) (D)

Step 3 Click Add Message to add the other_info2 message and report the description of
the variable-length array type. This step is performed to decode the binary code
stream message of variable-length arrays uploaded by the device to the JSON
format so that the platform can understand the message. The following is a

configuration example:
e Message Name: other_info2
e Message Type: Data reporting

e Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving

the data reported by the device.
e Response: AAAAOOOO (default)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

75

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-56 Adding a message - other_info2

Add Message

Basic Information

*Message Name Description

other_info2

Command delivery

0/1,024 =

Add Response Field

Fields

e ™
[AddField)
A A

Offset Field Name Description Data Type Length Tagged as Address Fi... Operation

\
(Y

No table data available.

No Fields data available. Add Field first

PPN
Add Field
I\- le /\

Response AAAADDDD

oA Ty
C |

1. Click Add Field to add the messageld field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x3 is used to identify the message
that reports the description (of the variable-length array type). For details
about the message ID, data type, length, default value, and offset, see 1.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-57 Adding a field - messageld (0x3)

Add Field

o When the field is tagged as address field, the field name is fixed at messageld.
The names of other fields cannot be set to messageld.

Taoged as address field (3)

Field Name messageld
Description —Enter—-
24 4
Data Type (Big Endian) int8u W
Offset @
Length ©)
Default Value [0x3] ®

2. Add the length field to indicate the length of an array. Data Type is
configured based on the length of the variable-length array. If the array
contains 255 or fewer characters, set this parameter to int8u. For details
about the length, default value, and offset, see 2.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-58 Adding a field - length

Add Field

Tagged as address field (3)

Field Name length
Description —Enter--
124 £
Data Type (Big Endian) int8u v
Oifset @
Length)
Default Value @

3. Add the other_info field and set Data Type to variant, which indicates the
description of the variable-length array type. Set Length Correlation Field to
length, indicating that the length of the current variable-length array is
determined by the reported value of length. The default mask is 0xff, which is
used to calculate the actual length of the array. For example, if the value of
Length Correlation Field is 5, the binary value is 00000101. If the mask is
0xff, the binary value is 11111111. The result of the AND operation on these
two values is 00000101, that is, 5 in decimal format. Therefore, the length of
this array that takes effect is 5 bytes. For example, if the reported data is
03051234567890, its message ID is 03, its length is 5 bytes, and the code
stream corresponding to other_info is 1234567890.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-59 Adding a field - other_info as variant

Add Field

Tagged as address field (3)

* Field Name other_info
Description —Enter—
01,024 =
Data Type (Big Endian) variant W
Length Correlation Field length v | @
Mask 0xft @

Ty
| Cancel |
¢) €D

Step 4 Drag the property fields in Device Model on the right to set up a mapping
between the corresponding fields in the data reporting messages.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-60 Developing a codec - Data reporting field mapping (other_info to
variant)

—_— Product Madel

zm - G
amokainto
a temperstura

temperatura

JS0M Source Code

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Figure 3-61 Deploying a codec

—— Product Model

----End
Testing the Codec

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a virtual device as
an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-62 Online debugging - Creating a virtual device

Add Test Device
Device Type Physical device Viriual device
Device Name

Mode |ID
Ty
| Cancel |
(==))

Step 3 Click Debug to access the debugging page.

Figure 3-63 Entering debugging

Oniine Debugging

Step 4 Use the device simulator to report the description of the array type.

For example, a hexadecimal code stream (0211223344) is reported. In this code
stream, 02 indicates the messageld field and specifies that this message reports
the description of the array type. 11223344 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than five bytes. Therefore, the codec cannot parse
the description.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-64 Simulating data reporting - other_info as array 1

In the hexadecimal code stream example (021122334455), 02 indicates the
messageld field and specifies that this message reports the description of the
array type. 1122334455 indicates the description and its length is five bytes.

View the data reporting result ({serviceld: smokedetector, data:
{"other_info":"ESIzZRFU="}}) in Application Simulator. The length of the
description is five bytes. The description is parsed successfully by the codec.

Figure 3-65 Simulating data reporting - other_info as array 2

Online Debugging

In the hexadecimal code stream example (02112233445566), 02 indicates the
messageld field and specifies that this message reports the description of the
array type. 112233445566 indicates the description and its length is six bytes.

View the data reporting result ({serviceld: smokedetector, data:
{"other_info":"ESIzZRFU="}}) in Application Simulator. The length of the
description exceeds six bytes. Therefore, the first five bytes are intercepted and

parsed by the codec.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

82

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-66 Simulating data reporting - other_info as array 3

‘Online Debugging

Anana

Step 5 Use the device simulator to report the description of the variable-length array
type.

In the hexadecimal code stream example (030101), 03 indicates the messageld
field and specifies that this message reports the description of the variable-length
array type. The first 01 indicates the length of the description (one byte) and its
length is one byte. The second 01 indicates the description and its length is one
byte.

View the data reporting result ({serviceld: smokedetector, data:
{"other_info":"AQ=="}}) in Application Simulator. AQ==is the encoded value of
01 using the Base64 encoding mode.

Figure 3-67 Simulating data reporting - other_info as variable-length array 1

Online Debugging

uuuuuuuuuuu

In the hexadecimal code stream example (03020102), 03 indicates the messageld
field and specifies that this message reports the description of the variable-length
array type. 02 indicates the length of the description (two bytes) and its length is
one byte. 0102 indicates the description and its length is two bytes.

View the data reporting result ({serviceld: smokedetector, data:
{"other_info":"AQI="}}) in Application Simulator. AQI= is the encoded value of
01 using the Base64 encoding mode.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-68 Simulating data reporting - other_info as variable-length array 2
Online Debugging 9 0td Version m

In the hexadecimal code stream example (03030102), 03 indicates the messageld
field and specifies that this message reports the description of the variable-length
array type. The second 03 indicates the length of the description (three bytes) and
its length is one byte. 0102 indicates the description and its length is two bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than three bytes. The codec fails to parse the
description.

Figure 3-69 Simulating data reporting - other_info as variable-length array 3

Online Debugging

In the hexadecimal code stream example (0303010203), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 010203 indicates the description and its
length is three bytes.

View the data reporting result ({serviceld: smokedetector, data:
{"other_info":"AQID"}}) in Application Simulator. AQID is the encoded value of
010203 using the Base64 encoding mode.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-70 Simulating data reporting - other_info as variable-length array 4

nnnnnnnnnnnnnnn

In the hexadecimal code stream example (030301020304), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 01020304 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. AQID is the encoded value of 010203 using the Base64
encoding mode.

Figure 3-71 Simulating data reporting - other_info as variable-length array 5

‘Online Debugging 9 oaverion (T

----End

Description of Base64 Encoding Modes

In Base64 encoding mode, three 8-bit bytes (3 x 8 = 24) are converted into four 6-
bit bytes (4 x 6 = 24), and 00 are added before each 6-bit byte to form four 8-bit
bytes. If the code stream to be encoded contains less than three bytes, fill the
code stream with 0 at the end. The byte that is filled with 0 is displayed as an
equal sign (=) after it is encoded.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

loT Device Access
Developer Guide

3 Development on the Device Side

Developers can encode hexadecimal code streams as characters or values using
the Base64 encoding modes. The encoding results obtained in the two modes are
different. The following uses the hexadecimal code stream 01 as an example:

Use 01 as the characters. 01 contains fewer than three characters. Therefore,
add one 0 to obtain 010. Query the ASCII code table to convert the characters
into an 8-bit binary number, that is, 0 is converted into 00110000 and 1 into
00110001. Therefore, 010 can be converted into 001100000011000100110000
(3 x 8 = 24). The binary number can be split into four 6-bit numbers: 001100,
000011, 000100, and 110000. Then, pad each 6-bit number with 00 to obtain
the following numbers: 00001100, 00000011, 00000100, and 00110000. The
decimal numbers corresponding to the four 8-bit numbers are 12, 3, 4, and
48, respectively. You can obtain M (12), D (3), and E (4) by querying the
Base64 coding table. As the last character of 010 is obtained by adding 0, the
fourth 8-bit number is represented by an equal sign (=). Finally, MDE= is
obtained by using 01 as characters.

Use 01 as a value (that is, 1). It contains fewer than three characters.
Therefore, add 00 to obtain 100. Convert 100 into an 8-bit binary number,
that is, 0 is converted into 00000000 and 1 is converted into 00000001.
Therefore, 100 can be converted into 000000010000000000000000 (3 x 8 =
24). The binary number can be split into four 6-bit numbers: 000000, 010000,
000000, and 000000. Then, pad each 6-bit number with 00 to obtain
00000000, 00010000, 00000000, and 00000000. The decimal numbers
corresponding to the four 8-bit numbers are 0, 16, 0, and 0, respectively. You
can obtain A (0) and Q (16) by querying the Base64 coding table. As the last
two characters of 100 are obtained by adding O, the third and fourth 8-bit
numbers are represented by two equal signs (==). Finally, AQ==is obtained
by using 01 as a value.

Summary

When the data is an array or a variable-length array, the codec encodes and
decodes the data using Base64. For data reporting messages, the hexadecimal
code streams are encoded using Base64. For example, 01 is encoded into
AQ==. For command delivery messages, characters are decoded using Base64.
For example, AQ==is decoded to 01.

When the data type of a field is variant (variable-length array type), the field
must be associated with the length field. The data type of the length field
must be int.

For variable-length arrays, the codecs for command delivery and data
reporting are developed in the same way.

When the codecs that are developed online encode data using Base64,
hexadecimal code streams are encoded as values.

3.2.4.3 JavaScript Script-based Development

The loT platform can encode and decode JavaScript scripts. Based on the script
files you submit, the IoT platform can convert between binary and JSON formats
as well as between different JSON formats. This topic uses a smoke detector as an
example to describe how to develop a JavaScript codec that supports device
property reporting and command delivery, and describes the format conversion
requirements and debugging method of the codec.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

loT Device Access
Developer Guide

3 Development on the Device Side

(11 NOTE

After December 1, 2024, JavaScript-based codec development is no longer available on the
platform for new users. You are advised to use FunctionGraph to write JavaScript scripts.
For details, see Overview.

(11 NOTE

e JavaScript syntax rules must comply with ECMAScript 5.1 specifications.

e The codec script supports only let and const of ECMAScript 6. Other expressions, such
as the arrow function, are not supported.

e The size of a JavaScript script cannot exceed 1 MB.

e After the JavaScript script is deployed on a product, the JavaScript script parses
upstream and downstream data of all devices under the product. When you develop a
JavaScript codec, take all upstream and downstream scenarios into consideration.

e The JSON upstream data obtained after being decoded by the JavaScript codec must
meet the format requirements of the platform. For details about the format
requirements, see Data Decoding Format Definition.

e For the JSON format definition of downstream commands, see Data Encoding Format
Definition. If the JavaScript codec is used for encoding, the JSON format of the platform
must be converted into the corresponding binary code stream or another JSON format.

e You can select the auto save option in the upper right corner of the script text box to let
the system automatically save the scripts every 10 seconds.

Defining a Smoke Detector

Scenario

A smoke detector provides the following functions:

Reporting smoke alarms (fire severity) and temperature.

Receiving and running remote control commands, which can be used to
enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device APIs, but reporting simple binary data.

Product Model

Define the product model on the product details page of the smoke detector.

level: indicates the fire severity.
temperature: indicates the temperature at the fire scene.

SET_ALARM: indicates whether to enable or disable the alarm function. The
value 0 indicates that the alarm function is disabled, and 1 indicates that the
alarm function is enabled.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

https://www.ecma-international.org/ecma-262/5.1/

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-72 Model definition - smokedetector

Model Definition

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Edit Script.

Figure 3-73 Developing a codec - Script-based development
Basic Information Online Debugging

Step 2 Write a script to convert binary data into JSON data. The script must implement
the following methods:

e Decode: Converts the binary data reported by a device into the JSON format
defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

e Encode: Converts JSON data into binary data supported by the device when
the platform sends downstream data to the device. For details about the
JSON format requirements, see Data Encoding Format Definition.

The following is an example of JavaScript implemented for the current smoke

detector:

// Upstream message types

var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting

var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response

var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Property setting response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; // Property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message reporting

// Downstream message types

var MSG_TYPE_COMMANDS = 'commands'; // Command delivery

var MSG_TYPE_PROPERTIES_SET = 'properties_set'; // Property setting request

var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Property query request

var MSG_TYPE_MESSAGE_DOWN = 'messages'; // Platform message delivery

// Mapping between topics and upstream MQTT message types

var TOPIC_REG_EXP = {

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

IoT Device Access
Developer Guide 3 Development on the Device Side

'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)",
'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)",
‘command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)"),
'message_up": new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
I
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
payload:[0x00, 0x50, 0x00, 0x5a]
topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output:
{"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}1}
Input parameters:
payload: [0x02, 0x00, 0x00, 0x01]
topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output:

{"msg_type":"command_response","result_code":0,"command_name":"SET_ALARM","service_id":"smokerdect
or","paras":{"value":"1"}}

function decode(payload, topic) {
var jsonObj = {};
var msgType =",
// Parse the message type based on the topic parameter, if available.
if (null != topic) {
msgType = topicParse(topic);

// Perform the AND operation on the payload by using OxFF to obtain the corresponding complementary
code.
var uint8Array = new Uint8Array(payload.length);
for (vari = 0; i < payload.length; i++) {
uint8Array[i] = payload[i] & Oxff;

var dataView = new DataView(uint8Array.buffer, 0);
// Convert binary data into the format used for property reporting.
if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
// Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
// Obtain the level value from the code stream.
var level = dataView.getInt16(0);
// Obtain the temperature value from the code stream.
var temperature = dataView.getInt16(2);
// Convert the data to the JSON format used by property reporting.
jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceld,"properties":
{"level":level,"temperature":temperature}}1};
Jelse if (msgType == MSG_TYPE_COMMAND_RSP) { // Convert binary data into the format used by a
command response.
// Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
var command = dataView.getInt8(0); // Obtain the command name ID from the binary code stream.
var command_name ="
if (2 == command) {
command_name = 'SET_ALARM";
}

var result_code = dataView.getInt16(1); // Obtain the command execution result from the binary code
stream.

var value = dataView.getInt8(3); // Obtain the returned value of the command execution result from
the binary code stream.

// Convert data to the JSON format used by the command response.

jsonObj =
{"msg_type":"command_response","result_code":result_code,"command_name":command_name,"service_id":
serviceld,"paras":{"value":value}};

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

loT Device Access
Developer Guide

3 Development on the Device Side

Step 3

}
// Convert data into a string in JSON format.
return JSON.stringify(jsonObj);

}

/*

Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code

stream using the encode method of JavaScript.
Input parameters ->

{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":

{"value":1}}
Output ->
[0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
// Convert data to a JSON object.
var jsonObj = JSON.parse(json);
// Obtain the message type.
var msgType = jsonObj.msg_type;
var payload = [J;
// Convert data in JSON format to binary data.
if (msgType == MSG_TYPE_COMMANDS) // Command delivery
{

payload = payload.concat(buffer_uint8(1)); // Identify command delivery.
if (jsonObj.command_name == 'SET_ALARM') {
payload = payload.concat(buffer_uint8(0)); // Command name

var paras_value = jsonObj.paras.value;

payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.

}
// Return the encoded binary data.
return payload;
}
// Parse the message type based on the topic name.
function topicParse(topic) {
for(var type in TOPIC_REG_EXP){
var pattern = TOPIC_REG_EXP[type];
if (pattern.test(topic)) {
return type;

}
return "';
}
// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
var uint8Array = new Uint8Array(1);
var dataView = new DataView(uint8Array.buffer);
dataView.setUint8(0, value);
return [].slice.call(uint8Array);
}
// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
var uint8Array = new Uint8Array(2);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt16(0, value);
return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
var uint8Array = new Uint8Array(4);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt32(0, value);
return [].slice.call(uint8Array);

}

Debug the script online. After the script is edited, select the simulation type and

enter the simulation data to debug the script online.

1. Use the simulation device to convert binary code streams into JSON data

when reporting property data.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

90

loT Device Access
Developer Guide

3 Development on the Device Side

Select the topic used by device property reporting: $oc/devices/
{device_id}/sys/properties/report.

Select Decode for Simulation Type, enter the following simulated device
data, and click Debug.

0050005a

The script codec engine converts binary code streams into the JSON
format based on input parameters and the decode method in the
submitted JavaScript script, and displays the debugging result in the text
box.

Figure 3-74 Script-based development - Debugging and decoding

Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

2. Convert a command delivered by an application into binary code streams that
can be identified by the device.

Select Encode for Simulation Type, enter the command delivery format

to be simulated, and click Debug.
{

"service_id": "smokerdector",
"paras": {
"value": "1"
}
}
The script codec engine converts JSON data into the binary code streams
based on input parameters and the encode method in the submitted

JavaScript script, and displays the debugging result in the text box.

Figure 3-75 Script-based development - Debugging and coding

Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

Step 4 Deploy the script. After confirming that the script can be correctly encoded and
decoded, click Deploy to submit the script to the loT platform so that the loT
platform can invoke the script when data is sent and received.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-76 Script-based development - Deployment

Debugging Resuts

01000001

Step 5 Use a physical device for online debugging. Before using the script, use a real
device to communicate with the loT platform to verify that the IoT platform can
invoke the script and parse upstream and downstream data.

----End

JavaScript Codec Template

The following is an example of the JavaScript codec template. Developers need to
implement the corresponding APl based on the template provided by the platform.

/**
* When a device reports data to the loT platform, the loT platform calls this API to decode the raw data of
the device into JSON data that complies with the product model definition.
* The APl name and input parameters have been defined. You only need to implement the API.
* @param byte[] payload Original code stream reported by the device
* @param string topic ~ Topic to which an MQTT device reports data. This parameter is not carried when a
non-MQTT device reports data.
* @return string json JSON character string that complies with the product model definition
function decode(payload, topic) {
var jsonObj = {};
return JSON.stringify(jsonObj);
}

*k

* When the IoT platform delivers a command, it calls this API to encode the JSON data defined in the
product model into the original code stream of the device.
* The APl name and input parameter format have been defined. You only need to implement the API.
* @param string json JSON character string that complies with the product model definition
* @return byte[] payload Original code stream after being encoded
¥/
function encode(json) {
var payload = [J;
return payload;

}

JavaScript Codec Example for MQTT Device Access

The following is an example of JavaScript codec of MQTT devices. You can convert
the binary format to the JSON format in the corresponding scenario based on the
example.

// Upstream message types

var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting

var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response

var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Property setting response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; // Property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message reporting

// Downstream message types

var MSG_TYPE_COMMANDS = 'commands'; // Command delivery

var MSG_TYPE_PROPERTIES_SET = 'properties_set'; // Property setting request

var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Property query request

var MSG_TYPE_MESSAGE_DOWN = 'messages'; // Platform message delivery

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

IoT Device Access
Developer Guide 3 Development on the Device Side

// Mapping between topics and upstream MQTT message types
var TOPIC_REG_EXP = {
'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)",
'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)",
‘command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)"),
'message_up": new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
I
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
payload:[0x00, 0x50, 0x00, 0x5a]
topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output:
{"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}1}
Input parameters:
payload: [0x02, 0x00, 0x00, 0x01]
topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output:

{"msg_type":"command_response","result_code":0,"command_name":"SET_ALARM","service_id":"smokerdect
or","paras":{"value":"1"}}

function decode(payload, topic) {
var jsonObj = {};
var msgType =",
// Parse the message type based on the topic parameter, if available.
if (null != topic) {
msgType = topicParse(topic);

// Perform the AND operation on the payload by using OxFF to obtain the corresponding complementary
code.
var uint8Array = new Uint8Array(payload.length);
for (vari = 0; i < payload.length; i++) {
uint8Array[i] = payload[i] & Oxff;

var dataView = new DataView(uint8Array.buffer, 0);
// Convert binary data into the format used for property reporting.
if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
// Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
// Obtain the level value from the code stream.
var level = dataView.getInt16(0);
// Obtain the temperature value from the code stream.
var temperature = dataView.getInt16(2);
// Convert the data to the JSON format used by property reporting.
jsonObj = {
"msg_type": "properties_report",
"services": [{"service_id": serviceld, "properties": {"level": level, "temperature": temperature}}]
5
} else if (msgType == MSG_TYPE_COMMAND_RSP) { // Convert binary data into the format used by a
command response.
// Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
var command = dataView.getInt8(0); // Obtain the command name ID from the binary code stream.
var command_name =";
if (2 == command) {
command_name = 'SET_ALARM";
}
var result_code = dataView.getInt16(1); // Obtain the command execution result from the binary code
stream.
var value = dataView.getInt8(3); // Obtain the returned value of the command execution result from
the binary code stream.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

IoT Device Access
Developer Guide 3 Development on the Device Side

// Convert data to the JSON format used by the command response.
jsonObj = {
"msg_type": "command_response",
"result_code": result_code,
"command_name": command_name,
"service_id": serviceld,
"paras": {"value": value}
b
} else if (msgType == MSG_TYPE_PROPERTIES_SET_RSP) {
// Convert data to the JSON format used by the property setting response.
//jsonObj = {"msg_type":"properties_set_response","result_code":0,"result_desc":"success"};
} else if (msgType == MSG_TYPE_PROPERTIES_GET_RSP) {
// Convert data to the JSON format used by the property query response.
//jsonObj = {"msg_type":"properties_get_response","services":[{"service_id":"analog","properties":
{"PhV_phsA":"1","PhV_phsB":"2"}}]};
} else if (msgType == MSG_TYPE_MESSAGE_UP) {
// Convert the data to the JSON format used by message reporting.
//jsonObj = {"msg_type":"message_up","content":"hello"};

// Convert data into a string in JSON format.
return JSON.stringify (jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":
{"value":1}}
Output ->
[0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
// Convert data to a JSON object.
var jsonObj = JSON.parse(json);
// Obtain the message type.
var msgType = jsonObj.msg_type;
var payload = [J;
// Convert data in JSON format to binary data.
if (msgType == MSG_TYPE_COMMANDS) { // Command delivery
// Command delivery format example:
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":1}}
// Convert the format used by command delivery to a binary code stream.
payload = payload.concat(buffer_uint8(1)); // Identify command delivery.
if (jsonObj.command_name == 'SET_ALARM') {
payload = payload.concat(buffer_uint8(0)); // Command name.

var paras_value = jsonObj.paras.value;
payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.
} else if (msgType == MSG_TYPE_PROPERTIES_SET) {
// Property setting format example: {"msg_type":"properties_set","services":
[{"service_id":"Temperature","properties":{"value":57}}]}
// Convert the JSON format to the corresponding binary code streams if the property setting scenario is
involved.
} else if (msgType == MSG_TYPE_PROPERTIES_GET) {
// Property query format example: {"msg_type":"properties_get","service_id":"Temperature"}
// Convert the JSON format to the corresponding binary code streams if the property query scenario is
involved.
} else if (msgType == MSG_TYPE_MESSAGE_DOWN) {
// Message delivery format example: {"msg_type":"messages","content":"hello"}
// Convert the JSON format to the corresponding binary code streams if the message delivery scenario
is involved.
}
// Return the encoded binary data.
return payload;
}
// Parse the message type based on the topic name.
function topicParse(topic) {
for (var type in TOPIC_REG_EXP) {
var pattern = TOPIC_REG_EXP[type];

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

IoT Device Access
Developer Guide 3 Development on the Device Side

if (pattern.test(topic)) {
return type;

}
return "';
}
// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
var uint8Array = new Uint8Array(1);
var dataView = new DataView(uint8Array.buffer);
dataView.setUint8(0, value);
return [].slice.call(uint8Array);

}

// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
var uint8Array = new Uint8Array(2);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt16(0, value);
return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
var uint8Array = new Uint8Array(4);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt32(0, value);
return [].slice.call(uint8Array);

}

JavaScript Codec Example for NB-loT Device Access

The following is an example of the JavaScript codec for NB-loT devices. Developers
can develop codecs for data reporting and command delivery of NB-loT devices
based on the example.

// Upstream message types

var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting

var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response

//Downstream message type

var MSG_TYPE_COMMANDS = 'commands'; // Command delivery

var MSG_TYPE_PROPERTIES_REPORT_REPLY = 'properties_report_reply'; // Property reporting response
// Message types

var MSG_TYPE_LIST = {

0: MSG_TYPE_PROPERTIES_REPORT, // In the code stream, 0 indicates device property reporting.
1: MSG_TYPE_PROPERTIES_REPORT_REPLY, // In the code stream, 1 indicates a property reporting
response.
2: MSG_TYPE_COMMANDS, // In the code stream, 2 indicates platform command delivery.
3: MSG_TYPE_COMMAND_RSP // In the code stream, 3 indicates a command response from
the device.
b
/*

Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:

payload:[0x00, 0x00, 0x50, 0x00, 0x5a]
Output:

{"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}1}
Input parameters:

payload: [0x03, 0x01, 0x00, 0x00, 0x01]
Output:

{"msg_type":"command_response","request_id":1,"result_code":0,"paras":{"value":"1"}}

function decode(payload, topic) {

var jsonObj = {};

// Perform the AND operation on the payload by using OxFF to obtain the corresponding complementary
code.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

loT Device Access
Developer Guide 3 Development on the Device Side

var uint8Array = new Uint8Array(payload.length);
for (var i = 0; i < payload.length; i++) {
uint8Array[i] = payload[i] & Oxff;

var dataView = new DataView(uint8Array.buffer, 0);
// Obtain the message type from the first byte of the message code stream.
var messageld = dataView.getInt8(0);
// Convert binary data into the format used for property reporting.
if (MSG_TYPE_LIST[messageld] == MSG_TYPE_PROPERTIES_REPORT) {
// Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
// Obtain the level value from the code stream.
var level = dataView.getInt16(1);
// Obtain the temperature value from the code stream.
var temperature = dataView.getInt16(3);
// Convert the data to the JSON format used by property reporting.
jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceld,"properties":
{"level":level,"temperature":temperature}}1};
Jelse if (MSG_TYPE_LIST[messageld] == MSG_TYPE_COMMAND_RSP) { // Convert binary data to the
format used by a command response.
var requestld = dataView.getInt8(1);
var result_code = dataView.getInt16(2); // Obtain the command execution result from the binary code
stream.
var value = dataView.getInt8(4); // Obtain the returned value of the command execution result from
the binary code stream.
// Convert data to the JSON format used by the command response.
jsonObj = {"msg_type":"command_response","request_id":requestld,"result_code":result_code,"paras":
{"value":value}};
}
// Convert data into a string in JSON format.
return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->

{"msg_type":"commands","request_id":1,"command_name":"SET_ALARM","service_id":"smokerdector","paras
"{"value":1}}
Output ->
[0x02, 0x00, 0x00, 0x00, 0x01]
Sample data: When a response is returned for property reporting, data in JSON format on the platform is
encoded into a binary code stream using the encode method of JavaScript.
Input parameters ->
{"msg_type":"properties_report_reply","request":"000050005a","result_code":0}
Output ->
[0x01, 0x00]
*/
function encode(json) {
// Convert data to a JSON object.
var jsonObj = JSON.parse(json);
// Obtain the message type.
var msgType = jsonObj.msg_type;
var payload = [J;
// Convert data in JSON format to binary data.
if (msgType == MSG_TYPE_COMMANDS) { // Command delivery
payload = payload.concat(buffer_uint8(2)); // Command delivery
payload = payload.concat(buffer_uint8(jsonObj.request_id)); // Command ID
if (jsonObj.command_name == 'SET_ALARM') {
payload = payload.concat(buffer_uint8(0)); // Command name

var paras_value = jsonObj.paras.value;
payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.
} else if (msgType == MSG_TYPE_PROPERTIES_REPORT_REPLY) { // Response for device property reporting
payload = payload.concat(buffer_uint8(1)); // Response to property reporting
if (0 == jsonObj.result_code) {
payload = payload.concat(buffer_uint8(0)); // The property reporting message is successfully
processed.

}

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

loT Device Access
Developer Guide

3 Development on the Device Side

}
// Return the encoded binary data.

return payload;

// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
var uint8Array = new Uint8Array(1);
var dataView = new DataView(uint8Array.buffer);
dataView.setUint8(0, value);
return [].slice.call(uint8Array);
}
// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
var uint8Array = new Uint8Array(2);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt16(0, value);
return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
var uint8Array = new Uint8Array(4);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt32(0, value);
return [].slice.call(uint8Array);

}

Requirements on the JavaScript Codec Format

Data Decoding Format

In the data parsing scenario, when the platform receives data from a device, it
sends the binary code stream in the payload to the JavaScript script by using the
decode method. The script calls the decode method to decode the data to the
JSON format defined in the product model. The platform has the following

requirements on the parsed JSON data:

e Device Reporting Properties

{
"msg_type": "properties_report",
"services": [{
"service_id": "Battery",
"properties™: {
"batteryLevel": 57
B
"event_time": "20151212T1212122"
H
}
Paramet | Manda | Type Description
er tory
msg_typ | Yes String Message type. The value is fixed to
e properties_report.
services | Yes List<Service | List of device services. For details, see
Property> the ServiceProperty structure table.

ServiceProperty Structure

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

97

loT Device Access
Developer Guide

3 Development on the Device Side

Parame | Mand | Type Description

ter atory

service_i | Yes String Service ID of the device.

d

properti | Yes Object Service properties, which are defined in

es the product model associated with the
device.

event_ti | No String UTC time when the device collects data.

me The format is yyyyMMddTHHmMmssZ, for
example, 20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

Responding to the Platform for Property Setting
{

"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",
"result_code": 0,
"result_desc": "success"

}

Paramete | Mand | Type Description

r atory

msg_type | Yes String Message type. The value is fixed to
properties_set_response.

request_id | No String Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod | No Integer Execution result. 0 indicates success,

e and other values indicate failure. If this
parameter is not carried, the execution
is considered successful.

result_des | No String Description of the property setting

C response.

Responding to the Platform for Property Query
{
"msg_type": "properties_get_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
"services": [
{
"service_id": "analog",
"properties": {

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

loT Device Access
Developer Guide

3 Development on the Device Side

"PhV_phsA™: "1",
"PhV_phsB": "2"
b
"event_time": "20190606T121212Z"
}
]
}

Paramet | Manda | Type Description

er tory

msg_typ | Yes String The value is fixed at

e properties_get_response.

request_i | No String Unique identifier of the request. If this

d parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

services | Yes List<Service | List of device services. For details, see

Property> the ServiceProperty structure table.

ServiceProperty Structure

Parame | Mand | Type Description

ter atory

service_i | Yes String Service ID of the device.

d

properti | Yes Object Service properties, which are defined in

es the product model associated with the
device.

event_ti | No String UTC time when the device collects data.

me The format is yyyyMMddTHHmMmssZ, for
example, 20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

e Responding to the Platform for Command Delivery

{

"msg_type": "command_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",
"result_code": 0,
"command_name": "ON_OFF",
"service_id": "WaterMeter",

"paras": {

"Value": nqw

}
}

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

99

loT Device Access
Developer Guide

3 Development on the Device Side

Paramete
r

Mand
atory

Type

Description

msg_type

Yes

String

The value is fixed at
command_response.

request_id

No

String

Unique identifier of the request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod
e

No

Integer

Execution result. 0 indicates success,
and other values indicate failure. If this
parameter is not carried, the execution
is considered successful.

response_
name

No

String

Response name, which is defined in the
product model associated with the
device.

paras

No

Object

Response parameters, which are defined
in the product model associated with
the device.

e Device Reporting Messages

{

"msg_type": "message_up",

"content": "hello"

}
Paramete | Mand | Type Description
r atory
msg_type | Yes String The value is fixed at message_up.
content No String Message content.

Data Encoding Format

In the data parsing scenario, when the loT platform delivers a command, it sends
the data in JSON format defined by the product model to the JavaScript script
using the encode method. If the data is not in JSON format, encoding and
decoding may fail. The script calls the encode method to encode the data in JSON
format into binary code streams that can be identified by the device. During
encoding, the JSON format transferred from the platform to the script is as

follows:

e Delivering a Device Command

{

"msg_type": "commands",

"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",
"command_name": "ON_OFF",

"service_id": "WaterMeter",

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

loT Device Access

Developer Guide 3 Development on the Device Side
"paras": {
"value": 1
}
}

Paramete | Mand | Type Description

r atory

msg_type | Yes String The value is fixed at commands.

request_id | Yes String Unique ID of a request. The ID is
delivered to the device through a
topic.

service_id | No String Service ID of the device.

command | No String Command name, which is defined in

_hame the product model associated with the
device.

paras No Object Command execution parameters,
which are defined in the product
model associated with the device.

e Platform Setting Device Properties
{
"msg_type": "properties_set",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
"services": [{
"service_id": "Temperature",
"properties": {
"value": 57
}
%
{
"service_id": "Battery",
"properties": {

"level": 80
}
}
]
}
Paramet | Man | Type Description
er dator
y

msg_type | Yes String The value is fixed at properties_set.

request_i | Yes String Unique identifier of the request. If this

d parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform.

services Yes List<Service | List of device services.

Property>

ServiceProperty Structure

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

loT Device Access
Developer Guide

3 Development on the Device Side

Parame | Mand | Type Description

ter atory

service_i | Yes String Service ID of the device.

d

properti | Yes Object Service properties, which are defined in
es the product model.

Platform Querying Device Properties

{

|||||

"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
"service_id": "Temperature"

}
Paramet | Manda | Type Description
er tory
msg_typ | Yes String The value is fixed at properties_get.
e
request_i | Yes String Unique ID of a request. The ID is
d delivered to the device through a topic.
service_i | No String Service ID of the device.
d

Responding to Property Reporting of NB-loT Device Access

{

"msg_type": "properties_report_reply",

"result_code": 0
}

Paramete | Mand | Type Description

r atory

msg_type | Yes String The value is fixed at
properties_report_reply.

request No String Base64-encoded string of property
reporting.

result_cod | No Integer Execution result of property reporting.

e

has_more | No Boolean Whether a cache command exists.

Delivering Device Messages

{

"msg_type": "messages"”,

}

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

loT Device Access

Developer Guide 3 Development on the Device Side
Paramete | Mand | Type Description
r atory
msg_type | Yes String The value is fixed at messages.
content No String Content of command delivery.

3.2.4.4 FunctionGraph-based Development

3.2.4.4.1 Overview

Introduction

FunctionGraph can be utilized to convert binary data into JSON data or vice versa.
This feature is used when the device has limited capabilities and can only report
basic binary data. FunctionGraph supports Node.js, Python, Java, Go, C#, PHP,
Cangjie, and custom runtimes, meeting multiple development requirements. You
can check run logs and graphical monitoring data in real time, greatly improving
development and debugging efficiency.

(1 NOTE

e FunctionGraph hosts and computes event-driven functions in a serverless context while
ensuring high reliability, high scalability, and zero maintenance. All you need to do is
write your code and set conditions.

e For details about FunctionGraph billing, see FunctionGraph Billing Overview. You pay
only for what you use and you are not charged when your code is not running.

NOTICE

Check the following guide about data conversion for different protocols:
e MQTT(S) Codec Example
e NB-loT (CoAP) Codec Example

Process

Figure 3-77 Use of FunctionGraph

Creating a Writing the Deploying the

product codec codec

1. Creating a product: Create a CoAP or MQTT product and device on |IoTDA. For
details, see Creating a Product.

a. Access the IoTDA service page and click Access Console. Click the target
instance card.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://support.huaweicloud.com/intl/en-us/price-functiongraph/functiongraph_00_0001.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

IoT Device Access
Developer Guide 3 Development on the Device Side

b. Choose Products in the navigation pane and click Create Product. Set
the parameters as prompted and click OK.

2. Writing the FunctionGraph codec:

a. Create an event function. The event function must be created in the
same region as that of the created product. Otherwise, the function
cannot be referenced by the product. You can check the region in the
upper left corner of the console.

Figure 3-78 FunctionGraph-based development - Checking regions

" HUAWEICLOUD Console | © CNNorth-Beiingd

Monthly Statistics

364,133 Resource Usage of Curent Month Memory 5,980.34 GB-Seconds GF
Memory @ GPU

Vo Rule (3 Last hour Lost3 hours st 12 howrs Lost day

Invocations 03 G The20 Functions With the Most Invocations

en-northd-device-cert-check 5,950

b. Writing codecs. FunctionGraph supports multiple runtime languages,
including Python, Node.js, Java, Go, C#, PHP, Cangjie, and custom
runtimes. The supported versions vary depending on the languages. For
details, see Supported Programming Languages.

L] NOTE
Reference: Creating a Function from Scratch and Executing the Function.
3. Deploying the FunctionGraph codec:

a. Return to the 10TDA console, open the product page, click the Codec
Development tab, and select FunctionGraph. If you use the tool for the
first time, perform access authorization.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0151.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0101.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

loT Device Access

Developer Guide 3 Development on the Device Side

Figure 3-79 FunctionGraph-based Development - Codec authorization

loTDA Instances / Products /

< ‘ N ID: ol e e Registered devices: 2

Basic Information Codec Deployment Online Debugging Topic Management

A codec converts binag data into JSON format or JSON into JSON format. If devices report data only in JSON format, you can use the platform to transmit data wit

You can develop a cpdec online, upload a codec, or use scripts. For details about codec development, see Developing a Codec

ils Not deployed

Codec Sogfrce: - | Operated: -

FunctionGraph

FunctionGraph hbssts and computes event-driven functions in a serverless context while ensuring high availability, high scalability, and zerc

FunctionGraph Guide\ Function Development

Region CN South-Guangzhou Only supps FunctionGraph in the same region

+ Authorize Access Authorize lIoTDA to use this functior}. Authorize Access

b. After the authorization is successful, select the target function created in
2 and click Deploy.

Figure 3-80 FunctionGraph-based Development - Codec deployment

IcTDA Instances / Producs /

<] B D Registered devices: (

Basic Information ~ Codec Deployment Online Debugging ~ Topic Management

Acadec converts binary dzta nto JSON format or JSON into JSON format. If devices report data only in JSON format, you can use the platform to transmit data vithout using codecs.

YYou can develop a codec cnline, uplozd a codec, o use scripts. For detzils about codec development see Developing a Codec

Codec Details ot deployed

Codac Source: - | Operated: --

Edit Script FunctionGraph

FunctionGraph
FunctionGraph hosts and computes evert-driven functions in 2 serverless context while ensuring high aveilabilty, high scalability and zero maintenance. All you need to do is wrte your code and szt conditions.

FunctionGraph Guide | Funztion Development

Region CN Narth-Ulangab201 Only supports FunctionGraph in the same region

+ Authorize Access You have been granted relafively lag

jermissiars. It is recommendzd that you delete this autherization. Delete autherization

+ Target FunctionGraph

No FuffttionGraph s availatle. Go to FunctionGraph to crezte a FunctionGraph. (2

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

IoT Device Access
Developer Guide 3 Development on the Device Side

Communications with FunctionGraph Through APIs

Figure 3-81 Process

Funection
Graph

1. Reports binary data.

2. Encodes the data using Base&4 and |
"‘| converts the data into a fixed format A. |

| Enceding
| | =| (Upstream)
3. Encodes and decodes the data and
| | converts the data into a fixed format B. |
| 4. Receives the JSON-formatted data |
| delivered by the command. |
| | 5. Converts the data into a fixed format A. |
| l =J-| Decoding
{Deownstream)
| | 6. Converts the data into a fixed format |
| L c |
I~ |
L 7. Delivers binary data. |
" | |

1. If the reported data is binary data, loTDA automatically encodes and stores
the data using Base64. For example, if a device reports data [0x01, 0x02], the
data stored in IoTDA is AQI=.

(10 NOTE

CoAP products report binary data by default. The data is then encoded using Base64
and sent to the codec. MQTT(S) products report data in the selected data format. The
data is then encoded if necessary. For details, see Creating a Product.

2. After receiving data, IoTDA transmits the data to FunctionGraph in a specific
format if the codec exists. The following table lists the related parameters and
data format (fixed format A).

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0054.html

loT Device Access
Developer Guide

3 Development on the Device Side

Table 3-3 Upstream data format

Param | Mandat | Type Description

eter ory

codecT | Yes String Definition

ype Execution type. decode indicates
upstream decoding (from binary code
streams to JSON data), and encode
indicates downstream encoding (from
JSON data to binary streams).

messa | Yes String Definition

ge String data in JSON format, which

contains the topic and payload
parameters.

e topic: For MQTT products, the
reported topic is carried. For COAP
products, the value is null.

e payload: Base64 data encoded from
the data reported by the device. (For
MQTT products, you can select the
encoding format on the product

page.)

Example of a decoding request sent by IoTDA to FunctionGraph (for CoAP

products):
{

"message": "{\"topic\": null,\"payload\": \"AABQAFo=\"}"

}

Example of a decoding request sent by IoTDA to FunctionGraph (for MQTT

products):
{

"message": "{\"topic\": \"$oc/devices/661f99d6da14e268414f0af6_longsj123/sys/properties/report
\"\"payload\": \"AABQAFo=\"}"
}

FunctionGraph decodes the data and returns the result. The following table
lists the related parameters and data format (fixed format B).

Table 3-4 Downstream data format

Param | Mandat | Type Description
eter ory
status | Yes String Definition

Execution result. 200 indicates success,
and other values indicate failure.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

loT Device Access
Developer Guide

3 Development on the Device Side

Param | Mandat | Type Description

eter ory

messa | Yes String Definition

ge String data in JSON format. Used for
decoding binary code stream data into
JSON data.

Example of a decoding request sent by FunctionGraph to loTDA:

{

"status": 200,

"message": "{\"msg_type\":\"properties_report\",\"services\":[{\"service_id\":\"smokerdector
\"\"properties\":{\"level\":258,\"temperature\":3.4}}]}"
}

The data initially provided by the platform or applications for delivery is in
JSON format and needs to be converted into binary code streams using the
codec before final delivery.

Before delivering data, IoTDA transmits the data in a specific format to
FunctionGraph if the codec exists. The following table lists the related
parameters and data format (fixed format A).

Table 3-5 Upstream data format

Param | Mandat | Type Description

eter ory

codecT | Yes String Definition

ype Execution type. decode indicates

upstream decoding (from binary code
streams to JSON data), and encode
indicates downstream encoding (from
JSON data to binary streams).

messa | Yes String Definition
ge String data in JSON format.

Example of an encoding request sent by IoTDA to FunctionGraph:
{

"codecType": "encode",

"message": "{\"msg_type\":\"commands\",\"service_id\": \"smokerdector\",\"paras\": {\"value\":
1}\"command_name\": \"SET_ALARM\"\"hasMore\": 0,\"request_id\": 1}"
}
FunctionGraph decodes the data and returns the result. The following table

lists the related parameters and data format (fixed format C).

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

loT Device Access
Developer Guide

3 Development on the Device Side

Table 3-6 Downstream data format

Param | Mandat | Type Description
eter ory
status | Yes String Definition
Execution result. 200 indicates success,
and other values indicate failure.
messa | Yes String Definition
ge String data in JSON format, which
contains the payload parameter.
e payload: byte[] data decoded by
FunctionGraph.

Example of an encoding request sent by FunctionGraph to [oTDA:

{

"status": 200,
"message": "{\"payload\":[2,1,0,0,1]}"

7. The platform delivers the binary code streams encoded by the codec to the
device. For example, [2,1,0,0,1].

lIoTDA Product Model Data Format

Table 3-7 Data format of a product model

response to the
platform for

property query

Scena | Item Message Type | Support | Description
rio ed
Protocol
Decod | Device properties_repor | All Device reporting
ing reporting t properties
(from properties
binary | peyice command_resp | All Device returning a
code | retirning a onse command response
strea | command
ms to response
JSON
data) Device properties_set_r | MQTT/ Device returning a
returning a esponse MQTTS | response to the
response to the platform for property
platform for setting
property setting
Device properties_get_r | MQTT/ Device returning a
returning a esponse MQTTS | response to the

platform for property
query

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

109

loT Device Access
Developer Guide

3 Development on the Device Side

Scena | ltem Message Type | Support | Description
rio ed
Protocol
Device message_up MQTT/ Device reporting
reporting MQTTS | messages
messages
Encodi | Platform commands All Platform delivering
ng delivering commands
(from commands
JSON | platform properties_repor | NB-loT Platform responding
data responding to t_reply (CoAP) | to device property
tg device property reporting (NB-loT
binary | reporting devices)
code
strea | Platform properties_set MQTT/ | Platform setting
ms) setting device MQTTS | device properties
properties
Platform properties_get MQTT/ | Platform querying
querying device MQTTS | device properties
properties
Platform messages MQTT/ Platform delivering
delivering MQTTS | messages
messages

Data Decoding Format

When the platform receives data from the device, the platform sends the binary
code stream in the payload to FunctionGraph. FunctionGraph decodes the binary
stream into the JSON format defined in the product model. The JSON format can
be identified by the platform. The following is the decoded data in JSON format:

{

"status": 200,
"message": "${Decoded JSON data}"

}

${Decoded /SON data}is in the JSON format required by the platform.

e Device reporting properties

{

"msg_type": "properties_report",
"services": [{

1

}

"service_id": "Battery",
"properties": {

"batteryLevel": 57
}

"event_time": "20151212T121212Z"

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

110

loT Device Access
Developer Guide

3 Development on the Device Side

Table 3-8 Data format of device reporting properties

Paramet | Manda | Type Description

er tory

Message | Yes String Message type. The value is fixed to

Type properties_report.

services | Yes List<Service | List of device services. For details, see
Property> the ServiceProperty structure table.

Table 3-9 ServiceProperty structure

Parame | Mand | Type Description

ter atory

service_i | Yes String Service ID of the device.

d

properti | Yes Object Service properties, which are defined in

es the product model associated with the
device.

event_ti | No String UTC time when the device collects data.

me The format is yyyyMMddTHHmMmssZ, for
example, 20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

Responding to the Platform for Property Setting

{

|||||

"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",

"result_code"

:0,

Table 3-10 Data format of device returning a response to the platform for
property setting

Paramete | Mand | Type Description

r atory

Message | Yes String Message type. Fixed value:
Type properties_set_response

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

111

loT Device Access

Developer Guide 3 Development on the Device Side
Paramete | Mand | Type Description
r atory
request_id | No String Unique identifier of the request. If this

parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod | No Integer Execution result. 0 indicates success,

e and other values indicate failure. If this
parameter is not carried, the execution
is considered successful.

result_des | No String Description of the property setting
C response.

e Responding to the Platform for Property Query
{
"msg_type": "properties_get_response"”,
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
"services": [
{
"service_id": "analog",
"properties": {
"PhV_phsA": "1",
"PhV_phsB": "2"
L
"event_time": "20190606T121212Z"

Table 3-11 Data format of device returning a response to the platform for

property query

Paramet | Manda | Type Description

er tory

Message | Yes String The value is fixed at

Type properties_get_response.

request_i | No String Unique identifier of the request. If this

d parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

services | Yes List<Service | List of device services. For details, see

Property> the ServiceProperty structure table.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

IoT Device Access
Developer Guide 3 Development on the Device Side

Table 3-12 ServiceProperty structure

Parame | Mand | Type Description

ter atory

service_i | Yes String Service ID of the device.

d

properti | Yes Object Service properties, which are defined in

es the product model associated with the
device.

event_ti | No String UTC time when the device collects data.

me The format is yyyyMMddTHHmMmssZ, for
example, 20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

e Responding to the Platform for Command Delivery
{
"msg_type": "command_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",
"result_code": 0,
"command_name": "ON_OFF",
"service_id": "WaterMeter",
"paras": {
"value": "1"
}
}

Table 3-13 Data format of device returning a command response

Paramete | Mand | Type Description

r atory

Message | Yes String The value is fixed at

Type command_response.

request_id | No String Unique identifier of the request. If this

parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod | No Integer Execution result. 0 indicates success,

e and other values indicate failure. If this
parameter is not carried, the execution
is considered successful.

response_ | No String Response name, which is defined in the
name product model associated with the
device.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

loT Device Access

Developer Guide 3 Development on the Device Side
Paramete | Mand | Type Description
r atory
paras No Object Response parameters, which are defined
in the product model associated with
the device.

e Device Reporting Messages
{

"msg_type": "message_up",
"content": "hello"

}

Table 3-14 Data format of device reporting messages

Paramete | Mand | Type Description

r atory

Message | Yes String The value is fixed at message_up.
Type

content No String Message content.

Data Encoding Format

When the platform delivers data to the device, the platform sends the JSON data
defined by the product model to FunctionGraph. (If the data is not in that JSON
format, the encoding and decoding may fail.) FunctionGraph encodes the JSON
data into binary code streams that can be identified by the device. The following is
the data in JSON format sent by the platform to FunctionGraph:

{

"codecType": "encode",
"message": "${JSON data sent from the platform to FunctionGraph}"

}

${/SON data sent from the platform to FunctionGraph}is the JSON data sent by
the platform to FunctionGraph before encoding.

e Platform delivering commands

{
"msg_type": "commands",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",
"command_name": "ON_OFF",
"service_id": "WaterMeter",
"paras": {

"value™: 1

}

}

Table 3-15 Data format of platform delivering commands

Paramete | Mand | Type Description

r atory

Message | Yes String The value is fixed at commands.
Type

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

loT Device Access
Developer Guide

3 Development on the Device Side

Paramete | Mand | Type Description

r atory

request_id | Yes String Unique ID of a request. The ID is
delivered to the device through a
topic.

service_id | No String Service ID of the device.

command | No String Command name, which is defined in

_name the product model associated with the
device.

paras No Object Command execution parameters,
which are defined in the product
model associated with the device.

Platform Setting Device Properties
{
"msg_type": "properties_set",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
"services": [{
"service_id": "Temperature",
"properties": {
"value": 57
}
%
{
"service_id": "Battery",
"properties": {
"level": 80
}
}
]
}

Table 3-16 Data format of platform setting device properties

received by a device, the parameter

sent to the platform.

Paramet | Man | Type Description
er dator

y
Message | Yes String The value is fixed at properties_set.
Type
request_i | Yes String Unique identifier of the request. If this
d parameter is carried in a message

value must be carried in the response

services Yes List<Service | List of device services.
Property>

ServiceProperty Structure

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

115

loT Device Access
Developer Guide

3 Development on the Device Side

Table 3-17 ServiceProperty structure

Parame | Mand | Type Description

ter atory

service_i | Yes String Service ID of the device.

d

properti | Yes Object Service properties, which are defined in
es the product model.

Platform Querying Device Properties

{

|||||

"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",
"service_id": "Temperature"

}

Table 3-18 Data format of platform querying device properties

Paramet | Manda | Type Description

er tory

Message | Yes String The value is fixed at properties_get.
Type

request_i | Yes String Unique ID of a request. The ID is

d delivered to the device through a topic.
service_i | No String Service ID of the device.

d

Platform Responding to Device Property Reporting (NB-loT Devices)

{

"msg_type": "properties_report_reply",

"result_code": 0

}

Table 3-19 Data format of platform

responding to device property reporting

Paramete | Mand | Type Description

r atory

Message | Yes String The value is fixed at

Type properties_report_reply.

request No String Base64-encoded string of property
reporting.

result_cod | No Integer Execution result of property reporting.

e

has_more | No Boolean Whether a cache command exists.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

116

loT Device Access
Developer Guide

3 Development on the Device Side

e Platform Delivering Messages

{

"msg_type": "messages"”,
"content": "hello"

}

Table 3-20 Data format of platform delivering messages

Paramete | Mand | Type Description

r atory

Message | Yes String The value is fixed at messages.
Type

content No String Content of command delivery.

3.2.4.4.2 MQTT(S) Codec Example

This section uses a smoke detector as an example to describe how to develop a
FunctionGraph codec in JavaScript for reporting properties and delivering
commands over MQTT or MQTTS. The codec converts binary data into JSON data

and provides a method for debugging.

Defining a Smoke Detector

Scenario

A smoke detector provides the following functions:

e Reporting smoke alarms (fire severity) and temperature.

e Receiving and running remote control commands, which can be used to
enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

e The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device APIs, but reporting simple binary data.

Product Model

Define the product model on the product details page of the smoke detector.

e level: indicates the fire severity.

e temperature: indicates the temperature at the fire scene.

e SET_ALARM: indicates whether to enable or disable the alarm function. The
value 0 indicates that the alarm function is disabled, and 1 indicates that the
alarm function is enabled. The response command result is used to report the

modified alarm value.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-82 Model definition - smokedetector

Mods! Definition

smokedetector

nnnnnnn

Command Parameters ©

Developing a Codec

Step 1 On the smoke detector product page, click the Codec Development tab, select
FunctionGraph, and click Create Function. If you use the tool for the first time,
perform access authorization.

Figure 3-83 FunctionGraph-based Development - Codec authorization

IoTDA Instances / Products /

< ‘ [20 Registered devices: 2

Basic Information Codec Deployment Online Debugging Topic Management

A codec converts binagd data into JSON format or JSON into JSON format. If devices report data only in JSON format, you can use the platform to transmit data wit

You can develop a cpdec online, upload a codec, or use scripts. For details about codec development, see Developing a Codec

Codec Detglils Not deployed

Codec Sopfrce: — | Operated:
FunctionGraph

FunctionGraph hsgts and computes event-driven functiens in a serverless context while ensuring high availability, high scalability, and zerc

FunctionGraph Guide\| Function Development

Region CN South-Guangzhou Only suppNs FunctionGraph in the same region

+ Authorize Access Authorize IoTDA to use this functior| Authorize Access

Step 2 On the FunctionGraph console, click Create Function. On the displayed page, click
Create from scratch, enter a function name, and select Node.js 16.17 as the
runtime.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-84 Function list - Creating a function

FunctionGraph Functions

Figure 3-85 Creating a function - Parameters

Lkns | Create Function

<| Create Function

Create With

])

Functon Name

Runtine Notes 1418 v a

Step 3 Write a script to convert binary data into JSON data. The script must implement
the following methods:

e Decode: Converts the binary data reported by a device into the JSON format
defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

e Encode: Converts JSON data into binary data supported by the device when
the platform sends downstream data to the device. For details about the
JSON format requirements, see Data Encoding Format Definition.

The following is an example of the JavaScript implemented for the smoke
detector. Copy the code to the project and click the button for deploying the code.

// Upstream message types

var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting

var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response

var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Property setting response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; // Property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message reporting

// Downstream message types

var MSG_TYPE_COMMANDS = 'commands'; // Command delivery

var MSG_TYPE_PROPERTIES_SET = 'properties_set'; // Property setting request

var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Property query request

var MSG_TYPE_MESSAGE_DOWN = 'messages'; // Platform message delivery

// Mapping between topics and upstream MQTT message types

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

IoT Device Access
Developer Guide 3 Development on the Device Side

var TOPIC_REG_EXP = {
'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report’),
'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)"),
'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)"),
‘command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)"),
'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
I
exports.handler = async (event, context) => {
const codecType = event.codecType;
const message = JSON.parse(event.message);
console.log("input Data:", event);
if (codecType === "decode") {
// Decoding operation
return decode(message.payload, message.topic);
} else if (codecType === "encode") {
// Encoding operation
return encode(message);
}
}
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:

// The first two bytes 0x00 and 0x50 are the value of the level property, and the last two bytes 0x00 and
0x5a are the value of the temperature property.

payload:[0x00, 0x50, 0x00, 0x5a]

topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output:

{"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}1}

Input parameters:

// The first byte 0x02 indicates that the command_name is SET_ALARM. The second byte 0x00 indicates
that the command is successfully responded. The last two bytes 0x00 and 0x01 indicate the value of the
command response.

payload: [0x02, 0x00, 0x00, 0x01]

topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output:

{"msg_type":"command_response","result_code":0,"command_name":"SET_ALARM","service_id":"smokerdect
or","paras":{"value":"1"}}
*/
// Decoding function
function decode(payload, topic) {

// Decoding logic

var binaryString = atob(payload);

const byteArray = new Uint8Array(binaryString.length);

for (let i = 0; i < binaryString.length; i++) {

byteArray[i] = binaryString.charCodeAt(i);

/* byteArray is the binary data reported by the device after decoding. You can check whether the
reported data is correctly parsed.*/
var returnData;
msgType = topicParse(topic);
if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
returnData = decodePropertiesReport(byteArray);
} else if (msgType == MSG_TYPE_COMMAND_RSP) {
returnData = decodeCommandRsp(byteArray);
} else if (msgType == MSG_TYPE_PROPERTIES_SET_RSP) {
// Convert data to the JSON format used by the property setting response.
// jsonObj = {"msg_type":"properties_set_response","result_code":0,"result_desc":"success"};
// returnData = outputData(status, jsonObj)
} else if (msgType == MSG_TYPE_PROPERTIES_GET_RSP) {
// Convert data to the JSON format used by the property query response.
// jsonObj = {"msg_type":"properties_get_response","services":[{"service_id":"analog","properties":
{"PhV_phsA":"1","PhV_phsB":"2"}}]};

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

loT Device Access
Developer Guide

3 Development on the Device Side

// returnData = outputData(status, jsonObj)
} else if (msgType == MSG_TYPE_MESSAGE_UP) {
// Convert the data to the JSON format used by message reporting.
// jsonObj = {"msg_type":"message_up","content":"hello"};
// returnData = outputData(status, jsonObj)
}
return returnData;
}
// Encoding function
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":
{"value":1}}
Output ->
// The first byte 0x01 is used to identify command delivery. The second byte 0x00 indicates
command_name = = 'SET_ALARM'. The last two bytes 0x00 and 0x01 are the value of the command
properties.
[0x01, 0x00, 0x00, 0x01]
*/
function encode(data) {
var msgType = data.msg_type;
let payload = [];
var status = 200;
// Command delivery
if (msgType == MSG_TYPE_COMMANDS) {
payload[0] = 0x02; // Command delivery type
if (data.command_name == 'SET_ALARM') {
payload[1] = 0x00; // Command name

// Set the command property value
payload[2] = (data.paras.value >> 8) & OxFF;
payload[3] = data.paras.value & OxFF;
} else if (msgType == MSG_TYPE_PROPERTIES_SET) {
// Response to device property reporting
// Property setting format example: {"msg_type":"properties_set","services":
[{"service_id":"Temperature","properties":{"value":57}}1}
// Convert the JSON format to the corresponding binary code streams if the property setting scenario
is involved.
} else if (msgType == MSG_TYPE_PROPERTIES_GET) {
// Property query format example: {"msg_type":"properties_get","service_id":"Temperature"}
// Convert the JSON format to the corresponding binary code streams if the property query scenario is
involved.
} else if (msgType == MSG_TYPE_MESSAGE_DOWN) {
// Message delivery format example: {"msg_type":"messages","content":"hello"}
// Convert the JSON format to the corresponding binary code streams if the message delivery scenario
is involved.
}
return outputData(status, { "payload": payload });
}
// Parse the message type based on the topic name.
function topicParse(topic) {
for (var type in TOPIC_REG_EXP) {
var pattern = TOPIC_REG_EXP[type];
if (pattern.test(topic)) {
return type;

}
return ";
}
// Property reporting (upstream)
function decodePropertiesReport(byteArray) {
// Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
var level = byteArray[0] * Math.pow(2, 8) + byteArray[1];
var status = 200;
var jsonObj;
if (byteArray.length < 4) {

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

IoT Device Access
Developer Guide 3 Development on the Device Side

jsonObj = {
"msg_type": "ERR", "message": "decodePropertiesReport byte length < 5."

status = 402;

}
// Obtain the values of the fourth and fifth values.
const integerPart = byteArray[2]; // Third value
const decimalPart = byteArray[3]; // Fourth value
// Combine the values into decimals.
const temperature = parseFloat(integerPart + "' + decimalPart);
jsonObj = {
"msg_type": MSG_TYPE_PROPERTIES_REPORT, "services":
[{ "service_id": serviceld, "properties": { "level": level, "temperature": temperature } }]
b
return outputData(status, jsonObj);
}
// Command response (upstream)
function decodeCommandRsp(byteArray) {
var serviceld = 'smokerdector’;
var command = byteArray[0];
var command_name =",
if (2 == command) {
command_name = 'SET_ALARM;
}
var result_code = byteArray[1]; // Obtain the command execution result from the binary code stream.
var value = byteArray[2] * Math.pow(2, 8) + byteArray[3]; // Obtain the return value of the command
execution result from the binary code stream.
// Convert data into the JSON format used by the command response.
jsonObj = {
'msg_type": MSG_TYPE_COMMAND_RSP, 'service_id" serviceld, "command_name": command_name,
'result_code': result_code, 'paras': { 'value': value }
b
return outputData(200, jsonObj);
}
// Output the result.
function outputData(status, body) {
const output =
{
'status': status,
'message": JSON.stringify(body),

console.log("output Data:", output);
return output;

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-86 FunctionGraph - Copying code to a project

FunctionGraph / Function List / Functions

< oty g M

Code Source

Fie Edt Setings

Project blank-npraze v (Deploy)
Prolect m

B indexjs 0
//Upstream message type

var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message report
//Downward message type

o

1

2 var MSG_TYPE
l

5

\/ var TOPIC_REG_EXP = {

var MSG_TYPE_COMMANDS = ‘commands’; // Platform command distribution
PROPERTIES_SET = 'properties_set'; // Platform property set request
var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Platform property get request
var MSG_TYPE_MESSAGE_DOWN = ‘messages'; // Platform message distribution

1
2

3

4 var MSG_TYPE_PROPERTIES REPORT = ‘properties_report'; //Device property report

S var MSG_TYPE_COMMAND_RSP = 'command_response’; //Device command response

6 var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Device property set response
7 var MSG_TYPE_PROPERTIES GET RSP = ‘properties_get response’; // Device property get response
s

o

6 //MQTT device upstream message, mapping table of topics and message types

‘properties_report': new Regexp('\\$oc/devices/(\\S+)/sys/properties/report'),

*properties_set_response": new RegExp('\\$oc/devices/(\\s+)/sys/properties/set/response/request_id=(\\s+)"),
‘properties_get_response': new RegExp('\\$oc/devices/(\\s+)/sys/properties/get/response/request_id=(\\s+)"),
*command_response’ : new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)"),
‘message_up': new RegExp(’\\$oc/devices/(\\S+)/sys/messages/up")

 exports.handler = async (event, context) => {
const codecType = event. codecType;
const message = JSON.parse(event.message);

7
8
o
o
1
2
ER
I
5
6
7
s console.log("input Data:”, event);

Hf(ToteCType===—"tterote"

Step 4 Debug the script online. After the script is edited, click Configure Test Event on

the FunctionGraph console, select a blank template, enter simulated data, and
click Create. After configuring the test event, click Test to obtain the function

result and logs.

Simulated data: payload is the binary data reported by the device, that is, 0x01,
0x02, 0x03, 0x04. AQIDBA== is the result value encoded by the platform using

Base64.
{

"codecType": "decode",

"message": "{\"topic\": \"$oc/devices/device_id/sys/properties/report\",\"payload\": \"AQIDBA==\"}"

}

Figure 3-87 FunctionGraph - Adding a test event

< longsjCoap ~ SVersion: latest -

Configure Test Event
Monitoring ~ Version Aliases Configuration

(@ Create new test event Edit saved test event

Code Source Event Templates (18) *EventName blank pcbsén
Search Q 1 {
© Fle Edt Settin 2 “key": "value”

Kafka (Open-Source) E

. Project Configure Test Event v DMS (for RabbitMQ)

Project FrenGre
n DMS (for HG RabbitMQ)
B indexis . 2 //UpSteeam DMS (for HG Rocketh)
> 3 var MG oo Event
a4 var mMsG_TVI Common Fvent

//Downward Blank Template

s
6 var MSG_TVI S

e | Login Security Analysis

8 //Message Image Classification

91 var MSGE Pomographic Image Analysis

10 o: 1sG,

1 1: mse Speech Recognition

12 2: msq

13 3: mse

14}

15

16

17 exports.handler - async (event, context) => {
18 const codecType = event. codecType;

19 const message = JSON.parse(event.message) ;
20 console. log("input Data:", event)

21 if (codecType

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

123

loT Device Access

Developer Guide 3 Development on the Device Side

Figure 3-88 FunctionGraph - Test result (MQTT)

Step 5 After the debugging is successful, select the created FunctionGraph function from
the drop-down list in Step 1 and click Deploy.

Figure 3-89 FunctionGraph-based Development - Codec deployment

loTDA Instances | Products

(lim R D Registered devices: 0

Basic Information ~ Codec Deployment Online Debugging Topic Management

inary data inic JSON format or JSON rto JSON format. If device:

format, you can use the platform 1o fransmit data without using codecs.

codec anlne, upload a cod Developing a Cacec

Codec Details 1ot deploye

Codec Source: - | Operated: --

Edit Srpt FunctionGraph

FunctionGraph
FunctionGraph hosts and computes event-driven functions in a szrveress contaxt while ersuring high availability, high sczlability, and zero maintenance. All you need o do is write yeur code and set condtions.

FunctionGraph Guide | “unction Development

Region CN North-Ulangab201 Only supperts FunctionGraph n the same region

* Authorize Access You have bezn granied relatively large-germissions. It is recommended that you delete this authorizetion. Delete authorizetion

+* Target FunctionGraph

Na FufttionGraph is avaiable. Go to FunctionGraph to create a FunctionGraph. 3

--—-End

3.2.4.4.3 NB-loT (CoAP) Codec Example

This section uses a smoke detector as an example to describe how to develop a
FunctionGraph codec in JavaScript for reporting properties and delivering

commands over CoAP. The codec converts binary data into JSON data and
provides a method for debugging.

Defining a Smoke Detector

Scenario

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

loT Device Access
Developer Guide

3 Development on the Device Side

A smoke detector provides the following functions:

Reporting smoke alarms (fire severity) and temperature.

Receiving and running remote control commands, which can be used to
enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device APIs, but reporting simple binary data.

Product Model

Define the product model on the product details page of the smoke detector.

level: indicates the fire severity.
temperature: indicates the temperature at the fire scene.

SET_ALARM: indicates whether to enable or disable the alarm function. The
value 0 indicates that the alarm function is disabled, and 1 indicates that the
alarm function is enabled. The response command result is used to report the
modified alarm value.

Figure 3-90 Model definition - smokedetector

eeeeeeeeeeee

DataType | AccessMode® Descrition

‘‘‘‘‘‘

Decmal

Developing a Codec

Step 1 On the smoke detector product page, click the Codec Development tab, select
FunctionGraph, and click Create Function. If you use the tool for the first time,
perform access authorization.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

loT Device Access

Developer Guide 3 Development on the Device Side

Figure 3-91 FunctionGraph-based Development - Function creation

loTDA Instances / Progucrs |

(‘ IDNT 7 7T T Registered devices: 0

Basic Information | Codec Deployment | Online Debugging Topic Management

Acodec converts binary data intd JSON format or JSON into JSON fermat. If devices report data anly in JSCN format, you can use the plztform tc transmit data without using codecs

You czn develop a codec online, |ipload a eodec, or use scripls. For defails about codec development, see Developing a Cedec

Codec Details Nct deploy

Codec Source: -~ | Operated -

Edit Serint FunctionGraph

FunctionGraph hosts andcomputes event-driven functions in a serverless context whie ens.ring high availability, high scalablity, and zero mainfenance. All you need ‘o do is wite ycur code and set conditions.

FunctionGraph Guidz | Funcin Development

Regon CN Naorth-Llzngab20? Only supparts FONClionGraph n the same regior.
Authorize Access You heve been grantzd relatively large permission N is recommended that you delete this authorization. Delete autherization

Target FunctionGraph - Select FunctionGraph - v Q

No FunctionGraph is available. Go to FunctionGraph o creatz a FunctionGraph. &3

Step 2 On the FunctionGraph console, click Create Function. On the displayed page, click

Create from scratch, enter a function name, and select Node.js 16.17 as the
runtime.

Figure 3-92 Function list - Creating a function

FunctionGraph

Functions.

al(e)
Functonhame & Pactage oo runtme & Lestoatea & s Profct opersen
w -
2 .
o 2 Mot
. 7w o
B
2
¢
w
w
E
2 .

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-93 Creating a function - Parameters

ons | Creste Function

< | Create Function

Create With

R £ Cosa oo oo
) 2

Step 3 Write a script to convert binary data into JSON data. The script must implement
the following methods:

e Decode: Converts the binary data reported by a device into the JSON format
defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

e Encode: Converts JSON data into binary data supported by the device when
the platform sends downstream data to the device. For details about the
JSON format requirements, see Data Encoding Format Definition.

The following is an example of the JavaScript implemented for the smoke
detector. Copy the code to the project.

// Upstream message types

var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting

var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response

// Downstream message types

var MSG_TYPE_COMMANDS = 'commands'; // Command delivery

var MSG_TYPE_PROPERTIES_REPORT_REPLY = 'properties_report_reply'; // Property reporting response
// Message types

var MSG_TYPE_LIST = {

0: MSG_TYPE_PROPERTIES_REPORT, // In the code stream, 0 indicates device property reporting.

1: MSG_TYPE_PROPERTIES_REPORT_REPLY, // In the code stream, 1 indicates a property reporting
response.

2: MSG_TYPE_COMMANDS, // In the code stream, 2 indicates platform command delivery.

3: MSG_TYPE_COMMAND_RSP // In the code stream, 3 indicates a command response from
the device.

b5
// FunctionGraph entry function
exports.handler = async (event, context) => {
const codecType = event.codecType;
const message = JSON.parse(event.message);
console.log("input Data:", event);
if (codecType === "decode") {
// Decoding operation
return decode(message.payload);
} else if (codecType === "encode") {
// Encoding operation
return encode(message);
}
}
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

loT Device Access
Developer Guide

3 Development on the Device Side

product model definition.
Input parameters:

payload:[0x00, 0x00, 0x50, 0x00, Ox5a]

payload[0] indicates the data type. 0x00 indicates property reporting. payload[1] and payload[2] indicate
the value of the level property. payload[3] and payload[4] indicate the value of the temperature property.
payload[3] is the value before the decimal point, and payload[4] is the value after the decimal point.
Output:

{"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}1}
Input parameters:

payload: [0x03, 0x01, 0x00, 0x00, 0x01]

payload[0] indicates the data type. 0x03 indicates that the device returns a command response.
payload[1] indicates the value of request_id used to identify the command. payload[2] indicates whether
the command is successfully set. If the value is 0, the command is successfully set. payload[3] and
payload[4] indicate the values of "value" in the command response.
Output:

{"msg_type":"command_response","request_id":1,"result_code":0,"paras":{"value":1}}

function decode(payload) {
// Decoding logic
var binaryString = atob(payload);
const byteArray = new Uint8Array(binaryString.length);
for (let i = 0; i < binaryString.length; i++) {
byteArray[i] = binaryString.charCodeAt(i);

/* byteArray is the binary data reported by the device after decoding. You can check whether the
reported data is correctly parsed.*/
var returnData;
var messageld = byteArray[0];
if (MSG_TYPE_LIST[messageld] == MSG_TYPE_PROPERTIES_REPORT) {
returnData = decodePropertiesReport(byteArray);
} else if (MSG_TYPE_LIST[messageld] == MSG_TYPE_COMMAND_RSP) {
returnData = decodeCommandRsp(byteArray);
}

return returnData;
}
/*
Example data:
When a command is delivered, data in JSON format on IoTDA is encoded into a binary code stream using
the encode method of JavaScript.
Input parameters ->

{"msg_type":"commands","request_id":1,"command_name":"SET_ALARM","service_id":"smokerdector","paras
"{"value":1}}
Output ->
[0x02, 0x00, 0x00, 0x00, 0x01]
payload[0] indicates the data type, 0x02 indicates the platform command delivery. payload[1] indicates
the command ID. payload[2] indicates the command name (when command_name is SET_ALARM,
payload[2] = 0x00). payload[3] and payload[4] indicate the values of the delivered command.
Sample data: When a response is returned for property reporting, data in JSON format on the platform is
encoded into a binary code stream using the encode method of JavaScript.
Input parameters ->
{"msg_type":"properties_report_reply","request":"000050005a","result_code":0}
Output ->
[0x01, 0x00]
payload[0] indicates the data type. 0x01 indicates the response message for reporting device properties.
payload[1] indicates the device response result. 0x00 indicates success.
*/
function encode(data) {
var msgType = data.msg_type;
let payload = [];
var status = 200;
// Command delivery
if (msgType == MSG_TYPE_COMMANDS) {
payload[0] = 0x02; // Command delivery type
payload[1] = data.request_id & OxFF; // Command ID
if (data.command_name == 'SET_ALARM') {
payload[2] = 0x00; // Command name

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

IoT Device Access
Developer Guide 3 Development on the Device Side

// Set the command property value.
payload[3] = (data.paras.value >> 8) & OxFF;
payload[4] = data.paras.value & OxFF;
} else if (msgType == MSG_TYPE_PROPERTIES_REPORT_REPLY) {
// Response to device property reporting
payload[0] = 0x01; // Response to the device property reporting type
if (0 == data.result_code) {
payload[1] = 0x00; // Property reporting processed
}else {
payload[1] = 0x01;
status = 401;
}
}
return outputData(status, { "payload": payload });
}
// Property reporting (upstream)
function decodePropertiesReport(byteArray) {
// Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
var level = byteArray[1] * Math.pow(2, 8) + byteArray[2];
var status = 200;

var jsonObj;
if (byteArray.length < 4) {
jsonObj = {

"msg_type": "ERR", "message":"decodePropertiesReport byte length < 5."
b
status = 402;

// Obtain the values of the fourth and fifth values.
const integerPart = byteArray[3]; // Fourth value
const decimalPart = byteArray[4]; // Fifth value
// Combine the values into decimals.
const temperature = parseFloat(integerPart + ' + decimalPart);
jsonObj = {
"msg_type": MSG_TYPE_PROPERTIES_REPORT, "services":
[{ "service_id": serviceld, "properties": { "level": level, "temperature": temperature } }]
b
return outputData(status, jsonObj);
}
// Command response (upstream)
function decodeCommandRsp(byteArray) {
var requestld = byteArray[1];
var result_code = byteArray[2]; // Obtain the command execution result from the binary code stream.
var value = byteArray[3] * Math.pow(2, 8) + byteArray[4]; // Obtain the return value of the command
execution result from the binary code stream.
// Convert data into the JSON format used by the command response.
jsonObj = {
'msg_type": MSG_TYPE_COMMAND_RSP, 'request_id": requestld,
'result_code': result_code, 'paras': { 'value': value }
b
return outputData(200, jsonObj);
}
function outputData(status, body) {

const output =

{

'status': status,
'message": JSON.stringify(body),

console.log("output Data:", output);
return output;

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-94 FunctionGraph - Copying code to a project (CoAP)

{ 1 v | - gec

Code Source

Fle Edt Seftngs

Project commznds v i Degloy :
Pk

B indexjs . //Upstream nessage type
var HSG_TYPE_PROPERTIES REPORT = 'properties report'; //Device attribute reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; //Device returns command response
//bownward message type
var MSG_TYPE_COMMANDS = 'commands'; //Platform command issuance
var MSG_TYPE_PROPERTIES REPORT REPLY = 'praperties report reply’; //Response message for device attribute reporting
//Message Type List
var ¥SG_TYPE_LTST = {
62 MSG_TYPE_PROPERTIES_REPORT, /1 @ bytes in the stream are identified as device attribute reporting
1: MSG_TYPE_PROPERTIES REPORT REPLY, // A response message with a 1-byte identifier in the stream indicating device attribute reporting
2t MSG_TYPE_COMMAKDS, {/ The 2-byte identifier in the stream is used to issue platform comvands
3 MSG_TYPE_COMMAKD RSP /! The 3-byte identifier in the stream represents the device's return comnand response

exports.handler = async (event, context) = {

const codecType = event. codecType;
const message = JSCII, parse event.message);
console.log("input Data:", event);
if (codecType === "decoce") {

1/ Decoding operation

return decoce(wessage. payload);
} else if (codecType === "encodz") {

1/ Encoding operation

return encoce(message);

o

o |

Step 4 Debug the script online. After the script is edited, click Configure Test Event on
the FunctionGraph console, select a blank template, enter simulated data, and
click Create. After configuring the test event, click Test to obtain the function
result and logs.

Simulated data: payload is the binary data reported by the device, that is, 0x00,
0x00, 0x05, 0x00,0x5a. AABQAFo= is the result value encoded by the platform

using Base64.
{

"codecType": "decode",
"message": "{\"topic\": null,\"payload\": \"AABQAFo=\"}"
}

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-95 FunctionGraph - Adding a test event

FunctionGraph / Function List / Functions

< longsiCoap ~ | SVersion latest B

Configure Test Event

@ Create new test event Edit saved test event

Code Source Event Templates (18)
Search Q 1
Project
B indexjs . //UpStream DMS (for HC RockethiQ)

Figure 3-96 FunctionGraph - Test result (CoAP)

FunctionGraph / Funcion List / Functions.

< - v
Code Source

Flo £t Sotngs

Projest R0000800063
Projet

B ndexis .

= Com

.
;

:

a i

S ot
:

:

;

var msG_TVI
. Login Security Analysis
var MSG_TYI < hS ¥

//Message Image Classification

o var MSG_TV Pomographic Image Analysis

10 0: MsG,

1 1: MG, Speech Recognition

12 2: mse,

13 3: msq

1}

15

16

17 exports.handler = async (event, context) => {
18 const codecType = event.codecType;

19 const message = JSON.parse (event.message);
20 console.log("input Data:”, event);

21 if (codecType code”

v Test (ooy)

2 //upstream message type
var 1SG_TYPE_PROPERTIES_REPORT = properties_report'; //Device attribute reporting
* comnand_response'; //Device returns command response

¢ CouDS = *comands'; //Platform comand issuanc
ROPERTLES REPORT REPLY = properties_report_repl;

/Response message for «

// 6 bytes in the stream are identif

10 i 'YPE_PROPERTIES_REPORT,

1 1SG_TYPE_PROPERTIES_REPORT_REPLY,
1 H5G_TYPE_COMMANDS /1 The 2-byte identifier in the stream is use
13 H5G_TYPE_COMMAND_RSP /1 The 3-byte identifier in the strean represi
14

15

16

17 exports.handler = async (event,) =4

18 const codecType = event.codecType;

1 const message = J50M. parse(event .message) ;

2» console. log("input Data:”, event);

21 if (codecType) {

2 /1 Decoding operation

2 return decode(message. payload);

2 } else if (codecType === "encode”) {

b5 /1 Encoding operation

2% return encode(nessage);

2

®)

% Event Name

blank-pcssen

: “value”

Execution Result x

© Execution successtul

(
N

Gancel

(3 Copy URN @ Dissble Functon

) Export Function

@ Feetack (Upload v

ndencies Openn CodeArts DE Ol

Function Output

status™: 200,

nessoge et properties_report\”,\
\"level\ "0, emperature)”:0.9))))

3

services\"s [(vservice 1o\

\smokerdector*, \"properties”

ed as de
1/ A response message with a 1-byte identifiel =

Tog output

Startinvoke request

716964955 version aest

inpul Data {
codecType: ‘decode’

message: [topic”: nul payioad AABQAFO=T
)

ouput Data

Pmsg_type” propertes._reportsenvices” [[senice_d"sn

72 Finsh invoke request cd861aa8-4eT .08
1 memory. 128MB, cpu used 0 300U, sorage used

“srane,
Summary
ReauestID CBTaa-AeTa A0 afa? 47160849557
1815
7 752ms
ws13MB
toms

o propetis” Plever 80 “emperature” 09}

7166849557, duration: 9 876ms, biing duraton: 10ms, memory used
&

Step 5 After the debugging is successful, select the created FunctionGraph function from

the drop-down list in Step 1 and click Deploy.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

131

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-97 FunctionGraph-based Development - Codec deployment

loTDA Instances ! Products

(‘ B D Registered devices: 0

Basic Information ~ Codec Deployment Online Debugging Topic Management

A codec converts binary data in'c JSON format or JSON into JSON format. If devce:

@ only in JSON format, you can use the platform o fransmit data without using codecs.

You can develop a codec online, upload a caodes

ripts. For details about co

t see Developing a Cacec

Codec Details 1ot depioy=d

Codec Source: - | Operated: --
Edit Script FunctionGraph
FunctionGraph

FunctionGraph hosts and computes event-driven functions in a serveress context while ersuring high availahility, high scalability, and zero maintenance. All you need ‘o do is write your code and sef condtions.

FuncionGraph Guidz | “unction Developmernt

Region CN North-Ulangab201 Only supperis FunctionGraph n he same region

* Authorize Access You have bezn granied relaively large-germssions. It is recommended that you delete this authorization. Delete authorizetion

* Target FunctionGraph

No FuftttionGraph is avaiable. Co to FunctionGraph to create a FunctionGraph. 2

--—-End

3.2.5 Online Debugging

Overview

After the product model and codec are developed, the application can receive data
reported by the device and deliver commands to the device through the platform.

IoTDA provides application and device simulators for you to commission data
reporting and command delivery before developing real applications and physical
devices. You can also use the application simulator to verify the service flow after
the physical device is developed.

Debugging a Product by Using a Virtual Device

When both device development and application development are not completed,
you can create virtual devices and use the application simulator and device
simulator to test product models and codecs. The online debugging page consists
of the following parts:

1. Device information area (upper part): displays the basic information about
the device that is being debugged, including the device name, device status,
device ID, resource space, and product.

2. Application simulator area (upper left corner): You can simulate an
application to deliver commands, messages, and messages with custom
topics.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

IoT Device Access
Developer Guide 3 Development on the Device Side

3. Device simulator area (lower left corner): You can simulate a device to report
properties, messages, events, and messages with custom topics, and set
command responses.

4. Application simulator record area (upper right corner): displays the data
received and delivered by the application.

5. Device simulator record area (lower right corner): displays the data reported
and received by the device.

Figure 3-98 Online debugging - Virtual device structure

Online Debugging G ouverson (T

\\\\\\\\\\\\\\\

Propery Roport Messagersparing Evantrsporing Custom Toics Subscrpton st Command Resporss

« Choose SmokeDsactorContal

To debug a virtual device online, perform the following steps:

Step 1 On the product details page, click the Online Debugging tab and click Add Test
Device.

Step 2 In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

Step 3 In the device list, select the new virtual device.

Figure 3-99 Online debugging - Creating a virtual device

Add Test Device
Device Type Physical device Viriual device
Device Name

Node ID

e Ty
| Cancel |
(==) 2

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

loT Device Access

Developer Guide

3 Development on the Device Side

Step 4

Step 5

Step 6

Step 7

Click Debug on the right.

Figure 3-100 Entering debugging

a)(e)

Node D & Dovice D

On the displayed page, the device status is Online.

Figure 3-101 Online Commissioning - Online devices

[tomeer]

In the Device Simulator area, select the usage scenario as required. Options:
property reporting, message reporting, event reporting, and data reporting via
custom topics. For example, to report a property, click the property reporting tab,
select the target service, enter the property value, and click Send. Check the
reported properties in the device simulator record area on the right. Check the
property values received by the application simulator in the application simulator
record area.

Figure 3-102 Online debugging - Simulating data reporting (Battery)

ebugging

In the Application Simulator area, select the usage scenario. Options: command
delivery, message delivery, and message delivery via custom topics. For example,
to deliver a command, click the command delivery tab, select the target service
and command, enter the command value, and click Send. Check the delivered
command and the received command response in the application simulator record
area on the right, and check the command received by the device and the
command response reported by the device in the device simulator record area.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

loT Device Access
Developer Guide

3 Development on the Device Side

(11 NOTE

For command delivery, you can set the response reported by the device to the platform on
the command response tab page of the device simulator.

For message delivery via custom topics, you can use the device to subscribe to the target
topic on the subscription tab page of the device simulator.

Figure 3-103 Online debugging - Command delivery

Online Debugging

~ Devcs Sinulator

--—-End

Debugging a Product by Using a Physical Device

When the device development is complete but the application development is not,
you can add physical devices and use the application simulator to test devices,
product models, and codecs. The physical device debugging page consists of the
following parts:

1.

Device information area (upper part): displays the basic information about
the device that is being debugged, including the device name, device status,
device ID, resource space, and product.

Application simulator area (left part): You can simulate an application to
deliver commands, messages, and messages with custom topics.

Application simulator record area: displays the data received and delivered by
the application.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

loT Device Access
Developer Guide

3 Development on the Device Side

Step 1

Step 2

Figure 3-104 Online debugging - Physical device structure

Online Debugging

Resource Space Defaultapp_66d0vvief Node ID

Debugging Input Debug output

QRefresh] ClearLog (Q Platorm Message Tracing®

A Appiication S mulator Al Application Receiving & Device Reporting Application Delivery & Device Receiving

Application Simulator

Commands ~ Message Delivery Custom Topics

<
5 Choose SmokeDetectorControl e
Service =

‘SmokeDetectorControl: SILENCE v

B

Next, you can create a physical device for online debugging.

On the product details page, click the Online Debugging tab and click Add Test
Device.

In the Add Test Device dialog box, select Physical device for Device Type, set the
parameters of the device, and click OK.

Figure 3-105 Online debugging - Adding a test device

b4

Add Test Device
Device Type Physical device Virtual device
Device Mame

Node |D
Authentication Type
Secret &
Confirm Secret o=

{: Cancel :‘u
Note: If DTLS is used for access, keep the key secure.
Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

IoT Device Access
Developer Guide 3 Development on the Device Side

L] NOTE
The newly added device is in the inactive state. In this case, online debugging cannot be
performed. For details, see Device Connection Authentication. After the device is

connected to the platform, perform the debugging.

Step 3 Click Debug to access the debugging page.

Figure 3-106 Entering debugging

< Reo . O auickLinks

Codec Deployment Online Debugging

2 ()

\\\\\\\\

Step 4 On the displayed page, the device status is Online.

Figure 3-107 Online Commissioning - Online devices

[tomeer]

Step 5 In the Application Simulator area, select the usage scenario. Options: command
delivery, message delivery, and message delivery via custom topics. For example,
to deliver a command, click the command delivery tab, select the target service
and command, enter the command value, and click Send. Check the delivered
command and the received command response in the application simulator record
area on the right. Your physical device can receive the delivered commands and
perform corresponding actions.

Figure 3-108 Online debugging - Physical devices

Online Debugging 9 oaversion (T

--—-End

3.3 Device Registration

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

IoT Device Access
Developer Guide 3 Development on the Device Side

3.3.1 Registering a Device

A device is a physical entity that belongs to a product. Each device has a unique
ID. It can be a device directly connected to the platform, or a gateway that
connects child devices to the platform. You can register a physical device with the
platform, and use the device ID and secret allocated by the platform to connect
your SDK-integrated device to the platform.

The platform allows an application to call the API for creating a device to register
an individual device. Alternatively, you can register an individual device on the
IoTDA console. This section describes the procedure on the IoTDA console.

Procedure

Step 1 Access the 10TDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page, click
Register Device, set parameters based on the table below, and click OK.

Figure 3-109 Device - Registering a secret device

Register Device

Resource Space (3) v
Product ~
Mode ID (3)

Device ID (7)
Device Mame

Description

Authentication Type (3) X 509 certificate

Secret

Confirm Secret

4 ™
| Cancel |
h. A

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

loT Device Access
Developer Guide

3 Development on the Device Side

Table 3-21 Registering a device with secret

Parameter Description

Resource Select the resource space to which a device belongs.

Space

Product Select the product to which the device belongs.

You can select a product only after it is defined. If no product is
available, create a product by following the instructions
provided in Creating a Product.

Node ID Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom string that contains letters, digits,
hyphens (-), and underscores (_).

Device ID Enter a unique device ID. If this parameter is carried, the

platform will use the parameter value as the device ID.
Otherwise, the platform will allocate a device ID, which is in the
format of product id_node_id.

Device Name

Customize the device name.

Description Customize device description.
Authenticatio | e Secret: The device uses the secret for identity verification.
n Type e X.509 certificate: The device uses an X.509 certificate for
identity verification.
Secret Customize the secret used for device access. If the secret is left
blank, the platform automatically generates one.
Fingerprint This parameter is displayed when Authentication Type is set to

X.509 certificate. Import the fingerprint corresponding to the
preset device certificate on the device side. You can run

openssl x509 -fingerprint -sha256 -in deviceCert.pem in the
OpenSS nt.

[-2-jump 2 s t

Delete the colons (:) from the obtained fingerprint when filling
it.

Save the device ID and secret. They are used for authentication when the device
attempts to access the platform.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

139

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-110 Device - Device registered

Q Device Registered

The system automatically allocated the following device information.

For security reasons, the secret will not be available on the device details page. If
you forget the secret, click Reset Secret on the Overview tab page to reset the
secret.

Device |D

Device Secret D—I

Mext, you can use the loT Device SDK to connect devices to the platform

SDK Development Guide (3

(11 NOTE

If the secret is lost, you can update the secret. The secret generated during device
registration cannot be retrieved.

You can delete a device that is no longer used from the device list. Deleted devices
cannot be retrieved. Exercise caution.

--—-End

APIs

e Query the Device List
e Create a Device

e Query a Device

e Modify a Device

e Delete a Device

e Reset a Device Secret

3.3.2 Registering a Batch of Devices

IoTDA allows an application to call the API for creating a batch task to register a
batch of devices. Alternatively, you can perform batch registration on the I0TDA
console. This section describes the procedure on the IoTDA console.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0114.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0055.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0041.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0093.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Procedure

Step 1 Access the 10TDA service page and click Access Console.

Step 2 In the navigation pane, choose Devices > All Devices, click the Batch
Registration tab, and then click Batch Register.

Step 3 In the displayed Batch Registration dialog box, enter the task name, download
and fill in the Batch Device Registration Template, upload the file, and click OK.

Figure 3-111 Device - Registering devices in batches

Batch Registration
Task Mame batchstreetdevice

)) R 4 Y
File BatchCreateDevices_Templa... (16.02KB X |\ Select File j|

Download the template, enter the content in text format, and upload the file.

4, Batch Device Registration Template

s ™,
| Cancel |
p. A m

Step 4 If the devices use the native MQTT protocol, click the batch task registration
record to open the task execution details, and save the device IDs and secrets
generated, which will be used for device access.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

https://www.huaweicloud.com/intl/en-us/product/iotda.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-112 Batch device registering - Execution details

. X
Task Details
Basic Information Execution Details
Device Records
Search by staius by defauit |9 E|

Status € Parameters & Cutput & Error Cause 9

@® Success.. ‘product_id=¢ n.. deviceld=6 -

@ Success. . ‘product_id=¢ n.. deviceld=6

@® Success . ‘product_id=¢ n.. deviceld=6

@ Success.. ‘product_id=¢ n.. deviceld=6

@® Success.. ‘product_id=¢ n.. deviceld=6 -

@ Success. . ‘product_id=¢ n.. deviceld=6

@® Success . ‘product_id=¢ n.. deviceld=6

@ Success.. ‘product_id=¢ n.. deviceld=6

@ Success. . ‘product_id=¢ n.: deviceld=6 -

@ Success. . ‘product_id=¢ n.. deviceld=6
Total Records: 26 10 v 1 2 3

Export Result
----End

APIs
e Create a Device
e Query the Batch Task List
e Create a Batch Task
e Query a Batch Task

3.3.3 Registering a Device Authenticated by an X.509
Certificate

An X.509 certificate is a digital certificate used for communication entity
authentication. IoTDA allows devices to use their X.509 certificates for
authentication. The use of X.509 certificate authentication protects devices from
being spoofed.

Before registering a device authenticated by an X.509 certificate, upload the device
Certificate Authority (CA) certificate to the platform and bind the device certificate
to the device during device registration. This section describes how to upload a

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0017.html

IoT Device Access
Developer Guide 3 Development on the Device Side

device CA certificate to the platform and register a device that uses the X.509
certificate for authentication.

Constraints
e Only MQTT devices can use X.509 certificates for identity authentication.
e You can upload up to 100 device CA certificates.

Uploading a Device CA Certificate

Step 1 Access the 10TDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > Device Certificates. On the Device CA
Certificates tab page, click Upload Certificate.

Step 3 In the displayed dialog box, click Select File to add a file, and then click OK.

Figure 3-113 Device CA certificate - Uploading a certificate

Upload Certificate

- - , I I Ly
CA Certificate () rootCA pem (3.56KB * | SelectFile)
@ . vy

- ~
Cancel
e) a

(11 NOTE

Device CA certificates are provided by device vendors. You can prepare a commissioning
certificate during commissioning. For security reasons, you are advised to replace the
commissioning certificate with a commercial certificate during commercial use. Purchased
CA certificates (in formats such as PEM and JKS) can be directly uploaded to the platform.

--—-End

Creating a Device CA Commissioning Certificate

This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format.

Download and install OpenSSL.

2. Open the CLI as user admin.

3. Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL
installation directory) to access the OpenSSL view.

4. Generate a public/private key pair.
openssl genrsa -out rootCA key 2048

5. Use the private key in the key pair to generate a CA certificate.
openssl req -x509 -new -nodes -key rootCA key -sha256 -days 1024 -out rootCA.pem

Enter the following information as prompted. All parameters can be
customized.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://slproweb.com/products/Win32OpenSSL.html

IoT Device Access
Developer Guide 3 Development on the Device Side

- Country Name (2 letter code) [AU]: country, for example, CN
- State or Province Name (full name) []: state or province, for example, GD
- Locality Name (for example, city) []: city, for example, SZ

- Organization Name (for example, company) []: organization, for
example, Huawei

- Organizational Unit Name (for example, section) []: organization unit, for
example, loT

- Common Name (e.g. server FQDN or YOUR name) []: common name, for
example, zhangsan

- Email Address []: email address, for example, 1234567@163.com

Obtain the generated CA certificate rootCA.pem from the bin folder in the
OpenSSL installation directory.

Uploading a Verification Certificate

If the uploaded certificate is a commissioning certificate, the certificate status is
Unverified. In this case, upload a verification certificate to verify that you have the
CA certificate.

Figure 3-114 Device CA certificate - Unverified certificate

Device Certificates

Device CA Cerificate:

The verification certificate is created based on the private key of the device CA
certificate. Perform the following operations to create a verification certificate:

Step 1 Generate a key pair for the verification certificate.
openssl genrsa -out verificationCert.key 2048

Step 2 Create a certificate signing request (CSR) for the verification certificate.
openssl req -new -key verificationCert.key -out verificationCert.csr

The system prompts you to enter the following information. Set Common Name
to the verification code and set other parameters as required.

e Country Name (2 letter code) [AU]: country, for example, CN

e State or Province Name (full name) []: state or province, for example, GD

e Locality Name (for example, city) []: city, for example, SZ

e Organization Name (for example, company) []: organization, for example,
Huawei

e Organizational Unit Name (for example, section) []: organization unit, for
example, loT

e Common Name (e.g. server FQDN or YOUR name) []: verification code for
verifying the certificate. For details on how to obtain the verification code, see
Step 5.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

loT Device Access
Developer Guide 3 Development on the Device Side

Email Address []: email address, for example, 1234567@163.com
Password[]: password, for example, 1234321

e Optional Company Name[]: company name, for example, Huawei

Step 3 Use the CSR to create a verification certificate.

openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
verificationCert.pem -days 500 -sha256

Obtain the generated verification certificate verificationCert.pem from the bin
folder of the OpenSSL installation directory.

Step 4 Select the corresponding certificate, click ~ , and click Upload Verification
Certificate.

Figure 3-115 Device CA certificate - Verifying a certificate

Device Certificates

Device CA Certificates Device Certificates

Step 5 The verification code is displayed in the dialog box. Click Select File, upload the
verification certificate, and click OK. After the certificate is uploaded, the
certificate status changes to Verified, indicating that you have the CA certificate.

Figure 3-116 Device CA certificate - Uploading a verified certificate

Device Certificates.

Total Rocords: 5

--—-End

Deleting a Device CA Certificate

You can delete a device CA certificate that is no longer used.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

loT Device Access
Developer Guide

3 Development on the Device Side

(11 NOTE

Once a service device CA certificate is deleted, devices that rely on it for authentication can
no longer access the platform. Back up related data before the deletion.

Figure 3-117 Device CA certificate - Deleting a certificate

< sandag O Running @ Detais & Moaty -+

Device Certificates

Device CA Certificates Device Certicates

Presetting an X.509 Certificate

Before registering an X.509 device, preset the X.509 certificate issued by the CA on
the device.

(1 NOTE

The X.509 certificate is issued by the CA. If no commercial certificate issued by the CA is
available, you can create an X.509 commissioning certificate. Purchased certificates or
certificates (in formats such as PEM and JKS) issued by authoritative organizations can be
directly uploaded to the platform.

Creating an X.509 Commissioning Certificate

1. Run cmd as user admin to open the CLI and run cd c:\openssl\bin (replace
c:\openssl\bin with the actual OpenSSL installation directory) to access the
OpenSSL view.

2. Generate a public/private key pair.
openssl genrsa -out deviceCert.key 2048

3. Create a CSR for the device certificate.
openssl req -new -key deviceCert.key -out deviceCert.csr

Enter the following information as prompted. All parameters can be
customized.

- Country Name (2 letter code) [AU]: country, for example, CN
- State or Province Name (full name) []: state or province, for example, GD
- Locality Name (for example, city) []: city, for example, SZ

- Organization Name (for example, company) []: organization, for
example, Huawei

- Organizational Unit Name (for example, section) []: organization unit, for
example, loT

- Common Name (e.g. server FQDN or YOUR name) []: common name, for
example, zhangsan

- Email Address []: email address, for example, 1234567@163.com
- Password[]: password, for example, 1234321
- Optional Company Name[]: company name, for example, Huawei

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

IoT Device Access
Developer Guide 3 Development on the Device Side

4. Create a device certificate using CSR.
openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
deviceCert.pem -days 500 -sha256

Obtain the generated device certificate deviceCert.pem from the bin folder in
the OpenSSL installation directory.

Registering a Device Authenticated by an X.509 Certificate

Step 1 Access the I0TDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page, click
Register Device, set parameters based on the table below, and click OK.

Figure 3-118 Device - Registering an X.509 device

Register Device

+ Resource Space () N
* Product -
% Node ID (D)

Device ID (3)

Device Mame

Description

Authentication Type @ Secret X 509 cerificate

Fingerprint

'd ™
l\ Cancel /|
Table 3-22 Registering a device using X.509 certificate
Parameter Description
Resource Select the resource space to which a device belongs.
Space
Product Select the product to which the device belongs.
Select an existing or create one.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

https://www.huaweicloud.com/intl/en-us/product/iotda.html

loT Device Access
Developer Guide

3 Development on the Device Side

Parameter

Description

Node ID

Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom string that contains letters, digits,
hyphens (-), and underscores (_).

Device ID

Enter a unique device ID. If this parameter is carried, the
platform will use the parameter value as the device ID.
Otherwise, the platform will allocate a device ID, which is in the
format of product id node id.

Device Name

Customize the device name.

Description

Customize device description.

Authenticatio
n Type

X.509 certificate: The device uses an X.509 certificate for
identity verification.

Fingerprint

This parameter is displayed when Authentication Type is set to
X.509 certificate. Import the fingerprint corresponding to the
preset device certificate on the device side. You can run
openssl x509 -fingerprint -sha256 -in deviceCert.pem in the
OpenSSL view to query the fingerprint. Note: Delete the colon
(:) from the obtained fingerprint when filling it.
[ert1223]# of sl -f int -sha256 -in d er

ot-wl2-2-jump c

:45:

--—-End

APIs

e Obtain the Device CA Certificate List
e Upload a Device CA Certificate

e Delete a Device CA Certificate

o Verify a Device CA Certificate

3.3.4 Device Self-Registration

Introduction

The device self-registration function enables automatic registration of a device
with the loT platform upon initial connection, eliminating the need for pre-
registration on the console. This process is facilitated through certificate
authentication, with device information stored in device certificates.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0016.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-119 Device self-registration process

Self-registration
template

8

1. Connection to the platform using the
access address allocated by the platform
and the device certificate

v

-

]
2. Device CA certificate authentication

J

3. Device CA self-registration check

4. Template parsing

X

5. Device registration

5. Successful connection

RN

Scenarios

e Device requirements: Some devices cannot be pre-registered on the console or
by calling APIs.

e Internet of Vehicles (IoV): When a head unit is started, it automatically
registers with the platform and reports data to the platform, simplifying the
development of the vehicle application.

e Multi-instance scenario: Enterprise customers can utilize the self-registration
function to efficiently manage devices across multiple loTDA instances. This
eliminates the need to provision and register devices separately on each
instance beforehand.

Constraints
e Max. self-registration templates for an instance: 10.

e To use the device self-registration function, the device must use transport
layer security (TLS) and enable the Server Name Indication (SNI) extension.
The SNI must carry the domain name allocated by the platform. To obtain the
domain name, see How Do | Obtain the Platform Access Address?

e Only available for MQTTS certificate authentication.
e Not available for standard edition instances in the CN East-Shanghai1 region.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00123.html

loT Device Access
Developer Guide

3 Development on the Device Side

NOTICE

Devices registered through self-registration are authenticated based on the

self-registration template. Modifying or disabling the self-registration
template may affect device authentication. Exercise caution.

Procedure

Step 1 Access the 10TDA service page and click Access Console. Click the target instance

card.

Step 2 Create a product.

Step 3 In the navigation pane, choose Devices > Self-registration Template. Click
Create Template. On the displayed page, enter basic information, and click the

button for adding the required parameters to the template.

Figure 3-120 Self-registration template - Adding parameters

Add

0 Add at least one parameter.

Parameter &

iotda:: certificate:country

iotda::certificate: organization

iotda:: certificate:-organizational_unit
iotda::certificate::distinguished_name_qualifier
iotda::certificate: state_name
iotda::certificate::commen_name

iotda::certificate serial_number

Description &

Country/Region, C

Organization, o

Organization unit, ou

Distinguishable name qualifier, dnQualifier
Province and city, st

Commeon name, cn

Serial number, serialNumber

o Ty
C |

Step 4 Select the device name, node ID, device ID, and product ID in the resource

configuration area.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

150

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0054.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-121 Self-registration template - Creating a template

(11 NOTE

The platform predefines the parameters that can be declared and referenced in the
template, as shown below. The certificate must contain the parameters referenced in the
template.

e iotda:certificate::country: country

e iotda:certificate::organization: organization

e iotda:certificate::organizational_unit: department

e iotda:certificate::distinguished_name_qualifier: distinguished name
e jotda:certificate::state_name: province/state

e jotda:certificate::common_name: common name

e jotda:certificate::serial_ number: serial number

Step 5 Add a policy in the policy configuration area. The added policy is automatically
bound to the device during self-registration. For details, see Device Topic Policies.

Step 6 In the navigation pane, choose Devices > Device Certificates. Create a device
certificate by referring to Registering a Device Authenticated by an X.509
Certificate. Upload the CA certificate to the platform for verification, bind the
self-registration template created in Step 3, and enable the self-registration
function.

Figure 3-122 Device CA certificate - Binding a template

Device CA Certificates Device Certficates

Certificate 1D Certificate Owner Created Valid Till Operation

(11 NOTE

The CA certificate and the product associated with the product ID in the template must be
in the same resource space.

Step 7 On the device CA certificate tab page, click Debug, upload the device certificate
created in Step 6, and check whether the pre-parsed device information meets
your expectation.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_1111.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section2

loT Device Access
Developer Guide

3 Development on the Device Side

Simulator-based Verification

Figure 3-123 Device CA certificate - Debugging a certificate

<0

v © Runring

Device Certificates

Device CA Ceriifcates

You can upioad device GA e
You cen upioad a masimu

- -
Upload Certicate)

v Veified

m of 100 certicetes. Polgie Policy Name

Verification Status

TotalRecardsi 1 | 10 v

@ Deails & Modiy *=+
Device Info

Device Certficates

est e pabmbrded

Policy ID

Tag Key Teg Value
ce Valid Till Operation

Use MQTT.fx to simulate a device to access the platform for automatic device

registration.

Step 1 Download MQTT.fx (64-bit OS) or MQTT.fx (32-bit OS) and install it.

Step 2 Open MQTT.fx, set connection parameters by referring to Table 3-23, and click

Apply.

Table 3-23 Connection parameters

Parameter

Description

Broker Address

Platform access address (see How Do | Obtain the Platform
Access Address?)

Broker Port

8883

certificates

Client ID Any string. Recommended: Set this parameter according to
the platform rules in Device Connection Authentication to
ensure continued access to the platform via certificate
authentication even after the template is disabled.

User Name Any string. Recommended: Set this parameter according to
the platform rules in Device Connection Authentication to
ensure continued access to the platform via certificate
authentication even after the template is disabled.

Password Empty

Enable SSL/TLS | True

Self signed True

CA File

Platform CA certificate (see Certificates)

Client
Certificate File

Path of the device certificate file

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

152

https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows-x64.exe
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows.exe
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00123.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00123.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

IoT Device Access
Developer Guide 3 Development on the Device Side

Parameter Description

Client Key File Path of the private key file of the device certificate

Client Key Private key password (not necessary if there is no password)
Password

Figure 3-124 MQTT.fx Settings

& MQTTAc-171 . " W W . - -

#|EW Extras Help

‘ iot - Disconnect
m Subscribe Scripts Broker Status log

Figure 3-125 Connection parameters

MQTT Broker Profile Settings

Broker Address | 17f08. nyhuawe
Broker Port | 3333

ClientID | 12345678_0_0_2023122902 Generats
General BVECASELENIEIEE SSL/TLS Proxy LWT

User Name | 12345675

Password

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

loT Device Access

Developer Guide

3 Development on the Device Side

Step 3

Step 4

Figure 3-126 Certificate information

General User Credentials BREIFAIES Proxy LWT

Enable SSL/TLS ' Protocol TLSw1.2 v

CaA signed server certificate
CA certificate file
Ca certificate keystore

® Self signed certificates
CA File cn-north-4-device-client-rootcert pem
Client Certificate File deviceCert-sni0l.crt
Client Key File deviceCert-smi01.key

Client Key Password
PEM Formatted '

Self signed certificates in keystores

Click Connect. If the icon in the upper right corner turns green, the simulated
device has been authenticated and connected.

Figure 3-127 Device simulator connected

@ MQTTfx-1.7.1 - o X

File Extras Help

m Subscribe Scripts Broker Status Log
» v w Q@) Qos1 QoS2 Retained w0

In the navigation pane of the I0TDA console, choose Devices > All Devices. On
the device list tab page, search for the device by device ID or node ID. The device
is displayed as registered and online.

Figure 3-128 Device - Self-registered device details

----End

3.4 Device SDK Access

Huawei Cloud I0TDA, a platform for access and management of a large number
of devices, allows you to connect your physical devices to the cloud, where you
can collect device data and deliver commands to devices for remote control. It can
also work with other Huawei Cloud services to help you quickly develop loT
solutions.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

loT Device Access
Developer Guide

3 Development on the Device Side

Device SDKs

This section describes how to efficiently connect devices to IoTDA using the Java
SDK, with a custom gas meter product model as an example. It covers developing
SDK code for reporting device data (messages and properties) and delivering
commands for remote configuration and control, as well as integrating the code

into devices.

(1 NOTE

Device SDKs are not exclusive to a specific product model. You can customize the code
based on the site requirements.

Table 3-24 Device SDKs

Resource Package

Description

Download Link

loT Device Java SDK

The demo provides the
code sample for calling
the SDK APIs. For details,
see

loT Device Java SDK.

loT Device Java SDK

loT Device C SDK for
Linux/Windows

The demo provides the
code sample for calling
the SDK APIs. For details,
see

loT Device C SDK for
Linux/Windows.

loT Device C SDK for
Linux/Windows

loT Device C# SDK

The demo provides the
code sample for calling
the SDK APIs. For details,
see

loT Device C# SDK.

loT Device C# SDK

loT Device Android SDK

The demo provides the
code sample for calling
the SDK APIs.

loT Device Android SDK

loT Device Go SDK
(Community Edition)

The demo provides the
code sample for calling
the SDK APIs.

loT Device Go SDK
(Community Edition)

loT Device Python SDK

The demo provides the
code sample for calling
the SDK APIs.

loT Device Python SDK

loT Device Tiny C SDK
for Linux/Windows

The demo provides the
code sample for calling
the SDK APIs.

loT Device Tiny C SDK
for Linux/Windows

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

155

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0089.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab

loT Device Access
Developer Guide

3 Development on the Device Side

Resource Package

Description

Download Link

loT Device ArkTS
(OpenHarmony) SDK

The demo provides the
code sample for calling

loT Device ArkTS

(OpenHarmony) SDK

the SDK APIs.
Table 3-25 SDK functions

Function C Java | C# Andr | Go Pyth | C ArkT

oid on Tiny |[S
Property v v Vv v v v v
reporting
Message v v v v v v v
reporting and
delivery
Event v v v v v v x
reporting and
delivery
Command v v v v v v v
delivery and
response
Device v v v v v v v
shadow
OTA upgrade |V v v v v v x
Bootstrap v v X
Time v v X
synchronizati
on
Gateway and |V v v v v v X
child device
management
Device-side v v x x X v x
rule engine
Remote v v x x X x x
secure shell
(SSH)
Anomaly v v X x X X X
detection

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main

loT Device Access
Developer Guide

3 Development on the Device Side

Function C Java | C# Andr | Go Pyth | C ArkT

oid on Tiny |S
Device-cloud |V x v x X x x x
secure

communicatio
n (soft bus)

Machine-to- v X v X X x x x
machine
(M2M)

function

Generic- v v v v X v x x
protocol
access

Prerequisites

Service Flow

Development environment: The integrated environment (IntelliJ IDEA) of Java
has been installed, and the environment such as Maven has been configured.

This example uses the MQTTS protocol on the device.

You have registered a Huawei Cloud account and completed real-name
authentication.

You have subscribed to IoTDA on the console.

Use the loT Device Java SDK to connect devices to loTDA and report data and
deliver commands.

1.
2.

Product creation: Create an MQTT product.

Product model development: Create a product model for a gas meter on the
platform that allows for remote reporting of readings and the delivery of
configurations and commands.

Device registration: Register a device using the MQTT protocol.

Access to Huawei Cloud via Java SDK: Download the SDK, adapt the code,
and use the Java SDK to activate the device registered on the platform.

Message reporting: Adapt the code and use the Java SDK to report messages
to the platform.

Property reporting: Adapt the code and use the Java SDK to report device
properties to the platform.

Command delivery: Adapt the code and deliver commands on the console to
set device properties remotely.

Java SDK integration and running: Package the adapted SDK into a
runnable file, import the file to the loT device, and run the file to connect the
device to loTDA.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

https://www.huaweicloud.com/intl/en-us/product/iotda.html

loT Device Access
Developer Guide 3 Development on the Device Side

Creating a Product

Step 1 Access the 10TDA service page and click Access Console. Click the target instance
card. Choose Products in the navigation pane and click Create Product.

Figure 3-129 Creating a product

2| Detine & product mod

Step 2 Create a product whose protocol type is MQTT and device type is custom gas
meter. Set parameters by referring to the following table and click OK.

Table 3-26 Parameters for creating a product

Resource Space Select the default resource space.

Product Name Customize a product name, for
example, Gas Meter.

Protocol Select MQTT.

Data Type Select JSON.

Device Type Selection Select Custom.

Device Type Customize a device type, for example,

Custom Gas Meter.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

https://www.huaweicloud.com/intl/en-us/product/iotda.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-130 Creating an MQTT product

Create Product

Resource Space (%) “

To create a new resource space, you can go to the instance details page

Product Mame
Protocol (2) MQTT v
Data Type (3 JSON v
Device Type Selection Standard profile
Device Type (%)
Advanced Settings & Custom Product ID | Description
Product ID (%)

Description

Cancel

--—-End

Developing a Product Model

Step 1 Click the created product to access its details page.

Step 2 On the Basic Information tab page, click Customize Model to add services of the
product.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

loT Device Access
Developer Guide

3 Development on the Device Side

Step 3

Step 4

Figure 3-131 Custom model - MQTT
| —— e Registered devices: 0) QuickLinks e s
K—Jﬁ
r T B.HG:.MBQ Al (ij:
D

On the displayed Add Service page, enter the service ID, service type, and service
description, and click OK.

Figure 3-132 Adding a service - GasMeter

Add Service

* Servicz ID

[GasMeter

Service Type [reporting

Descripion | gas meter

Choose GasMeter in the service list, click Add Property, set parameters according
to the following figure, and click OK.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-133 Adding a property - flow

Add Property

* Property Name

Description

13/128 4

* Data Type [Decimal v]

* Value Range [0

Step 5 Add a command model.

1. Choose GasMeter in the service list, click Add Command, and set the
command name to TOGGLE.

Figure 3-134 Adding a command - TOGGLE

No table data available.

No table data available.

2. On the displayed page, click Add Command Parameter, set parameters
according to the following figure, and click OK.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-135 Adding a command - toggle

Add Command X

+* Command Name TOGGLE

Command Parameters (Add Command Parameter]
- _/

Add Paramet X

+ Parameter Name toggle

Description Gas meter switch

16/128 #
Response Parameters
+* Data Type Integer v

#* Value Range 0 —| 65535
Step

Unit

Ty
[Cancel) OK
\ /

Step 6 Check the product model details.

Figure 3-136 Product model - gas meters

Products | testz g

< testlomgs 1o

@ s B A
v —
Product ot
2
,,,,, P
4
[R—
. e © st o
Q
e - 2oy 0

\\\\\\\\

--—-End

Registering a Device

Step 1 On the I0TDA console, click the target instance card. In the navigation pane,
choose Devices > All Devices. Click Register Device.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-137 Registering a device

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource Ensure that the device and its associated product belong to the

Space same resource space.

Product Select a corresponding product.

Node ID Customize a unique physical identifier for the device. Enter 4 to
64 characters. Use only letters, digits, underscores (_), and
hyphens (-).

Device Name | Customize the device name.

Authenticatio | Select Secret.
n Type

Secret If you do not set this parameter, |IoTDA automatically generates
a value.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-138 Registering a device - MQTT

Register Device

Resource Space (2) v

Product Test_1 v
Matt devices have subscribed to the platiorm preset topic by default. Subscribed
topics @

#Node D (3) Test_1

Device ID (@)

Ente
Device Name [and
allov

Description

0/2,048 4

Authentication Type (%) ¥ 509 cerificate

Secret

Confirm Secret
o T
| Cancel)
(o) 2D

Step 3 After the device is registered, the platform automatically generates a device ID
and secret. Save the device ID and secret for device access.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-139 Device - Device registered

o Device Registered

The system automatically allocated the following device information.

Faor security reasons, the secret will not be available on the device details page. I
you forget the secret, click Reset Secret on the Overview tab page fo reset the
secret.

Device ID

Device Secret D—I

Mext, you can use the loT Device SDK to connect devices to the platform

SDK Development Guide (5

--—-End

Accessing to Huawei Cloud Using Java SDK

You can use Intelli) IDEA (Intelli) IDEA 2023 Community Edition is used as an
example) to write and debug code. Ensure that the IDEA environment is normal
and Maven is available. For details about the Java SDK usage and APIs, see
README.

(1 NOTE

You are advised to adapt the SDK code and activate the device on the computer, and then
import the modified code to the device for integration.

Step 1 Create a project. Open IntelliJ IDEA and click New Project. On the displayed page,
enter the project name and project path, set Language to Java, set Build System
to Maven, and click Create.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-140 Creating a Java project

Name:

] IntelliJ IDEA Q New Project New Project

Empty Project

Projects

Create Git repository

HTML Python +

Advanced Settings

Create Cancel

Step 2 Add the Maven reference. After the project is created, the pom.xml and Main.java
files are automatically generated in the project. Open the pom.xml file, add the
Maven reference of the Java SDK, and click the Maven update icon in the upper
right corner. If an error is reported, check the Maven configuration.
<dependencies>

<dependency>
<groupld>com.huaweicloud</groupld>
<artifactld>iot-device-sdk-java</artifactld>
<version>1.2.1</version>
</dependency>
</dependencies>

Figure 3-141 Adding the Maven reference of the Java SDK

O

C3test-javaSdk
)
8 .

Step 3 Write the reference code to establish a connection with the device.

1. Open the Main.java file and copy the following code to the file:
import com.huaweicloud.sdk.iot.device.loTDevice;
import java.io.File;
import java.io.lOException;
import java.io.InputStream;
import java.nio.file.Files;
import static java.nio.file.StandardCopyOption.REPLACE_EXISTING;
public class Main {
private static final String IOT_ROOT_CA_RES_PATH = "ca.jks";

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

loT Device Access
Developer Guide

3 Development on the Device Side

private static final String IOT_ROOT_CA_TMP_PATH = "huaweicloud-iotda-tmp-" +

IOT_ROOT_CA_RES_PATH;

public static void main(String[] args) throws InterruptedException, IOException {
// Load the CA certificate of the loT platform for server verification.
File tmpCAFile = new File(IOT_ROOT_CA_TMP_PATH);

try (InputStream resource =

Main.class.getClassLoader().getResourceAsStream (IOT_ROOT_CA_RES_PATH)) {
Files.copy(resource, tmpCAFile.toPath(), REPLACE_EXISTING);

// Create a device and initialize it. Replace the access address with your own address.
loTDevice device = new loTDevice("ssl://xxx.st1.iotda-device.cn-

north-4.myhuaweicloud.com:8883",

"5e06bfee334dd4f33759f5b3_demo", "mysecret"”, tmpCAFile);

if (device.init() !=0) {
return;
}
}
}

2. Add a certificate file. Obtain the CA certificate on the device side based on
your region and change the certificate name to ca.jks. Save the certificate to
the resources directory of the project.

Figure 3-142 Obtaining the CA file on the device side

Table 1 Certificates

Certificate Package Region and
Name Edition

Certifi
cate
Type

Certificate
Format

Description Download Link

certificate CN-Hong
Kong, AP-
Singapore,
AP-Bangkok,
AP-Jakarta,
AF-

LA-Santiago,
LA-Sao
Paulo1, LA-
Mexico City2,
and ME-
Riyadh

Johannesburg,

Device
cerfifi
cate

pem, jks, and
bks

Used by a device to verify the platform Certificate file
identity. The certificate must he used
Logether wilh the device access domain

name.

certificate CN-Hong
Kong, AP-
singapore,
AP-Banykok,
AP-Jakarta,
AF-

Johannesburg,

LA-Santiago,
LA-Sao
Paulo1, LA-
Mexico City2,
and ME-
Riyadh

Applic
ation
cerfifi
cate

pem, jks, and
bks

Application access: HTTPS/AMQPS/MQTTS Certificate file
platform CA certificates

3. Modify access information. Change the device access address, device ID, and
device secret to those obtained in Registering a Device.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-143 Modifying device connection parameters

S test-javasdk v Version control v

Project

C3test-javasdk

iotda-tmp-ca ks

Figure 3-144 Obtaining access information

nnnnn

nnnnn

(10 NOTE

, tmpCAFile)

mmmmmmmmmm

- Select the MQTTS access address and copy it to the code. To use the MQTT
protocol, change ssl://xxx.st1.iotda-device.cn-north-4.myhuaweicloud.com:8883
to tcp://xxx.st1.iotda-device.cn-north-4.myhuaweicloud.com:1883.

- When you create a device, the system displays a dialog box asking you whether to
save the device ID and key. If you choose to save, the device ID and key are saved

as a file on your computer.

Step 4 Write and run the code. Click the run button in IDEA. The device is online on the

platform.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

168

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-145 Running code in IDEA

Mainjava

I
<« B © Running @ Details & Modity +++

@ Quick Links

Batch Deleton Batch Add Devi

File Uploads

Node D & Device ID & Resource space © Product © Node Type &

--—-End

(11 NOTE

The SDK automatically reconnects to the device if the device is disconnected due to
network problems.

Reporting a Message

Develop the message reporting function by referring to the guide for message
reporting and delivery.

Step 1 Copy the following code to the Main.java file of the new project. Put the code
after the device.init() method, which indicates that the connection is successfully
established.

// pubBody indicates the message to be reported. It will be edited into the standard format for reporting
data.
// The default topic reported by the reportDeviceMessage method is $oc/devices/{device_id}/sys/
messages/up.
String pubBody = "hello";
device.getClient().reportDeviceMessage(new DeviceMessage(pubBody), new ActionListener() {
@Override
public void onSuccess(Object context) {
System.out.println("reportDeviceMessage ok");
}
@Override
public void onFailure(Object context, Throwable var2) {
System.out.println("reportDeviceMessage fail: " + var2);
}
b

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-147 Reporting messages - IDEA

O Project

Sak) Main java

Gat

tda-tmp-cajks

©w @

Step 2 Enable device message tracing to check message records. Locate the device on the
Huawei Cloud console, go to device details page, and choose Message Trace >
Start Trace. Run the code again to check the reported messages.

Figure 3-148 Device list - Viewing details

<0

19:17:22 GMT+08:00

18:17:22 GMT+08:00

191721 GMT+08.00

18:17:21 GMT+08:00

191718 GMT+03.00

19:17-17 GMT+08:00

18:17-17 GMT+08:00

191716 GMT+08.00

19:17-12 GMT+08:00

18:1712 GMT+08:00 ® Successiul

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

IoT Device Access
Developer Guide 3 Development on the Device Side

Reporting Properties

Develop the property reporting function by referring to the guide for property
reporting.

Step 1 Copy the following code to the Main.java file. Put the code after the device.init()
method, which indicates that the connection is successfully established.

// Report properties.

Map<String, Object> json = new HashMap<>();

Random rand = new SecureRandom();

// Set properties based on the product model.

json.put("flow", rand.nextFloat() * 100.0f);

ServiceProperty serviceProperty = new ServiceProperty();

serviceProperty.setProperties(json);

serviceProperty.setServiceld("GasMeter"); // serviceld must be the same as that in the product model.

device.getClient().reportProperties(Arrays.asList(serviceProperty), new ActionListener() {
@Override
public void onSuccess(Object context) {
System.out.println("pubMessage success");
}
@Override
public void onFailure(Object context, Throwable var2) {
System.out.println("reportProperties failed" + var2.toString());
}
»;

Figure 3-150 Reporting properties - IDEA

¥] = [test-javasdk v Version control

O Project

Catest-javasdk

tmpCAFile);

-iotda-tmp-ca ks

®
S

L] NOTE
The gas meter is used as an example. You can adapt the code as required.

Step 2 Check the reported property value on the platform. On the Huawei Cloud console,
locate the target device to access its details page, click the Device Info tab, and
run the code again. The reported property value is displayed.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-151 Device list - Viewing details

0
)

Resource Space &

Figure 3-152 Viewing reported data - Flow

IoTDA Instances / All Devices | Device Details

< (No device name) cuine 3
Device Info Cloud Run Logs Cloud Delivery Device Shadow Message Trace Device Monitoring
& R S
a
Ty Directly connected F
Descriptio &£
Jun 11, 2025 17:10:45 GMT+08.00 MQTT Connection Paramete

Product Model Data

GasMeter

flow

93.803734

Total Records: 1

--—-End

Delivering Commands

Develop the delivery function by referring to the guide for command delivery.

Step 1

,,,,,,,,

Child Devices Tags

Groups

xuyafei2022

123456 (O

Jun 11, 2025 17:08:49 GMT+08:00

Latest Reported Time: Jun 11, 2025 17:12:13 GMT+08:00

Copy the following code to the Main.java file. Put the code before the

device.init() method, which is used to establish a link connection.

// Set the listener to receive downstream data.
device.getClient().setCommandListener(new CommandListener() {
@Override

public void onCommand(String requestld, String serviceld, String commandName, Map<String, Object>

paras) {
System.out.println("onCommand, serviceld = " + serviceld);

System.out.println("onCommand , name = " + commandName);
System.out.println("onCommand, paras = " + paras.toString());
// Process the command.

// Send the command response.
device.getClient().respondCommand(requestld, new CommandRsp(0));

b

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

172

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-153 Command delivery - IDEA

] = [testjavasdk

Project

Cotest-javasdk

Step 2 Deliver a command on the platform. Run the SDK code. On the Huawei Cloud
console, locate the target device to access its details page, click the Cloud
Delivery tab and then the Command Delivery tab, click Deliver Command, and
click OK. The delivered value is received on the IDEA console.

Figure 3-154 Device list - Viewing details

<D - © Running @ Details & Modify +++

All Devices Total devices 01 ® Activated o ®0ni o O uickLinke

8 INFO Abst

INFO M nnection
INFO M nnection

9 INFO M nnection
INFO M nnection
INFO M nnection
INFO MgttConnection:319

INFO MgttConnection:136 - messageArrived topic = $oc/devices/67 N ommands/request_

nnection:319 - publish message topic is $oc/dev 3 J mmands/respons

--—-End

Integrating and Running the Device Java SDK

Huawei Cloud loT device SDKs seamlessly integrate with loT devices, as
demonstrated in this section using a Linux-based loT device and the Java SDK. By

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

IoT Device Access
Developer Guide 3 Development on the Device Side

debugging and transferring the Java SDK-generated JAR package from IDEA to the
Linux device, you can efficiently connect the device to [oTDA.

Prerequisites
The device runs Linux and JDK has been installed.
Procedure

Step 1 Copy the configuration below to the pom.xml file in the root directory.

<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-assembly-plugin</artifactid>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
<configuration>
<archive>
<manifest>
<mainClass>org.example.Main</mainClass>
</manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<appendAssemblyld>false</appendAssemblyld>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

Figure 3-156 IDEA - Adding the package parameter

= [1§ test-javasdk v Version control v

Project D < H Main java Stanc onjava

Cotest-javasdk
D .idea
Dsrc

3 main

tda-tmp-ca.jks

iptorRef>

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

IoT Device Access
Developer Guide 3 Development on the Device Side

Step 2 Open Maven in IDEA and click package to generate a JAR package in the
directory.

Figure 3-157 IDEA - Generating a JAR package

= [testiavasak ntrol

Step 3 Copy the JAR package to the Linux device and run the java -jar test-javaSdk-1.0-
SNAPSHOT command. If the code is successfully executed, the device is
successfully connected to IoTDA.

Figure 3-158 Running the JAR package in Linux

(1 NOTE

If no Java command is displayed, run the java -version command to check whether JDK is
installed and the JDK version.

--—-End

3.5 MQTT(S) Access

3.5.1 Protocol Introduction

Overview

Message Queuing Telemetry Transport (MQTT) is a publish/subscribe messaging
protocol that transports messages between clients and servers. It is suitable for
remote sensors and control devices (such as smart street lamps) that have limited

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

loT Device Access
Developer Guide

3 Development on the Device Side

Service Flow

computing capabilities and work in low-bandwidth, unreliable networks through
persistent device-cloud connections. MQTT clients publish or subscribe to
messages through topics. MQTT brokers centrally manage message routing and
ensure end-to-end message transmission reliability based on the preset quality of
service (QoS). In this process, the client that sends messages (publisher) and the
client that receives messages (subscriber) are decoupled, eliminating the need for
a direct connection between them. MQTT has emerged as a top protocol in the
loT domain by meeting the lightweight, reliable, bidirectional, and scalable
communication protocol needs of loT applications. To learn more about the MQTT
syntax and interfaces, click here.

MQTTS is a variant of MQTT that uses TLS encryption. MQTTS devices
communicate with the platform using encrypted data transmission.

Application

MQTT Broke

atelwa JSON data Binary code
QoS reporting stream reporting
Child device
management

MQTT devices communicate with the platform without data encryption. For
security purposes, MQTTS access is recommended.

You are advised to use the loT Device SDK to connect devices to the platform
over MQTTS.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1001.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Obtains the device access address
and certificate.

Performs authentication. (Devices
can be registered using the
console or application APIs)

Reports data. Device (See
the MQTT
demo for
loT platform :
P Subscribes to topics. native
protocol
Receives commands, properties, access.)

and messages.

Performs OTA upgrades.

Reports data using custom topics.

1. Create a product on the I0TDA console or by calling the API Creating a
Product.

2. Register a device on the IoTDA console or calling the API Creating a Device.

3. The registered device can report messages and properties, receive commands,
properties, and messages, perform OTA upgrades, and report data using
custom topics. For details about preset topics of the platform, see Topic
Definition.

(11 NOTE

You can use MQTT.fx to debug access using the native MQTT protocol. For details, see
Developing an MQTT-based Smart Street Light Online.

Constraints

Description Constraint

Number of concurrent connections to a directly 1
connected MQTT device

Connection setup requests of an account per second | e Basic edition: 100

on the device side e Standard edition: See

Specifications.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

loT Device Access
Developer Guide

3 Development on the Device Side

Description

Constraint

Number of upstream requests for an instance per
second on the device side (when average message
payload is 512 bytes)

e Basic edition: 500

e Standard edition: See
Specifications.

Number of upstream messages for an MQTT
connection

50 per second

Bandwidth of an MQTT connection (upstream
messages)

1 MB (default)

Length of a publish message sent over an MQTT
connection (Oversized messages will be rejected.)

1 MB

Standard MQTT protocol

MQTT v5.0, MQTT v3.1.1,
and MQTT v3.1

Differences from the standard MQTT protocol

e Not supported: QoS 2

e Not supported: will
and retain msg

Security levels supported by MQTT

TCP channel and TLS
protocols (TLS v1, TLS
v1.1, TLS v1.2, and TLS
v1.3)

Recommended heartbeat interval for MQTT
connections

Range: 30s to 1200s;
recommended: 120s

MQTT message publish and subscription

A device can only publish
and subscribe to
messages of its own

on the device side

topics.
Number of subscriptions for an MQTT connection 100
Length of a custom MQTT topic 128 bytes
Number of custom MQTT topics added to a product | 10
Number of CA certificates uploaded for an account 100

Communication Between MQTT Devices and the Platform

The platform communicates with MQTT devices through topics, and they
exchange messages, properties, and commands using preset topics. You can also
create custom topics for connected devices to meet specific requirements.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

178

https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

loT Device Access
Developer Guide

3 Development on the Device Side

Data | Message Description
Type | Type
Upstr | Reporting Devices report property data in the format defined in the
eam | device product model.
data | properties
Reporting If a device cannot report data in the format defined in
device the product model, the device can report data to the
messages platform using the device message reporting API. The
platform forwards the messages reported by devices to
an application or other Huawei Cloud services for
storage and processing.
Gateway A gateway reports property data of multiple devices to
reporting the platform.
device
properties in
batches
Reporting Devices report event data in the format defined in the
device product model.
events
Down | Delivering The platform delivers data in a custom format to devices.
strea | platform
m messages
data
Setting A product model defines the properties that the platform
device can configure for devices. The platform or application
properties can modify the properties of a specific device.
Querying The platform or application can query real-time property
device data of a specific device.
properties
Delivering The platform or application delivers commands in the
platform format defined in the product model to devices.
commands
Delivering The platform or application delivers events in the format
platform defined in the product model to devices.
events

Preset Topics

The following table lists the preset topics of the platform.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

loT Device Access
Developer Guide

3 Development on the Device Side

Category Function Topic Publ | Subsc
isher | riber
Device Device $oc/devices/{device_id}/sys/ Devi | Platfo
message Reporting | messages/up ce rm
related a Message
topics - . -
Platform $oc/devices/{device_id}/sys/ Platf | Devic
Delivering | messages/down orm |e
a Message
Device Platform $oc/devices/{device_id}/sys/ Platf | Devic
command Delivering | commands/request_id={request_id} |[orm |e
related a
topics Command
Device $oc/devices/{device_id}/sys/ Devi | Platfo
Returning commands/response/ ce rm
a request_id={request_id}
Command
Response
Device Device $oc/devices/{device_id}/sys/ Devi | Platfo
property Reporting properties/report ce rm
related Properties
topics) . . .
Reporting $oc/devices/{device_id}/sys/ Devi | Platfo
Property gateway/sub_devices/properties/ ce rm
Data by a report
Gateway
Setting $oc/devices/{device_id}/sys/ Platf | Devic
Device properties/set/ orm |e
Properties | request_id={request_id}
Returning $oc/devices/{device_id}/sys/ Devi | Platfo
a Response | properties/set/response/ ce rm
to Property | request_id={request_id}
Settings
Querying $oc/devices/{device_id}/sys/ Platf | Devic
Device properties/get/ orm |e
Properties | request_id={request_id}
Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html

loT Device Access
Developer Guide 3 Development on the Device Side

Category Function Topic Publ | Subsc
isher | riber

Device $oc/devices/{device_id}/sys/ Devi | Platfo
Returning properties/get/response/ ce rm

a Response | request_id={request_id}
for a
Property
Query The
response
does not
affect
device
properties
and
shadows.

Obtaining $oc/devices/{device_id}/sys/ Devi | Platfo
Device shadow/get/request_id={request_id} | ce rm
Shadow
Data from
the
Platform

Returning $oc/devices/{device_id}/sys/ Platf | Devic
a Response | shadow/get/response/ orm |e
toa request_id={request_id}
Request for
Obtaining
Device
Shadow
Data

Device Reporting $oc/devices/{device_id}/sys/ Devi | Platfo
event a Device events/up ce rm
related Event

topics
P Delivering | $oc/devices/{device_id}/sys/events/ | Platf | Devic

an Event down orm |e

You can create custom topics on the console to report personalized data. For
details, see Custom Topic Communications.

TLS Support for MQTT

TLS is recommended for secure transmission between devices and the platform.
Currently, TLS v1.1, v1.2, v1.3, and GMTLS are supported. TLS v1.3 is
recommended. TLS v1.1 will not be supported in the future. GMTLS is supported
only by the enterprise edition using Chinese cryptographic algorithms.

When TLS connections are used for the basic edition, standard edition, and
enterprise edition that support general cryptographic algorithms, the 10T platform
supports the following cipher suites:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html

IoT Device Access
Developer Guide 3 Development on the Device Side

e TLS_AES_256_GCM_SHA384

e TLS_AES_128 GCM_SHA256

e TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

o TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

e TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

e TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

When the enterprise edition that supports Chinese cryptographic algorithms uses
TLS connections, the 10T platform supports the following cipher suites:
e ECC_SM4_GCM_SM3

e ECC_SM4_CBC_SM3

e ECDHE_SM4_GCM_SM3

e ECDHE_SM4_CBC_SM3

e TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

o TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

e TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

(11 NOTE

CBC cipher suites may pose security risks.

3.5.2 Secret Authentication

Overview
MQTT(S) secret authentication requires a device to have its ID and secret for
access authentication. For devices connected through MQTTS, a CA certificate
must be preconfigured on the devices.

Process

Figure 3-159 MQTT(S) secret authentication process

Without CA
certificates
MaTT

Device ID/secret MQTT/MQTTS Device login (with the Successful

Device registration saving protocols device ID and secret) authentication

MQTTS

With preset CA
certificates

1. An application calls the API for registering a device. Alternatively, a user uses
the 10TDA console to register a device.

(10 NOTE

During registration, use the MAC address, serial number, or IMEI of the device as the
node ID.

2. The platform allocates a globally unique device ID and secret to the device.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

loT Device Access
Developer Guide 3 Development on the Device Side

(11 NOTE

The secret can be defined during device registration. If no secret is defined, the
platform allocates one.

3. The device needs to integrate the preset CA certificate (only for the
authentication process of MQTTS access).

4. During login, the device sends a connection request carrying the device ID and
secret.

5. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

Procedure

This section uses MQTT.fx to describe how to activate a device registered on the
loT platform.

Step 1 Download MQTT.fx (64-bit OS) or MQTT.fx (32-bit OS) and install it.
Step 2 Go to the device details page, click MQTT Connection Parameters, and check the

device connection information (Clientld, Username, and Password).

Figure 3-160 Device - Connection parameters

< | (Nodevice name) o @ 3 Cucktines 4 Darmoss sorca Deve 023

Alternatively, access the parameter generation tool and enter the device ID
(device_id) and secret (secret) generated after registration to generate the
parameters (Clientld, Username, and Password) required for device connection
authentication.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows-x64.exe
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows.exe
https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/

loT Device Access
Developer Guide

3 Development on the Device Side

Table 3-27 Parameters

Para Man | Type Description
meter | dator
y
Clientl | Yes String Definition
d The value of this parameter consists of a device ID,
device type, password signature type, and
timestamp. They are separated by underscores (_).
e Device ID: A device ID uniquely identifies a device
and is generated when the device is registered
with 10TDA. The value usually consists of a
device's product ID and node ID which are
separated by an underscore ().
e Device type: The value is fixed at 0, indicating a
device ID.
e Password signature type: The length is 1 byte,
and the value can be 0 or 1.
- 0: The timestamp is not verified using the
HMAC-SHA256 algorithm.
- 1: The timestamp is verified using the HMAC-
SHA256 algorithm.
e Timestamp: The UTC time when the device was
connected to IoTDA. The format is
YYYYMMDDHH. For example, if the UTC time is
2018/7/24 17:56:20, the timestamp is
2018072417.
Range
Up to 256 characters.
UserN | Yes String Definition
ame The value is the device ID (device_id).
Range
Up to 256 characters.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

loT Device Access
Developer Guide

3 Development on the Device Side

Para Man | Type Description
meter | dator

y
Passw | Yes String Definition
ord

With the timestamp (in YYYYMMDDHH format) as
the key, use the HMAC-SHA256 algorithm to
encrypt the device secret returned by IoTDA upon
successful device registration. The result is the
password. Password = hmacsha256 ("secret”,
"timestamp")

Set this parameter only if the device authentication
type is SECRET. Not required for X.509 certificate
authentication (CERTIFICATES).

HMACSHAZ256 is an HMAC algorithm that uses
SHA-256 to generate a hash value. The generated
hash value is represented by a 64-bit hexadecimal
string. For example, if the device secret is 12345678
and the timestamp is 2025041401, the result is
c75150e6cb841417396819e4d2ee4358a416344a0
3a083e3a8567074ddec820a.

Range

Up to 256 characters.

Each device performs authentication using the MQTT CONNECT message, which
must contain all information of the client ID. After receiving a CONNECT message,
the platform checks the authentication type and password digest algorithm of the

device.

The generated client ID is in the format Device ID_0_0_Timestamp. By default,
the timestamp is not verified.

e If the timestamp needs to be verified, the platform checks whether the
message timestamp is consistent with the platform time and then checks
whether the password is correct.

e |f the timestamp does not need to be verified, the timestamp must also be
contained in the CONNECT message, but the platform does not check
whether the time is correct. In this case, only the password is checked.

If the authentication fails, the platform returns an error message and
automatically disconnects the MQTT connections.

Step 3 Open MQTT.fx and click the setting icon.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-161 MQTT.fx - Setting
@ MQTT.fx-171

{8 Extras Help

‘ iot v ﬂ onnect Disconnect

m Subscribe Scripts Broker Status Log

Step 4 Configure authentication parameters and click Apply.

Figure 3-162 Connection configuration

5 Edit Connection Profiles m} x
iot
local mosguitto Profile Name | iot
=
Profile Type MQTT Broker - S m
MQTT Broker Profile Settings

Broker Address 11

Broker Port | 1883

Client 1D 257f s e a D e ta DR a2 a2 ! Generate
General BUEEEReELENGIEN SSL/TLS Proxy LWT

User Name 5eg Sda e e e e a " e e a2en

Password

L] Revert m oK Apply
Parameter Description
Broker Address Enter the device access address (domain name)

obtained from the IoTDA console. For devices that
cannot be connected to the platform using a domain
name, run the ping Domain name command in the CLI
to obtain the IP address. The IP address is variable and
needs to be set using a configuration item.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

loT Device Access
Developer Guide

3 Development on the Device Side

Parameter

Description

Broker Port

For MQTT non-encrypted protocols, the port number is
1883, which is the default value. For MQTTS encrypted
protocols, change the port number to 8883 and obtain
the certificate for verifying the loT platform identity.
For details, see Using MQTT.fx to Simulate
Communication Between the Smart Street Light and
the Platform.

Client ID Enter the device client ID obtained in 2.
User Name Enter the device ID obtained in 2.
Password Enter the encrypted device secret obtained in 2.

Step 5 Click Connect. If the device authentication is successful, the device is displayed

online on the platform.

Figure 3-163 Device online status

< B © Running

All Devices

‘‘‘‘‘‘‘‘‘‘‘‘

----End

Best Practices

Developing an MQTT-based Simulated Smart Street Light Online

3.5.3 Certificate Authentication

3.5.3.1 Usage

Introduction

MQTT(S) certificate authentication requires you to upload a device Certificate
Authority (CA) certificate on the console first. Then, you can either use the API for
creating a device or register the device on the console to get the device ID. When
the device accesses the loT platform, it carries the X.509 certificate for
authentication, which is a digital certificate used to authenticate the

communication entity.

Constraints

e Only MQTT(S) devices can use X.509 certificates for identity authentication.

e You can upload up to 100 device CA certificates. Multiple devices can share

one CA certificate.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/qs-iothub/iot_05_00121.html#section6
https://support.huaweicloud.com/intl/en-us/qs-iothub/iot_05_00121.html#section6
https://support.huaweicloud.com/intl/en-us/qs-iothub/iot_05_00121.html#section6
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Process

Figure 3-164 Process

Device login (with the
Device ID saving device-side X.509
certificate)

Successful
authentication

Preset CA certificate Peyicalps it

(with fingerprint)

A user uploads a device CA certificate on the IoTDA console.

2. An application calls the API for registering a device. Alternatively, a user uses
the 10TDA console to register a device.

(1] NOTE

During registration, use the MAC address, serial number, or IMEI of the device as the
node ID.

The platform allocates a globally unique device ID to the device.

3. During login, the device sends a connection request carrying the X.509
certificate to the platform.

4. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

Uploading a Device CA certificate

Step 1 In the navigation pane, choose Devices > Device Certificates. On the Device CA
Certificates tab page, select a resource space and click Upload Certificate.

Step 2 In the displayed dialog box, click Select File to add a file, and then click OK.

Figure 3-165 Device CA certificate - Uploading a certificate

Upload Certificate

CA Certificate (2) rootCA pem (3.56KB X (Select File }

s ™
C |

(11 NOTE

e Device CA certificates are provided by device vendors. You can prepare a
commissioning certificate during commissioning. For security reasons, you are advised
to replace the commissioning certificate with a commercial certificate during
commercial use.

e CA certificates can no longer be used to verify server certificates upon expiration.
Replace CA certificates before they expire to ensure that devices can connect to the loT
platform properly.

--—-End

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section4
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section4

loT Device Access
Developer Guide

3 Development on the Device Side

Creating a Device CA Commissioning Certificate

This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format.

1.

Download and install OpenSSL.
Open the CLI as user admin.

Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL
installation directory) to access the OpenSSL view.

Generate a public/private key pair.
openssl genrsa -out rootCA.key 2048

Use the private key in the key pair to generate a CA certificate.
openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

Figure 3-166 Generating a CA certificate

Enter the following information as prompted. All parameters can be
customized.

- Country Name (2 letter code) [AU]: country, for example, CN
- State or Province Name (full name) []: state or province, for example, GD
- Locality Name (for example, city) []: city, for example, SZ

- Organization Name (for example, company) []: organization, for
example, Huawei

- Organizational Unit Name (for example, section) []: organization unit, for
example, loT

- Common Name (e.g. server FQDN or YOUR name) []: common name, for
example, zhangsan

- Email Address []: email address, for example, 1234567@163.com

Obtain the generated CA certificate rootCA.pem from the bin folder in the
OpenSSL installation directory.

Uploading a Verification Certificate

If the uploaded certificate is a commissioning certificate, the certificate status is
Unverified. In this case, upload a verification certificate to verify that you have the
CA certificate.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

https://slproweb.com/products/Win32OpenSSL.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-167 Device CA certificate - Unverified certificate

Device Certificates

Device CA Certificates Device Gertificates

(" vpoascontcas) c

Verification Status Certificate ID Certificate Owner Created Valid Till Operation

v PR —

The verification certificate is created based on the private key of the device CA
certificate. Perform the following operations to create a verification certificate:

Step 1 Obtain the verification code to verify the certificate.

Figure 3-168 Device CA certificate - Verifying a certificate

Device Certificates

Device CA Certificates

Certificate ID Certificate Owner Created Valid Till Operation

@

Figure 3-169 Device CA certificate - Obtaining the verification code

Device Certificates

Device CACertfcates Device Certficates

Cortfcate 1D Cortificato Owner Croated

Mar 11,2025 16,0401 GMT+08:00

 Vertied Mar 11,2025 16:02.24 GMT40800

Step 2 Generate a key pair for the verification certificate.
openssl genrsa -out verificationCert.key 2048

Step 3 Create a certificate signing request (CSR) for the verification certificate.
openssl req -new -key verificationCert.key -out verificationCert.csr

The system prompts you to enter the following information. Set Common Name
to the verification code and set other parameters as required.

e Country Name (2 letter code) [AU]: country, for example, CN

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

IoT Device Access
Developer Guide 3 Development on the Device Side

e State or Province Name (full name) []: state or province, for example, GD
e Locality Name (for example, city) []: city, for example, SZ

e Organization Name (for example, company) []: organization, for example,
Huawei

e Organizational Unit Name (for example, section) []: organization unit, for
example, loT

e Common Name (e.g. server FQDN or YOUR name) []: verification code for
verifying the certificate. For details on how to obtain the verification code, see
Step 1.

e Email Address []: email address, for example, 1234567@163.com
e Password[]: password
e Optional Company Name[]: company name, for example, Huawei

Step 4 Use the CSR to create a verification certificate.

openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey rootCA key -CAcreateserial -out
verificationCert.pem -days 500 -sha256

Obtain the generated verification certificate verificationCert.pem from the bin
folder of the OpenSSL installation directory.

Step 5 Select the corresponding certificate, click ~ , and click Upload Verification
Certificate.

Figure 3-170 Device CA certificate - Verifying a certificate

Device CA Certificates Device Certificates

@

Certificate ID Certificate Owner Created Valid Till Operation

Step 6 In the displayed dialog box, click Select File to add a file, and then click OK.

Figure 3-171 Device CA certificate - Uploading a verified certificate

Device Certificates.

 Varied

Total Rocords: 6.

Cancel)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

loT Device Access
Developer Guide

3 Development on the Device Side

After the verification certificate is uploaded, the certificate status changes to
Verified, indicating that you have the CA certificate.

----End

Presetting an X.509 Certificate

Before registering an X.509 device, preset the X.509 certificate issued by the CA on
the device.

(10 NOTE

The X.509 certificate is issued by the CA. If no commercial certificate issued by the CA is
available, you can create a device CA commissioning certificate.

Creating an X.509 Commissioning Certificate

1.

Run ecmd as user admin to open the CLI and run cd c:\openssl\bin (replace
c:\openssl\bin with the actual OpenSSL installation directory) to access the
OpenSSL view.

Generate a public/private key pair.
openssl genrsa -out deviceCert.key 2048

Create a CSR for the device certificate.
openssl req -new -key deviceCert.key -out deviceCert.csr

Enter the following information as prompted. All parameters can be
customized.

- Country Name (2 letter code) [AU]: country, for example, CN
- State or Province Name (full name) []: state or province, for example, GD
- Locality Name (for example, city) []: city, for example, SZ

- Organization Name (for example, company) []: organization, for
example, Huawei

- Organizational Unit Name (for example, section) []: organization unit, for
example, loT

- Common Name (e.g. server FQDN or YOUR name) []: common name, for
example, zhangsan

- Email Address []: email address, for example, 1234567@163.com
- Password[]: password
- Optional Company Name[]: company name, for example, Huawei

Create a device certificate using CSR.
openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
deviceCert.pem -days 500 -sha256

Obtain the generated device certificate deviceCert.pem from the bin folder in
the OpenSSL installation directory.

Registering a Device Authenticated by an X.509 Certificate

Step 1 Log in to the lIoTDA console.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page, click
Register Device, set parameters based on the table below, and click OK.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-172 Device - Registering an X.509 device

X
Register Device
Resource Space (7) ~
Product ™
* Node ID ()
Device ID (%)
Device Name
Description
2,048
Authentication Type E) Secret
Fingerprint
- ~
|\\ Cancel ,;'
Parameter Description
Resource Select the resource space to which a device belongs.
Space
Product Select the product to which the device belongs.
Node ID Set this parameter to the IMEI, MAC address, or serial number

of the device. If the device is not a physical one, set this
parameter to a custom character string that contains letters
and digits.

Device Name | Customize the device name.

Authenticatio | X.509 certificate: The device uses an X.509 certificate for
n Type identity verification.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

IoT Device Access
Developer Guide 3 Development on the Device Side

Parameter Description

Fingerprint This parameter is displayed when Authentication Type is set to
X.509 certificate. Import the fingerprint corresponding to the
preset device certificate on the device side. You can run
openssl x509 -fingerprint -sha256 -in deviceCert.pem in the
OpenSSL view to query the fingerprint. Note: Delete the
colons (:) from the obtained fingerprint when filling it.

Figure 3-173 OpenSSL execution example

ingerprir
A:

--—-End

Performing Connection Authentication

You can activate the device registered with the platform by using MQTT.fx. For
details, see Device Connection Authentication.

Step 1 Download MQTT.fx (64-bit OS) or MQTT.fx (32-bit OS) and install it.
{11 NOTE

e Install the latest MQTT.fx.

e MQTT.fx 1.7.0 and earlier versions have problems in processing topics containing $. Use
the latest version for test.

Step 2 Go to the device details page, click MQTT Connection Parameters, and check the
device connection information (Clientld, Username, and Password).

Figure 3-174 Device - Connection parameters

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows-x64.exe
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows.exe
https://softblade.de/download/

loT Device Access

Developer Guide 3 Development on the Device Side
Parame | Mand | Type Description
ter atory
Clientld | Yes String(2 | The value of this parameter consists of a device
56) ID, device type, password signature type, and

timestamp. They are separated by underscores
Q).

e Device ID: A device ID uniquely identifies a
device and is generated when the device is
registered with I0TDA. The value usually
consists of a device's product ID and node ID
which are separated by an underscore (_).

e Device type: The value is fixed at 0, indicating
a device ID.

e Password signature type: The length is 1 byte,
and the value can be 0 or 1.

- 0: The timestamp is not verified using the
HMAC-SHA256 algorithm.

- 1: The timestamp is verified using the
HMAC-SHA256 algorithm.

e Timestamp: The UTC time when the device
was connected to loTDA. The format is
YYYYMMDDHH. For example, if the UTC time
is 2018/7/24 17:56:20, the timestamp is
2018072417.

Userna | Yes String(2 | Device ID.
me 56)

Each device performs authentication using the MQTT CONNECT message, which
must contain all information of the client ID. After receiving a CONNECT message,
the platform checks the authentication type and password digest algorithm of the
device.

The generated client ID is in the format Device ID_0_0_Timestamp. By default,
the timestamp is not verified.

e If the timestamp needs to be verified, the platform checks whether the
message timestamp is consistent with the platform time and then checks
whether the password is correct.

e |f the timestamp does not need to be verified, the timestamp must also be
contained in the CONNECT message, but the platform does not check
whether the time is correct. In this case, only the password is checked.

If the authentication fails, the platform returns an error message and
automatically disconnects the MQTT connections.

Step 3 Open MQTT.fx and click the setting icon.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-175 MQTT.fx - Settings
& vorTi- 171 T - e Ty

#|CW Extras Help

i ot - m Disconnect

m Subscribe Scripts Broker Status Log

Step 4 Enter Connection Profile information.
Figure 3-176 Using default settings for parameters on the General tab page

Profile Mame | local mosquitto

Profile Type MQTT Broker b i‘\\\\ m
MQTT Broker Profile Settings

Broker Address | a1 602earoe oo GG CeC oL

Broker Port | 8883

Client 1D | & 1o adaCaZa e laZa 2 aSa 2D ta Do Dol Dl Sa 20T 0ol | Generats

User Credentials SSL/TLS Proxy LWT

Connection Timeout | 30

Keep Alive Interval | 50

Clean Session '
Auto Reconnect

Max Inflight | 10

MQTT Version ' Use Default

Clear Publish History

Clear Subscription History

Revert oK Apphy

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

IoT Device Access
Developer Guide 3 Development on the Device Side

Parameter Description

Broker Address Enter the device access address (domain name)
obtained from the IoTDA console. For devices that
cannot be connected to the platform using a domain
name, run the ping Domain name command in the CLI
to obtain the IP address. The IP address is variable and
needs to be set using a configuration item.

Broker Port Enter 8883.

Client ID Enter the device client ID obtained in 2.

Step 5 Click User Credentials and specify User Name.
Figure 3-177 Entering the device ID

Profile Mame | local mosquitto

]
Profile Type MQTT Broker v A

MQTT Broker Profile Settings
Broker Address | gegeaegeieae oo T e D e Ce e D e el

Broker Port | 88383

0]

Client ID

Generate

User Name

Password

Revert m oK Apply
Parameter Description
User Name Enter the device ID obtained in 2.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

loT Device Access

Developer Guide 3 Development on the Device Side
Parameter Description
Password Leave it blank when the X.509 certificate is used for
authentication.

Step 6 Click SSL/TLS, set authentication parameters, and click Apply. Select Enable SSL/
TLS, select Self signed certificates, and enter the certificate information.

Figure 3-178 Setting SSL/TLS parameters

Profile Name | |ocal mosguitto

oy E
Profile Type MOQTT Broker - "\ g
MQTT Broker Profile Settings
Broker Address | oo e e e e e
Broker Port | 3833
Client ID :I:I:I:l:I Generate

General User Credentials BEXIFAIES Proxy LWT

Enable S5L/TLS o Protocol TLSw1.2 i

CA signed server certificate
CA certificate file
CA certificate keystore

® Self signed certificates e

CA File
Client Certificate File

Client Key File

Client Key Password
PEM Formatted o

Self signed certificates in keystores

Revert m Ok Apply

(11 NOTE

e CA File: corresponding CA certificate. Download the certificate from Obtaining
Resources and load the PEM certificate.

e Client Certificate File: device certificate (deviceCert.pem).
e Client Key File: private key (deviceCert.key) of the device.

Step 7 Click Connect. If the device authentication is successful, the device is displayed
online on the platform.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

loT Device Access
Developer Guide

3 Development on the Device Side

APIs

Figure 3-179 Device list - Device online status

e Create a Device

e Reset a Device Secret

e Obtain the Device CA Certificate List
e Upload a Device CA Certificate

e Delete a Device CA Certificate

e Verify a Device CA Certificate

Best Practices

Connecting a Device That Uses the X.509 Certificate Based on MQTT.fx

3.5.3.2 Certificate Validity Verification (OCSP)

Introduction

Terms

IoTDA uses Online Certificate Status Protocol (OCSP) to verify the validity of
certificates on the device and server. OCSP checks the revocation status of
certificates at the Transport Layer Security (TLS) layer. It offers several advantages
over the traditional Certificate Revocation List (CRL), including higher scalability,
shorter response time, better real-time performance, and greater suitability for the
Public Key Infrastructure (PKI). Unlike CRL, which is updated less frequently and
has a larger file size, OCSP provides more efficient and timely certificate
verification.

OCSP verification: used for device certificate validity status check on the platform
side. The IoT platform checks whether the device certificate has been revoked by
the CA.

OCSP stapling: also known as server OCSP, is a TLS certificate status query
extension that serves as an alternative to traditional OCSP for checking the status
of X.509 certificates. With OCSP stapling, the server takes the initiative to check its
certificate revocation status (continuously) and includes a cached OCSP response
during the TLS handshake. This eliminates the need to send a separate request to
the CA and speeds up the handshake process, as you only need to verify the
validity of the response.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0093.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0016.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0077.html
https://www.rfc-editor.org/rfc/rfc6960.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Constraints
e Only enterprise instances support this function.

e When OCSP verification is enabled, the platform will send a request to the
OCSP server during the initial device connection to the platform. This may
result in a longer duration for establishing the connection, which is a normal
occurrence. Subsequent connection establishment is not affected.

e Cache duration for the platform to respond to the OCSP server: 24 hours.

e Timeout interval for the platform to respond to the OCSP server: 5 seconds;
max. response size: 4 KB.

o .
Figure 3-180 OCSP working process
] i " :
H Enable OCSP and OCSP stapling ¢ Request the OCSP server lo query the server + N
H } certificate status at a specified time every day. "
: : : :
' H Send OCSR responses H
H H Cache OCSP responses. H H
.
: : : :
' ' '
¥ lientHell " H
L} L il
' v e Presponse-cach 4 '
[' " H
' ¥ et P-resper " :
L} L Ll
* rverHello . H v
[i " N
: rver Certificat ! ! H
4 Certificate Status ! ! H
.
HI , . :
H " N "
H ' N "
V Validate OCSP Status H H '
-y ' ' H
: Device Certificate——————— : N
[[- " o
' ¥ y-therd ate-status: T '
H " N "
' ' - '
H v ot P-responses T
[" " N
[i he OCSP i N
H ' H P-respon 1 N
[" " :
:ﬂefmav—eeﬁiﬁ it RRection-established : : H
[[0 N
] i " :
' ' '
wEeriificate revoked:connectiorestablishment failed " :
L} L Ll
[[0 N
] i " :
H " N "
H " N "
H ' N "
L} L Ll
] i " N
[' " H
" " " :
Ll Ll
: ' " N
. "

Step 1 Access the I0TDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > Device Certificates. On the displayed
page, click the corresponding CA certificate and click the button for certificate
settings.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

https://www.huaweicloud.com/intl/en-us/product/iotda.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-181 Device CA certificate - OCSP verification enabled

nnnnnnnn

Step 3 If the OCSP server accesses the platform using HTTPS, choose Rules Server
Certificates in the navigation pane, click Upload Certificate, and upload the CA
certificate of the OCSP server.

Return to the IoTDA console, select the corresponding instance, and access its
details page. Click Update Certificate to enable OCSP stapling. If the OCSP server
accesses the platform using HTTPS, click SSL Verification and associate the server
certificate.

Figure 3-182 Instance management - Enabling OCSP stapling

Specications

Public Network Forwarding nfo

mmmmmmmm
NNNNNNNNN

mmmmm

(11 NOTE

e To enable OCSP stapling, the certificate chain must contain the upper-layer CA
certificate.

e The OCSP signature certificate information must contain the OCSP URL extension field.

Step 4 Use the MQTT simulator that supports OCSP to connect to the platform, check the
OCSP stapling information of the platform certificate, use the packet capture tool
to capture TLS handshake packets for connection establishment, and check the
OCSP response of the platform certificate. There are three certificate status types:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

IoT Device Access
Developer Guide 3 Development on the Device Side

good, revoked, and unknown. The device determines whether to establish a
connection based on the platform certificate status. For example, the device
establishes a connection with the platform only when the certificate status is
good.

Figure 3-183 TLS-Certificate Status good

v TLSv1.2 Record Layer: Handshake Protocol: Certificate Status
Content Type: Handshake (22)
Version: TLS 1.2 (8x8383)
Length: 1885
¥ Handshake Protocol: Certificate Status
Handshake Type: Certificate Status (22)
Length: 1861
Certificate Status Type: OCSP (1)
OCSP Response Length: 1797
~ (OCSP Response
responseStatus: successful (8)
v responseBytes
ResponseType Id: 1.3.6.1.5.5.7.48.1.1 (id-pkix-ocsp-basic)
v BasicOCSPResponse
v thbsResponseData
responderID: byName (1)
producedAt: Aug 13, 2024 16:42:57.000008000
v responses: 1 item
v SingleResponse
v certID
hashAlgorithm (SHA-1)
issueriameHash: 3b4fbe81892e63488ced?8eeeb8d12d643b5adas
issuerKeyHash: c2ce3a83e971e6f16d767a746c564e710113b382
serialllumber: @x@1
v certStatus: good (@)
good
thisUpdate: Aug 13, 2024 16:42:57.000080800
v responseExtensions: 1 item
v Extension
Id: 1.3.6.1.5.5.7.48.1.2 (id-pkix-ocsp-nonce)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-184 TLS-Certificate Status revoked

¥ TLSv1.2 Record Layer: Handshake Protocol: Certificate Status
Content Type: Handshake (22)
Version: TLS 1.2 (@x@3e3)
Length: 1851
“ Handshake Protocel: Certificate Status
Handshake Type: Certificate Status (22)
Length: 1847
Certificate Status Type: OCSP (1)
QCSP Response Length: 1843
~ 0OCSP Response
responseStatus: successful (@)
~ responseBytes
ResponseType Id: 1.3.6.1.5.5.7.48.1.1 (id-pkix-ocsp-basic)
¥ BasicOCSPResponse
“~ thsResponseData
v responderID: byName (1)
> byName: @
producedAt: May 16, 2825 17:84:04.000000000
¥ responses: 1 item
¥ singleResponse
v certlD
¥ hashAlgorithm (sha256)
Algorithm Id: 2.16.848.1.181.3.4.2.1 (sha256)
issuerNameHash: 1765fd7e9a6631a5@ccd267a7a@2dd22af5b1594f46c9da2bebfadaablcalece
issuerKeyHash: b769a9%aa5f@17b6edb@deldldbf23dbfaca7fa2e2ae9515b4c54ceBaddied2fe
ecizalliumhec: Gyfd
~ certStatus: revoked (1)
v revoked
revocationTime: May 16, 2825 17:02:06.000000000 © &
thisUpdate: May 16, 2825 17:84:084.000000000 =
¥ responseExtensions: 1 item

v Extension
Id: 1.3.6.1.5.5.7.48.1.2 (id-pkix-ocsp-nonce)

Figure 3-185 TLS-Certificate Status unknown

“ TL5v1.2 Record Layer: Handshake Protocol: Certificate Status
Content Type: Handshake (22)
Version: TLS 1.2 (@x@3@3)
Length: 1834
“~ Handshake Protocol: Certificate Status
Handshake Type: Certificate Status (22)
Length: 1838
Certificate Status Type: OCSP (1)
OCSP Response Length: 1826
~ O0C5P Response
responseStatus: successful (@)
¥ responseBytes
ResponseType Id: 1.3.6.1.5.5.7.48.1.1 (id-pkix-ocsp-basic)
“ BasicOCSPResponse
¥ thsResponseData
* responderID: byName (1)
> byName: @
producedAt: May 16, 2825 17:11:60.608000800 © &
¥ responses: 1 item
v SingleResponse
¥ certID
¥ hashAlgorithm (sha256)

Algorithm Id: 2.16.84@.1.181.3.4.2.1 (sha258)
issuerNameHash: e47al9c84838811d118815b4ced673b2a22b84e57e2d6ele5TR4f63d381bbT13
issuerKeyHash: 28f5af477864ac@31968c815414T8597a324a3d56665144edBcdf4946TF75891
serialNumber: @xd4e3s

| certStatus: unknown (2)
unknaown
thisUpdate: May 16, 2825 17:11:89.000000008 *
~ responseExtensions: 1 item

v Extension
Id: 1.3.6.1.5.5.7.48.1.2 (id-pkix-ocsp-nonce)
ReOcsphlonce: 6f3dddbfdeec
¥ signatureAlgorithm (sha2seWithRSAEncryption)
Algorithm Id: 1.2.848.113549.1.1.11 (sha256WithRSAEncryption)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

203

IoT Device Access
Developer Guide 3 Development on the Device Side

(11 NOTE

The server returns certificate status only when the Client Hello packet sent by the client
carries the status_request extended field.

Figure 3-186 status request

~ TLSwl.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.2 (@x@383)
Length: 311
“~ Handshake Protocol: Client Hello
Handshake Type: Client Helle (1)
Length: 387
* Version: TLS 1.2 (8x@383)
» Random: 65b@f2badlcd627aed399e759ae9Thae7416175763a2bes791bda7783feledles
Session ID Length: @
Cipher Suites Length: 92
» Cipher Suites (46 suites)
Compression Methods Length: 1
» Compression Methods (1 method)
Extensions Length: 174
» Extension: server_name (len=17) name=dht-ipve.com
» Extension: status_request (len=5)
» Extension: supported_groups (len=22)
» Extension: ec point formats (len=2)
| Extension: status_request_v2 (len=9)
Type: status_request_v2 (17)
Length: o
Certificate Status List Length: 7
Certificate Status Type: OCSP Multi (2)
Certificate Status Length: 4
Responder ID list Length: @
Request Extensions Length: @
Extension: extended_master_secret (len=8)
Extension: session_ticket (len=8)
Extension: signature_algorithms (len=38)
Extension: supported_versions (len=3) TLS 1.2
Extension: signature_algorithms_cert (len=38)
[Ia84: tl2d4slees 5f5519fbl2cc_BcBd769f2bB9]
[184 r [..]: tl2d46lees @e2f,Pe32,0033,0035,0038,0030,003c,03d, 0048, 8067 ,PB6a
[343 Fullstring [.]: 771,49196-49195-52393-49206-52392-49199-159-52394-163-15
[I&3: 7285978225aaa79fB891c83b5878e545b]

WOW W W W

Step 5 In the navigation pane, choose Devices > All Devices. On the displayed page, find
the target device to access its details page. Click the Message Trace tab and
enable message tracing. Use the MQTT simulator certificate for two-way
authentication. Check the message tracing error details. If the device certificate
has been revoked, use a new valid certificate for access. Ensure to promptly revoke
any leaked certificates.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-187 Device certificate - Revoked

ext -noverify

WithRSAEnC

Figure 3-188 Message tracing - OCSP verification failure details

Message Trace Details

Meszsage Status @ Failed
Semvice Type Device to platform
Senvice Step Device authenticafion in loTDA

Semvice Delails Authentication failed. The device cerificate OCSP check status is revoked, device_id

Recorded Cct 17, 2024 11:35:35.217 GMT+08:00

Suggestion The device failed to use the cerificate authentication because the device cerificate status is
nactive. You can also active this device cerfificate on the Devices = Device Certificate = Device
Certificate = ACTIVE page on the loTDA console

Close
----End

3.5.4 Custom Authentication

Introduction

You can use FunctionGraph to implement custom authentication logic to
authenticate devices connected to the platform.

Before connecting a device to the platform, you can use the application to
configure custom authentication on the console, and then configure related
functions by using FunctionGraph. When the device connects to the platform, the
platform obtains parameters such as the device ID and custom authentication
function name, and sends an authentication request to FunctionGraph. You
implement the authentication logic to complete access authentication.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0110.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-189 Custom authentication architecture

ao
7 o
NS
FunctionGraph

Custom
authentication

] &0 @&

MQTT Device status

loTDA

Service

Device L
application

Scenarios
e Device migration from third-party cloud platforms to I0TDA: You can
configure the custom logic to make it compatible with the original
authentication mode. No modification is required on the device side.
e Native access: Custom authentication logics are available for multiple
scenarios.
Constraints

e The device must use TLS and support Server Name Indication (SNI). The SNI
must carry the domain name allocated by the platform.

e By default, each user can configure up to 10 custom authenticators.

e Max. processing time: 5 seconds. If the function does not return any result
within 5 seconds, the authentication fails.

e For the TPS limit of each user, see Product Specifications. The TPS limit of
custom authentication is 50% of the total authentication TPS (excluding
device self-registration).

e If you have enabled the function of caching FunctionGraph authentication
results, the modification takes effect only after the cache expires.

e The custom authentication mode is preferentially used for device access if
conditions are met, for example, the custom authenticator name carried by
the device is matched or a default custom authenticator has been configured.

(1 NOTE

Our custom authentication mode enables device access without requiring reconstruction on
the device side. It is important to avoid weak or verification-free modes. If the security level
of your custom template is too low, it may lead to security issues. The platform does not
assume any security responsibilities in such cases.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html

loT Device Access

Developer Guide

3 Development on the Device Side

Process
Figure 3-190 Custom authentication process
Configure a custom Creat " Device: Initiate an loTDA: Process the Tiarel t th
authentication feale a CusIom authentication authentication mpiement fhe
o authenticator. —y — authentication logic.
q q
Procedure

Step 1 Use FunctionGraph to create a custom authentication function. Access the
console, search for FunctionGraph, and create a function.

Figure 3-191 Function list - Creating a function

FunctionGraph Functions.

Node 1617

Figure 3-192 Creating a function - Parameters

< | Create Function
Create With

[j Create fom scratch ° D) Container Image @ Select template

Step 2 Configure custom authentication on the console for storage, management, and
maintenance. Max. 10 custom authenticators can be configured.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

207

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0110.html

loT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-193 Custom authentication - Entry

Figure 3-194 Custom authentication - Creating an authenticator

Custom Authentication Create Authentication

Custom Functions ~ Custom Templates

«©
o) B
Table 3-28 Custom authentication parameters
Parameter Mandat | Description
ory

Authenticatio | Yes Enter a custom authenticator name.

n Name

Function Yes Select the corresponding function from the list created with
FunctionGraph in Step 1.

Status Yes To use an authenticator, you must first enable it as it is disabled by
default.

Signature Yes After this function is enabled (by default), authentication information

Authenticatio that does not meet signature requirements will be rejected to reduce

n invalid function calls.

Token No Token for signature authentication. Used to check whether a device's
signature information is valid.

Public Key No Public key for signature authentication. Used to check whether a
device's signature information is valid.

Default Mode | Yes After this function is enabled (disabled by default), if the username in
an authentication request does not contain the authorizer_name
parameter, this authenticator is used.

Caching Yes Whether to cache FunctionGraph authentication results (disabled by
default). The cache duration ranges from 300 minutes to 1 day.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

loT Device Access
Developer Guide

3 Development on the Device Side

Step 3 The device initiates a CONNECT request using MQTT. The request must carry the
username parameter, which contains optional parameters related to custom
authentication.

Username format requirements: Remove braces ({}) and separate each
parameter by a vertical bar (|). Do not add vertical bars (|) in the parameter

content.

{device-identifier}|authorizer-name={authorizer-name}|authorizer-signature={token-signature}|
signing-token={token-value}

Example:

659b70a0bd3f665a471e5ec9_auth|authorizer-name=Test_auth_1|authorizer-signature=***|signing-

token=tokenValue

Table 3-29 Description of the username parameter

Parameter Man | Description
dato
ry
device- Yes | Device identifier. You are advised to set it to the
identifier device ID.
authorizer- No Custom authenticator name, which must be the
name same as the configured authenticator. If this
parameter is not carried, the system will use either
the default custom authenticator (if configured) or
the original secret/certificate authentication mode.
authorizer- No This parameter is mandatory when the signature
signature verification function is enabled. Obtain the value by
encrypting the private key and signing-token. The
value must be the same as the authentication name
used in Step 2.
signing-token | No This parameter is mandatory when the signature

verification function is enabled. The value is used
for signature verification and must be the same as
the token value used in Step 2.

Run the following command to obtain authorizer-signature:
echo -n {signing-token} | openssl dgst -sha256 -sign {private key} | openssl base64

Table 3-30 Command parameters

Parameter

Description

token}

echo -n {signing-

Run the echo command to output the value of
signing-token and use the -n parameter to
remove the newline character at the end. The
value of signing-token must be the same as that
of the token in Step 2.

sign

openssl dgst -sha256 -

Hash the input data with the SHA-256 algorithm.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

loT Device Access
Developer Guide

3 Development on the Device Side

Parameter Description

{private key} Private key encrypted using the RSA algorithm.
You can upload a private key file in .pem or .key
format.

openssl base64 Encode the signature result using Base64 for
transmission and storage.

Step 4 When receiving an authentication request, loTDA determines whether to use the
custom authentication mode based on the username parameter and related
configuration.

1.

The system checks whether the username carries the custom authentication
name. If yes, the authenticator processing function is matched based on the
name. If no, the default custom authenticator is used to match the
authentication processing function. If no matching is found, the original key/
certificate authentication mode is used.

The system checks whether signature verification is enabled. If yes, the system
checks whether the signature information carried in the username can be
verified. If the verification fails, an authentication failure message is returned.

After the function matching, the system sends an authentication request to
FunctionGraph using the Uniform Resource Name (URN) of the function and
the device authentication information (the input parameter event in Step 5).

Step 5 Develop based on the processing function created with FunctionGraph in Step 1.
Example for using the function and the JSON format of the returned result:

exports.handler = async (event, context) => {

}

console.log("username=" + event.username);
// Enter the validation logic.

// Returned JSON format (fixed)
const authRes = {

"result_code": 200,
"result_desc": "successful",
"refresh_seconds": 300,
"device": {
"device_id": "myDeviceld",
"provision_enable": true,
"provisioning_resource": {
"device_name": "myDeviceName",
"node_id": "myNodeld",
"product_id": "myProductld",
"app_id": "customization0000000000000000000",
"policy_ids": ["657a4e0c2ealcb2cd831d12a", "657a4e0c2ealcb2cd831d12b"]
}
}

return JSON.stringify(authRes);

Request parameters (event, in JSON format) of the function:

{

"username": "myUserName",
"password": "myPassword",
"client_id": "myClientld",
"certificate_info": {

"common_name": "",

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

loT Device Access
Developer Guide

3 Development on the Device Side

"fingerprint": "123"

}
}

Table 3-31 Request parameters

fo

Parameter Type Mandator | Description
y

username String Yes The username field in the MQTT
CONNECT message. Its format is the
same as that of the username field in
Step 3.

password String Yes password parameter in the MQTT
CONNECT message.

client_id String Yes clientld parameter in the MQTT
CONNECT message.

certificate_in | JsonObject | No Device certificate information in the

MQTT CONNECT message.

Table 3-32 certificate_info parameters

Parameter Type Man | Description
dato
ry
common_name | String Yes | Common name parsed from the device
certificate carried by the device.
fingerprint String Yes | Fingerprint information parsed from the

device certificate carried by the device.

Table 3-33 Returned parameters

nds

Parameter Type Mandator | Description
y

result_code Integer Yes Authentication result code. If 200 is
returned, the authentication is
successful.

result_desc String No Description of the authentication
result.

refresh_seco | Integer No Cache duration of the authentication

result, in seconds.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

loT Device Access
Developer Guide

3 Development on the Device Side

Parameter Type Mandator | Description
y
device JsonObject | No Device information when the

authentication is successful. If the
device ID in the device information
does not exist and device self-
registration is enabled, the platform
automatically creates a device based
on the device information.

Table 3-34 Device parameters

Parameter Type Mandator | Description
y
device_id String Yes Definition: Globally unique device ID.
Mandatory in both self-registration
and non-self-registration scenarios. If
this parameter is carried, the platform
sets the device ID to the value of this
parameter. Recommended format:
product_id_node_id. Range: The value
can contain up to 128 characters. Only
letters, digits, underscores (_), and
hyphens (-) are allowed. You are
advised to use at least 4 characters.
provision_ena | Boolean No Definition: Whether to enable self-
ble registration. Default value: false.
provisioning_r | JsonObje | Mandator | Definition: Self-registration
esource ct y in the parameters.
self-
registratio
n scenario

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html

loT Device Access
Developer Guide

3 Development on the Device Side

Table 3-35 provisioning_resource self-registration parameters

Parameter

Type

Mandator
y

Description

device_name

String

No

Definition: Device name, which
uniquely identifies a device in a
resource space. Range: The value can
contain up to 256 characters. Only
letters, digits, and special characters
(?'#(0).,&%@!-) are allowed. You are
advised to use at least 4 characters.

Min. characters: 1
Max. characters: 256

node_id

String

Yes

Definition: Device identifier. This
parameter is set to the IMEI, MAC
address, or serial number. It contains 1
to 64 characters, including letters,
digits, hyphens (-), and underscores
(). (Note: Information cannot be
modified once it is hardcoded to NB-
loT modules. Therefore, the node ID of
an NB-loT must be globally unique.)
Range: The value can contain up to 64
characters. Only letters, digits,
underscores (_), and hyphens (-) are
allowed. You are advised to use at
least 4 characters.

product_id

String

Yes

Definition: Unique ID of the product
associated with the device. The value
is allocated by I0TDA after the product
is created. Range: The value can
contain up to 256 characters. Only
letters, digits, and special characters
(?'#(0.,&%@!-) are allowed. You are
advised to use at least 4 characters.

Min. characters: 1
Max. characters: 256

app_id

String

Yes

Definition: Resource space ID, which
specifies the resource space to which
the created device belongs. Range:
The value can contain up to 36
characters. Only letters, digits,
underscores (_), and hyphens (-) are
allowed.

policy_ids

List<String
>

No

Definition: Topic policy ID.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-195 Compiling a function - Deployment

.......

Step 6 After receiving the result, FunctionGraph checks whether the self-registration is
required. If yes, FunctionGraph triggers automatic device registration. By default,
all self-registered devices are authenticated using secrets, which are randomly
generated. After receiving the authentication result, IoTDA proceeds with the
subsequent process.

--—-End

3.5.5 Custom-Template Authentication

3.5.5.1 Usage

Introduction

In addition to the default authentication mode, you can also use the internal
functions provided by the platform to flexibly orchestrate authentication modes
for devices connecting to the platform.

Scenarios

e Device migration from third-party loT platforms to IoTDA: You can configure a
custom template to be compatible with the original authentication mode. No
modification is required on the device side.

e Native access: Custom templates can support more devices.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Process

Figure 3-196 Process of authentication based on custom templates

Eslablish-a-conneetion: Parse the device
ID function.
— — — -Pevice pet feourd— — — — — —
Check whether
the timestamp is
verified.
— — -Hme stamp-verification failed — — —
Check the
— —Password verification failed. — — — — password.

Lich.asl
ST

Constraints

1. The device must use TLS and support Server Name Indication (SNI). The SNI
must carry the domain name allocated by the platform.

Max. templates: five for a user. Only one template can be enabled at a time.
Max. functions nested: five layers.
Max. content length: 4,000 characters. Chinese character not allowed.

ok N

When the device uses secret authentication, the template password function
must contain the original secret parameter (iotda::device:secret).

6. The format of the template authentication parameter username cannot be
the same as that of the custom function authentication parameter username.
Otherwise, the custom function authentication is used. For example:
{deviceld}|authorizer-name={authorizer-name}|xxx

7. As custom authentication templates have higher priority, once you activate a
custom authentication template, the platform uses the template instead of
the default mode.

(10 NOTE

Our custom authentication mode enables device access without requiring reconstruction on
the device side. It is important to avoid weak or verification-free modes. If the security level
of your custom template is too low, it may lead to security issues. The platform does not
assume any security responsibilities in such cases.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1

IoT Device Access
Developer Guide 3 Development on the Device Side

Procedure

Step 1 Create an authentication template. Specifically, log in to the I0TDA console, in the
navigation pane, choose Devices > Custom Authentication, click Custom
Template, and click Create Template. The authentication template used in this
example is the same as that used in the default authentication.

Figure 3-197 Custom authentication - Creating a template

< | Create Authentication Te.

template of HUAWEI CLOUD I0TDA

ouce ® Oniythe JSON format ofthe) type is supported.
Functior ;

{
Ref": "I
)

(o) (T

The overall content of the template is as follows:
{

"template_name": "system-default-auth",
"description": "Example of the default authentication template of Huawei Cloud lI0TDA",
"status": "ACTIVE",
"template_body": {
"parameters": {
"iotda:mgqtt:client_id": {
"type": "String"
"iotda:mgqtt::username": {
"type": "String"

"jotda::device:secret": {
"type": "String"

1
"resources": {
"device_id": {
"Ref": "iotda:mgqtt::username"
h?
"timestamp": {
"type": "FORMAT",
"pattern": "yyyyMMddHH",
"value": {
"Fn::SubStringAfter": [
"${iotda::mqtt:client_id}",
"
1
}
h?
"password": {
"Fn::HmacSHA256": [
"${iotda::device:secret}",

"Fn::SubStringAfter": [
"${iotda::mqtt:client_id}",

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Table 3-36 Authentication template parameters

Parameter | Item Ma | Description
nda
tory
template_n | Template Yes | Template name. The name must be unique
ame name for a single user. Max. length: 128 characters.
Use only letters, digits, underscores (_), and
hyphens (-).

description | Descriptio | No | Template description. Max. length: 2,048
n characters. Use only letters, digits, and special
characters (_?'#().,&%@!-).

status Status No | Template status. By default, a template is not
enabled. A user can only have one enabled
template at a time.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

loT Device Access
Developer Guide

3 Development on the Device Side

Parameter

Item

Ma
nda
tory

Description

parameters

Parameter

Yes

MQTT connection parameters predefined by
the platform. When a device uses password
authentication, the template must contain
the original secret parameter
(iotda::device:secret).

The platform predefines the following
parameters:

iotda::mqtt::client_id: Client Id in the MQTT
connection parameter triplet

iotda::mqtt::username: User Name in the
MQTT connection parameter triplet

iotda::certificate::country: device certificate
(country/region, C)
iotda::certificate::organization: device
certificate (organization, O)
iotda::certificate::organizational_unit:
device certificate (organization unit, OU)
iotda::certificate:distinguished_name_qualif
ier: device certificate (distinguishable name
qualifier, dnQualifier)
iotda::certificate::state_name:
device_certificate (province/city, ST)

iotda::certificate::common_name: device
certificate (common name, CN)

iotda::certificate::serial_number: device
certificate (serial number, serialNumber)

iotda::device::secret: original secret of the
device

device_id

Device ID
function

Yes

Function for obtaining the device ID, in JSON
format. The platform parses this function to
obtain the corresponding device information.

timestamp

Timestamp
verification

No

Whether to verify the timestamp in the
device connection information.
Recommended: Enable this function if the
device connection parameters (clientld and
username) contain the timestamp.
Verification process: The platform compares
the timestamp carried by the device with the
platform system time. If the timestamp plus
1 hour is less than the platform system time,
the verification fails.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

loT Device Access

Developer Guide 3 Development on the Device Side
Parameter | Item Ma | Description
nda
tory
type Timestamp | No | UNIX: Unix timestamp. Long integer, in
type seconds.

FORMAT: formatted timestamp, for example,
2024-03-28 11:47:39 or 2024/03/28
03:49:13.

pattern Timestamp | No | Time format template. Mandatory when the
format timestamp type is FORMAT.

y: year
M: month

d: day

H: hour

m: minute

s: second

S: millisecond

Example: yyyy-MM-dd HH:mm:ss and
yyyy/MM/dd HH:mm:ss

value Timestamp | No | Function for obtaining the timestamp when
function the device establishes a connection.
Mandatory when timestamp verification is
enabled.
password MQTT No Password function. Mandatory when the
password device authentication type is secret
function authentication. The template parameters

must contain the original device secret
parameter (iotda::device:secret). For details
about the device authentication type, see
Registering an Individual Device.
Verification process: The platform uses
parameters such as the original secret of the
device in the function to calculate. If the
result is the same as the password carried in
the connection establishment request, the
authentication is successful. Otherwise, the
authentication fails.

Step 2 Select a device debugging template. Click Debug, select a device for debugging,
enter MQTT connection parameters, and click Debug to check the result. Note: If
clientld in the standard format is used, the platform verifies whether the value of
username is the same as the prefix of clientld.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-198 Custom template - Debugging
Debug Authentication Template

Test Data

Device |D Modify
clientld G
Username

- pasgword T T e T T L T LA o

Test Results Clear

[Success]: [Jul 05, 2024 15:32:10 GMT+08:00]Authentication template debugged.

After the device debugging is successful, click Enable to enable the template.
Once the template is enabled, it will be used for authentication of all devices, and
the enabled template cannot be modified. You are advised to make modification
on the copy of the target template and debug it. Switch to the modified template
only after the debugging is successful.

Step 3 Use MQTT.fx to simulate device connection setup. Set Broker Address to the

platform access address, choose Overview > Access Information, and set port to
8883.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01003.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01003.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-199 Device connection establishment

MQTT Broker Profile Settings

Broker Address | 171 13.st1iotda-device.cn-north-4. myhuawt
Broker Port | 8883

ClientID | 65e82447ba68c018850b53cc_123434_0_1_202 | Generate
General BUESAWELENCIES SSL/TLS Proxy LWT

User Name | 65e82447bas8c018830b53cc 122

Password]

Figure 3-200 Device list - Device online status

s © 0 rumng

Al Devices 1ot device: 2 @ Actuated dev

.........

--—-End

3.5.5.2 Examples

Example 1

When a certificate is used to authenticate a device, the values of UserName and
Clientld are not limited. The device ID is obtained from the common name of the
device certificate.

Table 3-37 Authentication parameters

Parameter Description

Client ID Any value

User Name | Any value

Password Empty value

Authentication template:

{

"template_name": "template1"”,
"description": "template1",
"template_body": {
"parameters": {
"iotda::certificate::common_name": {
"type": "String"
}
}I

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

loT Device Access
Developer Guide

3 Development on the Device Side

"resources": {
"device_id": {

"Ref": "iotda:certificate::common_name"

}
}
}
}

Example 2
The device ID fo

llows the format of ${Productld} ${Nodeld} and the

authentication parameters are as outlined in the table below.

Table 3-38 Authentication parameters

Parameter

Description

Client ID

Fixed format:
${Clientld}|securemode=2,signmethod=hmacsha256,timestamp=${timestamp}|

o ${Clientld} (fixed format): ${Productid} ${Nodeld}
- ${Nodeld} device node ID
- ${Productld} product ID

o ${timestamp} Unix timestamp, in milliseconds

User Name

Fixed format:
${Nodeld}&S{Productid}

Password

Result value after encrypting the combination of device
parameter and parameter value, with the device password as the
key and HMAC-SHA256 algorithm as the tool.

Encryption string format:
clientld${clientld}deviceNameS${nodeld}productKey${productid}timestamp$
{timestamp}

o ${Client/d} (fixed format): ${Productid} ${Nodeld}
o ${Nodeld} device node ID

e ${Productl/d} product ID

o ${timestamp} timestamp

Authentication t
{

"template_name":

emplate:

"template2",

"description": "template2",
"template_body": {

"parameters": {
"jotda:mqtt::

client_id": {

"type": "String"

"jotda:mqtt:

username": {

"type": "String"

"iotda::device::secret": {
"type": "String"

}I

"resources": {

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

loT Device Access

Developer Guide 3 Development on the Device Side

"device_id": {
"Fn:Join": [{

"Fn::SplitSelect™: [
"${iotda::mqgtt:username}",
nge
1

]
}l "_"I {
"Fn::SplitSelect™: [
"${iotda::mqgtt:username}",
7
0
]
1
I
"timestamp": {
"type": "UNIX",
"value": {
"Fn:MathDiv": [{
"Fn::ParseLong": {
"Fn::SplitSelect™: [{
"Fn::SubStringAfter": [{
"Fn:SplitSelect™: ["${iotda:mgqtt::client_id}", "|", 1]
}, "timestamp="]

}l "l"l 0]

}
}, 1000]
}
h
"password": {
"Fn:HmacSHA256": [{
"Fn::Sub": [

"clientld${clientld}deviceName${deviceName}productKey${productKey}timestamp$

{timestamp}",
{
"clientld": {
"Fn:SplitSelect™: [
"${iotda:mqtt:client_id}",
lllll'
0
]
I
"deviceName": {
"Fn:SplitSelect™: [
"${iotda::mqgtt:username}",
"8
0
]
I
"productKey": {
"Fn:SplitSelect™: [
"${iotda::mqtt:username}",
g
1
]
I
"timestamp": {
"Fn:SplitSelect™: [{
"Fn::SubStringAfter": [{
"Fn::SplitSelect": ["${iotda:mqtt::client_id}", "|", 1]
}, "timestamp="]
}l "l"l 0]
}
}
]
}

”'${iotda::device::secret}"

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

223

loT Device Access
Developer Guide

3 Development on the Device Side

Example 3

The device ID follows the format of ${productid} ${nodeld} and the authentication

parameters are as outlined in the table below.

Table 3-39 Authentication parameters

Parameter | Description

Client ID Fixed format:

${productid}${nodeld}
e ${productld} product ID
e ${nodeld} node ID

User Name Fixed format:

${productld}${nodeld};12010126;${connid};S{expiry}
e ${productl/d} product ID

e ${nodeld} node ID

e ${connid} random string

o ${expiry} Unix timestamp, in seconds

Password Fixed format:

S{token};hmacsha256

o ${token} result value after encrypting the User Name field,
with the HMAC-SHA256 algorithm as the tool and the
Base64-decoded device password as the key.

Authentication template:
{

"template_name": "template3",
"description": "template3",
"template_body": {
"parameters": {
"iotda::mqtt::client_id": {
"type": "String"

"iotda::mqtt::username": {
"type": "String"

"iotda::device::secret": {
"type": "String"

}I
"resources": {
"device_id": {
"Ref": "iotda:mqtt::client_id"
}

"timestamp": {
"type"; "UNIX",
"value": {
"Fn::ParseLong": {

"Fn::SplitSelect": ["${iotda::mqtt::username}", ";", 3]

}

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

IoT Device Access
Developer Guide 3 Development on the Device Side

}
h
"password": {
"Fn::Sub": [
"${token};hmacsha256",
{
"token": {
"Fn::HmacSHA256": [
"${iotda::mqgtt::username}",
{

"Fn::Base64Decode": "${iotda::device::secret}"

3.5.5.3 Internal Functions

Introduction

Huawei Cloud IoTDA provides multiple internal functions to use in templates. This
section introduces these functions, including the input parameter type, parameter
length, and return value type.

(11 NOTE

e The entire function must be in valid JSON format.

e In a function, the variable placeholders (${}) or the Ref function can be used to
reference the value defined by the input parameter.

e The parameters used by the function must be declared in the template.

e A function with a single input parameter is followed by a parameter, for example,
"Fn::Base64Decode": " ${iotda.:mqtt:username}".

e A function with multiple input parameters is followed by an array, for example,
"Fn:HmacSHA256": [" ${iotda::mqtt..username}", " ${iotda:device:secret}'].

e Functions can be nested. That is, the parameter of a function can be another function.
Note that the return value of a nested function must match its parameter type in the
outer function, for example, {"Fn::HmacSHA256": [" ${iotda..mqtt..username}",
{"Fn::Base64Encode": " ${iotda::device:secret}'}]}.

e The hash function (Fn::HmacSHA256) can be used twice at most in an authentication
template.

e The total number of Base64 functions (Fn::Base64Decode and Fn::Base64Encode) in an
authentication template cannot exceed 2.

e After applying the HmacSHA256 function to the password in the authentication
template, the functions Fn::Split, Fn::SplitSelect, Fn::SubStringAfter, and
Fn::SubStringBefore cannot be executed.

Fn::ArraySelect

The internal function Fn::ArraySelect returns a string element whose index is
index in a string array.

JSON

{"Fn:ArraySelect": [index, [StringArray]]}

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

IoT Device Access
Developer Guide 3 Development on the Device Side

Table 3-40 Parameters

Parameter Type Description
index int Index of an array element. The value is
an integer and starts from 0.
StringArray String[] String array element.
Return value String Element whose index is index.
Example:
{
"Fn:ArraySelect”: [1, ["123", "456", "789"]]
Eeturn: "456"
Fn::Base64Decode
The internal function Fn::Base64Decode decodes a string into a byte array using
Base64.
JSON

{ "Fn::Base64Decode" : "content" }

Table 3-41 Parameters

Parameter Type Description
content String String to be decoded.
Return value byte[] Base64-decoded byte array.
Example:
{

return: d76df8e7 // The value is converted into a hexadecimal string for display.

Fn::Base64Encode
The internal function Fn::Base64Encode encodes a string using Base64.

JSON

{"Fn::Base64Encode": "content"}

Table 3-42 Parameters

Parameter Type Description

content String String to be encoded.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

loT Device Access
Developer Guide

3 Development on the Device Side

Fn::GetBytes

Parameter Type

Description

Return value String

Base64-encoded string.

Example:
{

}
return: "dGVzdHZhbHVL"

"Fn::Base64Encode": "testvalue"

The internal function Fn::GetBytes returns a byte array encoded from a string

using UTF-8.
JSON

{"Fn:GetBytes": "content"}

Table 3-43 Parameters

Parameter Type

Description

content String

String to be encoded.

Return value byte[]

Byte array converted from a string
encoded using UTF-8.

Example:
{
}

"Fn:GetBytes": "testvalue"

return: "7465737476616c7565" // The value is converted into a hexadecimal string for display.

Fn::HmacSHA256
The internal function Fn::HmacSHA256 encrypts a string using the HmacSHA256

algorithm based on a given secret.

JSON

{"Fn:HmacSHA256": ["content", "secret"]}

Table 3-44 Parameters

Parameter Type Description

content String String to be encrypted.

secret String or byte[] Secret key, which can be a string or
byte array.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

227

loT Device Access
Developer Guide

3 Development on the Device Side

Fn:Join

Fn::MathAdd

Parameter Type Description

Return value String Value encrypted using the
HmacSHA256 algorithm.

Example:

{
"Fn:HmacSHA256": ["testvalue”, "123456"]

}
return: "0f9fb47bd47449b6ffac1be951a5c18a7eff694940b1a075b973ff9054a08be3"

The internal function Fn::Join can concatenate up to 10 strings into one string.

JSON

{"Fn:Join": ["element", "element"...]}

Table 3-45 Parameters

Parameter Type Description
element String String to be concatenated.
Return value String String obtained by concatenating
substrings.
Example:
{

"Fn:Join™: ["123", "456", "789"]
}
return: "123456789"

The internal function Fn::MathAdd performs mathematical addition on two
integers.

JSON
{"Fn:MathAdd": [X, Y]}

Table 3-46 Parameters

Parameter Type Description

X long Augend.

Y long Augend.

Return value long Sum of X and Y.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

228

loT Device Access
Developer Guide

3 Development on the Device Side

Fn::MathDiv

Fn::MathMod

Example:
{

"Fn:MathAdd": [1, 1]
}

return: 2

The internal function Fn::MathDiv performs a mathematical division on two
integers.

JSON

{"Fn:MathDiv": [X, Y]}

Table 3-47 Parameters

Parameter Type Description

X long Dividend.

Y long Divisor.

Return value long Value of X divided by Y.
Example:
{

"Fn:MathDiv": [10, 2]
}

return: 5
{

"Fn:MathDiv": [10, 3]
}

return: 3

The internal function Fn::MathMod performs the mathematical modulo on two
integers.

JSON

{"Fn:MathMod": [X, Y]}

Table 3-48 Parameters

Parameter Type Description

X long Dividend.

Y long Divisor.

Return value long Residue of X modulo Y.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

loT Device Access
Developer Guide

3 Development on the Device Side

Example:

{

"Fn:MathMod": [10, 3]
}

return: 1

Fn::MathMultiply

The internal function Fn::MathMultiply performs mathematical multiplication on

Fn::MathSub

two integers.

JSON

{"Fn:MathMultiply": [X, Y]}

Table 3-49 Parameters

Parameter Type Description

X long Multiplicand.

Y long Multiplicand.

Return value long Value of X multiplied by Y.

Example:

{
"Fn:MathMultiply": [3, 3]

}

return: 9

The internal function Fn::MathSub performs mathematical subtraction on two

integers.

JSON

{"Fn:MathSub": [X, Y]}

Table 3-50 Parameters

Parameter Type Description

X long Minuend.

Y long Subtrahend.

Return value long Value of X minus V.
Example:

{
"Fn:MathSub™: [9, 3]

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

230

IoT Device Access
Developer Guide 3 Development on the Device Side

}

return: 6

Fn::ParseLong
The internal function Fn::ParseLong converts a numeric string into an integer.

JSON

{"Fn::ParseLong": "String"}

Table 3-51 Parameters

Parameter Type Description

String String String to be converted.

Return value long Value obtained after a string is
converted into an integer.

Example:

{
"Fn::ParseLong": "123"

}

return: 123

Fn::Split

The internal function Fn::Split splits a string into a string array based on the
specified separator.

JSON

{ "Fn:Split" : ["String", "Separator"] }

Table 3-52 Parameters

Parameter Type Description

String String String to be split.

Separator String Separator.

Return value String[] String array obtained after String is
split by Separator.

Example:

{
"Fn:Split™: ["alblc", "|"]

return: [nan, nbn, ncn]

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

IoT Device Access
Developer Guide 3 Development on the Device Side

Fn::SplitSelect

The internal function Fn::SplitSelect splits a string into a string array based on the
specified separator, and then returns the elements of the specified index in the
array.

JSON

{ "Fn:SplitSelect" : ["String", "Separator", index] }

Table 3-53 Parameters

Parameter Type Description

String String String to be split.

Separator String Separator.

index int Index value of the target element in

the array, starting from 0.

Return value String Substring of the specified index after a
string is split by the specified separator.

Example:
{
"Fn:SplitSelect": ["alblc", "|", 1]
}
return: "b"

Fn::Sub

The internal function Fn::Sub replaces variables in an input string with specified
values. You can use this function in a template to construct a dynamic string.

JSON

{ "FnzSub" : ["String", { "Var1Name": Var1Value, "Var2Name": Var2Value }] }

Table 3-54 Parameters

Parameter Type Description

String String A string that contains variables.
Variables are defined using
placeholders (${}).

VarName String Variable name, which must be defined
in the String parameter.

VarValue String Variable value. Function nesting is
supported.

Return value String Value of string after replacement in

the original String parameter.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

loT Device Access

Developer Guide 3 Development on the Device Side
Example:
{
"Fn::Sub": ["${token};hmacsha256", {
"token": {

"Fn::HmacSHA256": ["${iotda:mqtt::username}", {
"Fn::Base64Decode": "${iotda::mqtt::client_id}"
1
}
1

}
If:
${iotda::mqtt::username}="test_device_username"
${iotda::device:client_id}="00zqTPICWTTJjEH/5s+T6w=="
return: "0773c4fd6c92902a1b2f4a45fdcdec416b6fc2bc6585200b496e460e2ef31c3d"

Fn::SubStringAfter

The internal function Fn::SubStringAfter extracts a substring after a specified
separator.

JSON

{ "Fn::SubStringAfter" : ["content", "separator"] }

Table 3-55 Parameters

Parameter Type Description

content String String to be extracted.

separator String Separator.

Return value String Substring after the specified separator
that separates the string.

Example:

{
"Fn::SubStringAfter": ["content:123456", ":"]

1
return: "123456"

Fn::SubStringBefore

The internal function Fn::SubStringBefore extracts a substring before a specified
separator.

JSON

{ "Fn::SubStringBefore" : ["content", "separator"] }

Table 3-56 Parameters

Parameter Type Description

content String String to be extracted.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

loT Device Access
Developer Guide

3 Development on the Device Side

Parameter Type Description
separator String Separator.
Return value String Substring before the specified

separator that separates the string.

Example:
{
]

return: "content"

"Fn::SubStringBefore": ["content:123456", ":"]

Fn::-ToLowerCase

The internal function Fn::ToLowerCase converts a string to the lowercase format.

JSON

{ "Fn:ToLowerCase" : content }

Table 3-57 Parameters

Parameter Type Description
content String String to be converted.
Return value String Value of a string after it is converted

to the lowercase format.

Example:
{

"Fn::ToLowerCase": "ABC"

]

return: "abc"

Fn::ToUpperCase

The internal function Fn::ToUpperCase converts a string to the uppercase format.

JSON

{ "Fn:ToUpperCase" : content }

Table 3-58 Parameters

Parameter Type Description
content String String to be converted.
Return value String Value of a string after it is converted
to the uppercase format.
Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

loT Device Access
Developer Guide

3 Development on the Device Side

Ref

Example:
{

return: "ABC"

The internal function Ref returns the value of the specified referenced parameter.
The referenced parameter must be declared in the template.

JSON

{ "Ref" : "paramName" }

Table 3-59 Parameters

Parameter Type Description
paramName String Name of the referenced parameter.
Return value String Value of the referenced parameter.
Example:
{

"Ref": "iotda:mgqtt::username”
}
If iotda:mqtt::username="device_123"
return: "device_123"

3.6 HTTP(S) Access

Introduction

Constraints

[oTDA supports HTTPS, a secure communication protocol derived from HTTP and
secured with SSL encryption. HTTPS is commonly employed for data collection and
analysis due to HTTP's efficiency in transmitting and processing structured data.
Additionally, it is utilized in scenarios where devices require non-persistent
connections and unidirectional data upload.

In HTTPS-based authentication, a device utilizes the HTTPS-based device
authentication API to securely transmit the device ID and secret. The secret is
encrypted using an algorithm. After the authentication is successful, the
connection between the device and the platform is established, and the platform
returns an access token.

e An access token is required when HTTPS APIs for property reporting and
message reporting are called.

e If an access token expires, you need to authenticate the device again to
obtain an access token.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

loT Device Access
Developer Guide

3 Development on the Device Side

e If you obtain a new access token before the old one expires, the old access
token will be valid for 30 seconds before expiration.

Table 3-60 Constraints

Description Constraint
Supported HTTP version HTTP 1.0
HTTP 1.1

Supported HTTPS

The platform supports only the HTTPS
protocol. For details about how to

download a certificate, see Certificates.

Supported TLS version

TLS 1.2

Body length

1 MB

API specifications

Specifications

Number of child devices of which
properties can be reported by a
gateway at a time

50

Data delivery

Not supported

Endpoints

For details about the platform endpoint, see Platform Connection Information.

(11 NOTE

Use the endpoint of IoTDA and the HTTPS port number 443.

Process

Figure 3-201 HTTPS access authentication process

Device registration Device ID/secret saving

Device login (carrying the

HTTPS device device ID and the secret

Successful authentication

authentication API calling signed using the

algorithm)

1. An application calls the API for registering a device. Alternatively, a user uses
the 10TDA console to register a device.

2. The platform allocates a globally unique device ID and secret to the device.

(10 NOTE

The secret can be defined during device registration. If no secret is defined, the

platform allocates one.

3. When a device attempts to connect to the platform, the device calls the
HTTPS device authentication API to send an access authentication request to
the platform. The request carries the device ID and the secret generated using
the HMACSHAZ256 algorithm. The secret is the value obtained after the

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

236

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

IoT Device Access
Developer Guide 3 Development on the Device Side

password allocated by the platform is signed using the timestamp as the key.
For details, see Huawei Cloud IoTDA MQTT Clientld Generator.

4. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

Procedure

When a device connects to the platform through HTTPS, HTTPS APIs are used for
their communication. These APIs can be used for device authentication as well as
message and property reporting.

Table 3-61 Message type

Message Type Description

Device authentication | Devices obtain access tokens.

Device property Devices report property data in the format defined in

reporting the product model.

Device message Devices report custom data to 10TDA, which then

reporting forwards reported messages to an application or other
Huawei Cloud services for storage and processing.

Gateway batch A gateway reports property data of multiple child

property reporting devices to the platform.

1. Create a product on the |IoTDA console or by calling the API for creating a
product.

2. Register a device on the lI0TDA console or calling the API for creating a
device.

3. After the device is registered, obtain the access token of the device through
the API for device authentication.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7008.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Figure 3-202 Obtaining the access token

POST https://: fvSidevice-auth
(1) Body @
form-data x-www-form-urlencoded '® raw binary |SON (applicatic
2 “device_id": "{{deviceld}}",
3 "sign_type": @,
4 "ti " "2021081202",
6 M
Body (3)
Pretry JSON =
2 "access_token": " r
3 "expires_in": 43199
4 F

4. Use the access token in the message header to report device messages or
properties. The following figures use property reporting as an example.

Figure 3-203 Reporting properties

POST https://} IvS/devices/ /sys/properties/report
Headers (2) []
Key Value
Content-Type application/json;charser=UTF-8

access_token

Figure 3-204 Reporting properties

POST https:// fvS/devices/: [sys/properties/report
(2) Body @

form-data x-www-form-urlencoded '® raw binary JSON (application/json

2- "seryices™: [{

3 "service_id": "Alarm”,

4~ "properties": {

"Height": 318,

& "Speed”: 23.56

7 ¥

8 11

21

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7010.html

IoT Device Access
Developer Guide 3 Development on the Device Side

3.7 LwM2M/CoAP Access

Introduction

Lightweight Machine to Machine (LwM2M), proposed by the Open Mobile
Alliance (OMA), is a lightweight, standard, and universal loT device management
protocol that can be used to quickly deploy loT services in client/server mode.
LwM2M establishes a set of standards for 10T device management and

application. It provides lightweight, compact, and secure communication interfaces
and efficient data models for M2M device management and service support.

LwM2M/CoAP authentication supports both encrypted and non-encrypted access
modes. Non-encrypted mode: Devices connect to I0TDA carrying the node ID
through port 5683. Encrypted mode: Devices connect to IoTDA carrying node ID
and secret through port 5684 by the DTLS/DTLS+ channel.

You are advised to use the encrypted access mode for security purposes.

(1 NOTE

For details about LwM2M syntax and APIs, see specifications.

I0oTDA supports the plain text, opaque, Core Link, TLV, and JSON encoding formats specified
in the protocol. In the multi-field operation (for example, writing multiple resources), the
TLV format is used by default.

Constraints
Table 3-62 Constraints on LwM2M/CoAP access
Description Constraint
Supported LwM2M version 1.1
Supported DTLS version DTLS 1.2
Supported cryptographic algorithm | TLS_PSK_WITH_AES_128 _CCM_8 and
suite TLS_PSK_WITH_AES_128_CBC_SHA256
Body length 1 KB
API specifications Specifications
Endpoints

For details about the platform endpoint, see Platform Connection Information.

(1 NOTE

Use the endpoint corresponding to CoAP (5683) or CoAPS (5684) and port 5683 (non-
encrypted) or 5684 (encrypted) for device access.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

http://openmobilealliance.org/release/LightweightM2M/V1_1-20171208-C/
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

loT Device Access
Developer Guide

3 Development on the Device Side

Authentication Process

Figure 3-205 LwM2M/CoAP access authentication process

Device login (with
nodeld and secret)

nodeld/Secret/
timeout saving

Device registration Security devices

Successful
authentication

Device login (with
nodeld)

1. An application calls the API for registering a device. Alternatively, a user uses
the 10TDA console to register a device.

2. The platform allocates a secret to the device and returns timeout.

(10 NOTE

e The secret can be defined during device registration. If no secret is defined, the
platform allocates one.

e If the device is not connected to the platform within the duration specified by
timeout, the platform deletes the device registration information.
3. During login, the device sends a connection authentication request carrying
the node ID (such as the IMEI) and secret if it is a security device, or carrying
the node ID if it is a non-security device.

4. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

Development Process

1. Development on the platform: Create products, develop product models and
codecs on the platform, and register devices. For details, see Creating a
Product, Developing a Product Model, Developing a Codec, and
Registering a Device.

2. Development on the device: Use modules and Tiny SDKs on the device side
for access. For details, see IoT Device SDK Tiny (C) User Guide.

Best Practices

FAQ

Developing a Smart Street Light Using NB-loT BearPi

LwM2M/CoAP access FAQ:

e How Do | Know the Strength of the NB-loT Network Signal?

e What Do | Do If an NB-loT Module Failed to Be Bound to a Device?
e What Do | Do If an NB-loT Module Failed to Be Bound to a Device?
e What Can | Do If an NB-loT Module Cannot Report Data?

¢ Why Was a 513 Message Reported During the Connection of an NB-loT
Device?

e Why Does Data Reporting Fails When an NB-loT Card Is Used in Another
Device?

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_9980.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0007.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section1
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section2
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section4
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section5
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section5
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section6
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html#section6

IoT Device Access
Developer Guide 3 Development on the Device Side

3.8 Access Using MQTT Demos

3.8.1 MQTT Usage Guide

Overview

Message Queuing Telemetry Transport (MQTT) is a publish/subscribe messaging
protocol that transports messages between clients and servers. It is suitable for
remote sensors and control devices (such as smart street lamps) that have limited
computing capabilities and work in low-bandwidth, unreliable networks through
persistent device-cloud connections. MQTT clients publish or subscribe to
messages through topics. MQTT brokers centrally manage message routing and
ensure end-to-end message transmission reliability based on the preset quality of
service (QoS). In this process, the client that sends messages (publisher) and the
client that receives messages (subscriber) are decoupled, eliminating the need for
a direct connection between them. MQTT has emerged as a top protocol in the
loT domain by meeting the lightweight, reliable, bidirectional, and scalable
communication protocol needs of loT applications. To learn more about the MQTT
syntax and interfaces, click here.

MQTTS is a variant of MQTT that uses TLS encryption. MQTTS devices
communicate with the platform using encrypted data transmission.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/

loT Device Access
Developer Guide

3 Development on the Device Side

MaTT Broke

QoS stream reporting

Binary code

Service Flow

MQTT devices communicate with the platform without data encryption. For
security purposes, MQTTS access is recommended.

You are advised to use the loT Device SDK to connect devices to the platform

over MQTTS.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

242

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1001.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Obtains the device access address
and certificate.

Performs authentication. (Devices
can be registered using the
console or application APIs)

Reports data. Device (See
the MQTT
demo for
loT platform :
P Subscribes to topics. native
protocol
Receives commands, properties, access.)

and messages.

Performs OTA upgrades.

Reports data using custom topics.

1. Create a product on the I0TDA console or by calling the API Creating a
Product.

2. Register a device on the IoTDA console or calling the API Creating a Device.

3. The registered device can report messages and properties, receive commands,
properties, and messages, perform OTA upgrades, and report data using
custom topics. For details about preset topics of the platform, see Topic
Definition.

(11 NOTE

You can use MQTT.fx to debug access using the native MQTT protocol. For details, see
Developing an MQTT-based Smart Street Light Online.

Constraints

Description Constraint

Number of concurrent connections to a directly 1
connected MQTT device

Connection setup requests of an account per second | e Basic edition: 100

on the device side e Standard edition: See

Specifications.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

loT Device Access
Developer Guide

3 Development on the Device Side

Description

Constraint

Number of upstream requests for an instance per
second on the device side (when average message
payload is 512 bytes)

e Basic edition: 500

e Standard edition: See
Specifications.

Number of upstream messages for an MQTT
connection

50 per second

Bandwidth of an MQTT connection (upstream
messages)

1 MB (default)

Length of a publish message sent over an MQTT
connection (Oversized messages will be rejected.)

1 MB

Standard MQTT protocol

MQTT v5.0, MQTT v3.1.1,
and MQTT v3.1

Differences from the standard MQTT protocol

e Not supported: QoS 2

e Not supported: will
and retain msg

Security levels supported by MQTT

TCP channel and TLS
protocols (TLS v1, TLS
v1.1, TLS v1.2, and TLS
v1.3)

Recommended heartbeat interval for MQTT
connections

Range: 30s to 1200s;
recommended: 120s

MQTT message publish and subscription

A device can only publish
and subscribe to
messages of its own

on the device side

topics.
Number of subscriptions for an MQTT connection 100
Length of a custom MQTT topic 128 bytes
Number of custom MQTT topics added to a product | 10
Number of CA certificates uploaded for an account 100

Communication Between MQTT Devices and the Platform

The platform communicates with MQTT devices through topics, and they
exchange messages, properties, and commands using preset topics. You can also
create custom topics for connected devices to meet specific requirements.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

244

https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

loT Device Access
Developer Guide

3 Development on the Device Side

Data | Message Description
Type | Type
Upstr | Reporting Devices report property data in the format defined in the
eam | device product model.
data | properties
Reporting If a device cannot report data in the format defined in
device the product model, the device can report data to the
messages platform using the device message reporting API. The
platform forwards the messages reported by devices to
an application or other Huawei Cloud services for
storage and processing.
Gateway A gateway reports property data of multiple devices to
reporting the platform.
device
properties in
batches
Reporting Devices report event data in the format defined in the
device product model.
events
Down | Delivering The platform delivers data in a custom format to devices.
strea | platform
m messages
data
Setting A product model defines the properties that the platform
device can configure for devices. The platform or application
properties can modify the properties of a specific device.
Querying The platform or application can query real-time property
device data of a specific device.
properties
Delivering The platform or application delivers commands in the
platform format defined in the product model to devices.
commands
Delivering The platform or application delivers events in the format
platform defined in the product model to devices.
events

Preset Topics

The following table lists the preset topics of the platform.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

loT Device Access
Developer Guide

3 Development on the Device Side

Category Function Topic Publ | Subsc
isher | riber
Device Device $oc/devices/{device_id}/sys/ Devi | Platfo
message Reporting | messages/up ce rm
related a Message
topics - . -
Platform $oc/devices/{device_id}/sys/ Platf | Devic
Delivering | messages/down orm |e
a Message
Device Platform $oc/devices/{device_id}/sys/ Platf | Devic
command Delivering | commands/request_id={request_id} |[orm |e
related a
topics Command
Device $oc/devices/{device_id}/sys/ Devi | Platfo
Returning commands/response/ ce rm
a request_id={request_id}
Command
Response
Device Device $oc/devices/{device_id}/sys/ Devi | Platfo
property Reporting properties/report ce rm
related Properties
topics) . . .
Reporting $oc/devices/{device_id}/sys/ Devi | Platfo
Property gateway/sub_devices/properties/ ce rm
Data by a report
Gateway
Setting $oc/devices/{device_id}/sys/ Platf | Devic
Device properties/set/ orm |e
Properties | request_id={request_id}
Returning $oc/devices/{device_id}/sys/ Devi | Platfo
a Response | properties/set/response/ ce rm
to Property | request_id={request_id}
Settings
Querying $oc/devices/{device_id}/sys/ Platf | Devic
Device properties/get/ orm |e
Properties | request_id={request_id}
Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html

loT Device Access
Developer Guide 3 Development on the Device Side

Category Function Topic Publ | Subsc
isher | riber

Device $oc/devices/{device_id}/sys/ Devi | Platfo
Returning properties/get/response/ ce rm

a Response | request_id={request_id}
for a
Property
Query The
response
does not
affect
device
properties
and
shadows.

Obtaining $oc/devices/{device_id}/sys/ Devi | Platfo
Device shadow/get/request_id={request_id} | ce rm
Shadow
Data from
the
Platform

Returning $oc/devices/{device_id}/sys/ Platf | Devic
a Response | shadow/get/response/ orm |e
toa request_id={request_id}
Request for
Obtaining
Device
Shadow
Data

Device Reporting $oc/devices/{device_id}/sys/ Devi | Platfo
event a Device events/up ce rm

related Event
topics

Delivering | $oc/devices/{device_id}/sys/events/ | Platf | Devic
an Event down orm |e

You can create custom topics on the console to report personalized data. For
details, see Custom Topic Communications.

TLS Support for MQTT

TLS is recommended for secure transmission between devices and the platform.
Currently, TLS v1.1, v1.2, v1.3, and GMTLS are supported. TLS v1.3 is
recommended. TLS v1.1 will not be supported in the future. GMTLS is supported
only by the enterprise edition using Chinese cryptographic algorithms.

When TLS connections are used for the basic edition, standard edition, and
enterprise edition that support general cryptographic algorithms, the 10T platform
supports the following cipher suites:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html

loT Device Access
Developer Guide

3 Development on the Device Side

TLS_AES_256_GCM_SHA384
TLS_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

When the enterprise edition that supports Chinese cryptographic algorithms uses
TLS connections, the 1oT platform supports the following cipher suites:

ECC_SM4_GCM_SM3

ECC_SM4_CBC_SM3

ECDHE_SM4_GCM_SM3

ECDHE_SM4_CBC_SM3
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

(11 NOTE

FAQ

CBC cipher suites may pose security risks.

MQTT-based Device Access

3.8.2 Java Demo Usage Guide

Overview

This topic uses Java as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

(11 NOTE

Prerequisites

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

You have obtained the device access address from the loTDA console. For
details about how to obtain the address, see Platform Connection
Information.

You have created a product and a device on the I0TDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Preparations
Installing Intelli) IDEA

1. Go to the Intelli) IDEA website to download and install a desired version.
The following uses Windows 64-bit Intelli) IDEA 2019.2.3 Ultimate as an

Intelli) IDEA What's New Features Learn Buy
Download IntelliJ IDEA
Windows Mac Linux
Ultimate Community
For web and enterprise development For JVM and Android development
Version: 2020.1
I m B
9 April 2020
Release notes Free trial Free, open-source
System requirements
Installation Instructions License Commercial Open-source, Apache 2.0 @
Other versions v v

Java, Kotlin, Groovy, Scala

2. After the download is complete, run the installation file and install IntelliJ
IDEA as prompted.

Importing Sample Code
Step 1 Download the Java demo.

Step 2 Open the IDEA developer tool and click Import Project.

Welcome to Intelli) IDEA _ %

a

IntelliJ IDEA

Create New Project

| ¥ Import Project ‘

Open

¥ Check out from Version Contral +

Configure + Get Help ~

Step 3 Select the downloaded Java demo and click Next.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

https://www.jetbrains.com/idea/
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip

IoT Device Access
Developer Guide 3 Development on the Device Side

Import Project X
(O) Create project from existing sources

© Import project from external model

- .
& Eclipse
* Gradle

Maven

Step 4 Import the sample code.

»mgttdemo ' src) main ;| java ;| com }
Y Project - S - A A
 mgttdemo C:\Users\|lwx885392\Desktop\mgttdemc
idea
src
main
java
com.dema
resources
test
target
= mgttlog
= mgttlogdaily.2020-01-09.log
= mgtt.logdaily.2020-01-10.log
a mgttdemo.iml
pom.xml
——End

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

loT Device Access
Developer Guide

3 Development on the Device Side

Before establishing a connection, modify the following parameters:

// MQTT connection address of the platform (Replace it with the domain name of the loT platform
that the device is connected to.)

static String serverlp = "xxx.myhuaweicloud.com";

// Device ID and secret obtained during device registration (Replace them with the actual values.)
static String deviceld = "722cb*** ¥ krkriikiaia

static String secret = "¥*rirt;

- serverlp indicates the device connection address of the platform. To
obtain this address, see Platform Connection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

- deviceld and secret indicate the device ID and secret, which can be
obtained after the device is registered.

Use MqttClient to set up a connection. The recommended heartbeat interval

for MQTT connections is 120 seconds. For details, see Constraints.
MgttConnectOptions options = new MqgttConnectOptions();
options.setCleanSession(false);

options.setKeepAlivelnterval(120); // Set the heartbeat interval from 30 to 1200 seconds.
options.setConnectionTimeout(5000);

options.setAutomaticReconnect(true);

options.setUserName(deviceld);

options.setPassword(getPassword().toCharArray());

client = new MqttAsyncClient(url, getClientld(), new MemoryPersistence());
client.setCallback(callback);

Port 1883 is a non-encrypted MQTT access port, and port 8883 is an
encrypted MQTTS access port (that uses SSL to load a certificate).
if (isSSL) {

url = "ssl://" + serverlp + ":" + 8883; // MQTTS connection

}else {
url = "tcp://" + serverlp + ":" + 1883; // MQTT connection

To establish an MQTTS connection, load the SSL certificate of the server and
add the SocketFactory parameter. The DigiCertGlobalRootCA.jks file is
stored in the resources directory of the demo. It is used by the device to verify
the platform identity when the device connects to the platform. You can
download the certificate file using the link provided in Certificates.

options.setSocketFactory(getOptionSocketFactory(MqttDemo.class.getClassLoader().getResource("Digi
CertGlobalRootCA.jks").getPath()));

Call client.connect(options, null, new IMqttActionListener()) to initiate a

connection. The MqgttConnectOptions parameter is passed.
client.connect(options, null, new IMqttActionListener()

The password passed by calling options.setPassword() is encrypted during
creation of MqgttConnectOptions. getPassword() is used to obtain the

encrypted password.
public static String getPassword() {
return sha256_mac(secret, getTimeStamp());

}
/* Call the SHA-256 algorithm for hash calculation. */
public static String sha256_mac(String message, String tStamp) {
String passWord = null;
try {
Mac sha256_HMAC = Mac.getInstance("HmacSHA256");
SecretKeySpec secret_key = new SecretKeySpec(tStamp.getBytes(), "HmacSHA256");
sha256_HMAC.init(secret_key);byte[] bytes = sha256_HMAC.doFinal(message.getBytes());
passWord = byteArrayToHexString(bytes);
} catch (Exception e) {
e.printStackTrace();
}

return passWord;

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

loT Device Access
Developer Guide

3 Development on the Device Side

5. After the connection is established, the device becomes online.

Figure 3-206 Device list - Device online status

<0 © Ruming @ Detais & Modify -+

Al Devices ots devices 21 @ Actiated ®Oniine d 0 cuckLas

If the connection fails, the onFailure function executes backoff
reconnection. The example code is as follows:

@Override
public void onFailure(IMqttToken iMqttToken, Throwable throwable) {
System.out.println("Mqtt connect fail.");

// Backoff reconnection
int lowBound = (int) (defaultBackoff * 0.8);
int highBound = (int) (defaultBackoff * 1.2);
long randomBackOff = random.nextInt(highBound - lowBound);
long backOffwithlitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff +
lowBound);
long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithlitter) > maxBackoff ?
maxBackoff : (minBackoff + backOffWithlitter);
System.out.println("---- " + waitTImeUntilNextRetry);
try {
Thread.sleep(waitTImeUntilNextRetry);
} catch (InterruptedException e) {
System.out.println("sleep failed, the reason is" + e.getMessage().toString());
}
retryTimes++;
MgttDemo.this.connect(true);

Subscribing to a Topic for Receiving Commands

Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics. For
details about the API, see Platform Delivering a Command.

// Subscribe to a topic for receiving commands.
client.subscribe(getCmdRequestTopic(), qosLevel, null, new IMqttActionListener();

getCmdRequestTopic() is used to obtain the topic for receiving commands from

the platform and subscribe to the topic.
public static String getCmdRequestTopic() {
return "$oc/devices/" + deviceld + "/sys/commands/#";

}

Reporting Properties

Devices can report their properties to the platform. For details, see Reporting
Device Properties.

// Report JSON data. service_id must be the same as that defined in the product model.

String jsonMsg = "{\"services\": [{\"service_id\": \"Temperature\",\"properties\": {\"value\": 57}},{\"service_id
\": \"Battery\",\"properties\": {\"level\": 80}}]1}";

MgttMessage message = new MqgttMessage(jsonMsg.getBytes());

client.publish(getRreportTopic(), message, qosLevel, new IMqgttActionListener();

The message body jsonMsg is assembled in JSON format, and service_id must be
the same as that defined in the product model. properties indicates a device

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

IoT Device Access
Developer Guide 3 Development on the Device Side

property, and 57 indicates the property value. event_time indicates the UTC time
when the device reports data. If this parameter is not specified, the system time is
used by default.

After a device or gateway is connected to the platform, you can call
MqttClient.publish(String topic,MgttMessage message) to report device
properties to the platform.

getRreportTopic() is used to obtain the topic for reporting data.
public static String getRreportTopic() {
return "$oc/devices/" + deviceld + "/sys/properties/report";

}

Viewing Reported Data

After the main method is called, you can view the reported device property data
on the device details page. For details about the API, see Device Reporting
Properties.

Figure 3-207 Viewing reported data - level

Device

Product Model Data

Figure 3-208 Viewing reported data - temperature_value

Device Info

Product Model Data

Latest Reported Time:

57

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

IoT Device Access
Developer Guide 3 Development on the Device Side

(11 NOTE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

Related Resources

You can refer to the MQTT or MQTTS API Reference on the Device Side to
connect MQTT devices to the platform. You can also develop an MQTT-based
smart street light online to quickly verify whether they can interact with the loT
platform to publish or subscribe to messages.

(11 NOTE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.8.3 Python Demo Usage Guide

Overview
This topic uses Python as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.
(10 NOTE
The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the loT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.
Prerequisites
e You have installed Python by following the instructions provided in Installing
Python.
e You have installed a development tool (for example, PyCharm) by following
the instructions provided in Installing PyCharm.
e You have obtained the device access address from the I0TDA console. For
details about how to obtain the address, see Platform Connection
Information.
e You have created a product and a device on the I0oTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.
Preparations

e Installing Python

a. Go to the Python website to download and install a desired version.

(The following uses Windows OS as an example to describe how to install
Python 3.8.2.)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://www.python.org/downloads/windows/

loT Device Access
Developer Guide 3 Development on the Device Side

About Downloads Documentation Community Success Stories News Events

Python > Downloads »>Windows

Python Releases for Windows

= Python 2.7 18rcl - April 4, 2020
ormation files = Download

ation files for 64-bit binaries = Download

mation files
mation files for 64-bit bina

il - RawninaA Windawe hain fila

b. After the download is complete, run the .exe file to install Python.

c. Select Add python 3.8 to PATH (if it is not selected, you need to

manually configure environment variables), click Customize installation,
and install Python as prompted.

% Python 2.8.2 (64-bit) Setup

- Install Python 3.8.2 (64-bit)
_/ Select Install Now to install Python with default settings, or che

Customize to enable or disable features.

= Install Now

C\Users\hantiangi\AppData\Local\Programs\Python\Python

ation
and file associations

ip and document,
Creates shortouts

ncludes 1DL

— Customize installation

Choose location and features

python
for Install launcher for all users (recommended)

windows Python 3.8 to PATH

d. Check whether Python is installed.

Press Win+R, enter cmd, and press Enter to open the CLI. In the CLI,

enter python -V and press Enter. If the Python version is displayed, the
installation is successful.

@A Command Prompt

e Installing PyCharm (If you have already installed PyCharm, skip this step.)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

loT Device Access

Developer Guide 3 Development on the Device Side

a. Visit the PyCharm website, select a version, and click Download.

Download PyCharm
Windows Mac Linux
~

Professional Community

For both Scientific and Web Python For pure Python development
Version: 20201 development. With HTML, J5, and SQL
Build: 201.6668.115 support.

8 April 2020

S

Free trial Free, open-source

System requirements
nstallation Instructions

Other versions

Get the Toolbox App to download PyCharm
and its future updates with ease

The professional edition is recommended.
b. Run the .exe file and install PyCharm as prompted.

Importing Sample Code
Step 1 Download the QuickStart (Python).

Step 2 Run PyCharm, click Open, and select the sample code downloaded.

¥ Get from Version Control

Step 3 Import the sample code.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

256

https://www.jetbrains.com/pycharm/download/#section=windows
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip

loT Device Access
Developer Guide

3 Development on the Device Side

e’f‘_; File Edit View Navigate Code Refacto

mqttdemo(python) loT_device_demo

Project v D = & — fc
mgqttdemo(python)
v loT device
v client
o _ init__.py
& loT_client.py
@ |oT_client_config.py
request
resources
utils
loT_device_demo
o command_sample.py
@ message_sample.py
a properties_sample.py
requestments.txt

Description of the directories:

loT_device_demo: MQTT demo files
message_sample.py: Demo for devices to send and receive messages

command_sample.py: Demo for devices to respond to commands delivered
by the platform

properties_sample.py: Demo for devices to report properties
loT_device/client: Used for paho-mqtt encapsulation.
loT_client_config.py: client configurations, such as the device ID and secret

loT_client.py: MQTT-related function configurations, such as connection,
subscription, publish, and response

loT_device/Utils: utility methods, such as those for obtaining the timestamp
and encrypting a secret

loT_device/resources: Stores certificates.

DigiCertGlobalRootCA.crt.pem is used by the device to verify the platform
identity when the device connects to the platform. You can download the
certificate file using the link provided in Certificates.

loT_device/request: Encapsulates device properties, such as commands,
messages, and properties.

Step 4 (Optional) Install the paho-maqtt library, which is a third-party library that uses the
MQTT protocol in Python. If the paho-mqtt library has already been installed, skip
this step. You can install paho-mqtt using either of the following methods:

Method 1: Use the pip tool to install paho-mqtt in the CLI. (The tool is already
provided when installing Python.)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

loT Device Access
Developer Guide

3 Development on the Device Side

In the CLI, enter pip install paho-mqtt and press Enter. If the message
Successfully installed paho-mqtt is displayed, the installation is successful. If
a message is displayed indicating that the pip command is not an internal or
external command, check the Python environment variables. See the figure
below.

B Ci\windows\system32
2 =

Method 2: Install paho-mqtt using PyCharm.

a. Open PyCharm, choose File > Settings > Project Interpreter, and click
the plus icon (+) on the right side to search for paho-mqtt.

Project: mqttdemo(python) » Project Interpreter

» Appearance & Behavior
Keymap

» Editor
Plugins

» Version Control

¥ Project: mqttdemo(python)

» Build, Execution, Deployment
» Languages & Frameworks

» Tools

Pylint

b. Click Install Package in the lower left corner.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

IoT Device Access
Developer Guide 3 Development on the Device Side

--—-End

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Before establishing a connection, modify the following parameters. The

loTClientConfig class is used to configure client information.

Client configurations

client_cfg = loTClientConfig(server_ip='iot-mqtts.cn-north-4. myhuaweicloud.com’,

device_id='5e85a55f60b7b804c51ce15¢c_py123', secret="****** is_ss|=True)

Create a device.

iot_client = lotClient(client_cfg)

- server_ip indicates the device connection address of the platform. To
obtain this address, see Platform Connection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

- device_id and secret are returned after the device is registered.

- is_ssl: True means to establish an MQTTS connection and False means to
establish an MQTT connection.

2. Call the connect method to initiate a connection.
iot_client.connect()

If the connection is successful, the following information is displayed:
----------------- Connection successful !!!

If the connection fails, the retreat_reconnection function executes backoff
reconnection. The example code is as follows:

Backoff reconnection
def retreat_reconnection(self):
print("---- Backoff reconnection")

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

IoT Device Access
Developer Guide 3 Development on the Device Side

global retryTimes

minBackoff = 1

maxBackoff = 30

defaultBackoff = 1

low_bound = (int) (defaultBackoff * 0.8)

high_bound = (int) (defaultBackoff * 1.2)

random_backoff = random.randint(0, high_bound - low_bound)
backoff_with_jitter = math.pow(2.0, retryTimes) * (random_backoff + low_bound)
wait_time_until_next_retry = min(minBackoff + backoff_with_jitter, maxBackoff)
print("the next retry time is ", wait_time_until_next_retry, " seconds")
retryTimes += 1

time.sleep(wait_time_until_next_retry)

self.connect()

Subscribing to a Topic

Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The message_sample.py file provides functions such as subscribing to topics,
unsubscribing from topics, and reporting device messages.

To subscribe to a topic for receiving commands, do as follows:

iot_client.subscribe(r'$oc/devices/' + str(self.__device_id) + r'/sys/commands/#')

If the subscription is successful, information similar to the following is displayed.
(topic indicates a custom topic, for example, Topic_1.)

------ You have subscribed: topic

Responding to a Command

The command_sample.py file provides the function of responding to commands
delivered by the platform. For details about the API, see Platform Delivering a
Command.

Responding to commands delivered by the platform
def command_callback(request_id, command):

If the value of result_code is 0, the command is delivered . If the value is 1, the command fails to be
delivered.

iot_client.respond_command(request_id, result_code=0)
jot_client.set_command_callback(command_callback)

Reporting Properties

Devices can report their properties to the platform. For details about the API, see
Device Reporting Properties.

The properties_sample.py file provides the functions of reporting device
properties, responding to platform settings, and querying device properties.

In the following code, the device reports properties to the platform every 10
seconds. service_property indicates a device property object. For details, see the
services_properties.py file.

Reporting properties periodically

while True:
Set properties based on the product model.
service_property = ServicesProperties()
service_property.add_service_property(service_id="Battery", property='batteryLevel', value=1)
iot_client.report_properties(service_properties=service_property.service_property, qos=1)
time.sleep(10)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

loT Device Access

Developer Guide 3 Development on the Device Side

If the reporting is successful, the reported device properties are displayed on the
device details page.

Figure 3-209 Viewing reported data - Battery_batteryLevel

vices | Dovice Details

(11 NOTE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

Reporting a Message

Message reporting is the process in which a device reports messages to the
platform. The message_sample.py file provides the message reporting function.

Sending a message to the platform using the default topic
iot_client.publish_message('raw message: Hello Huawei cloud loT'")

If the message is reported, the following information is displayed:

Publish success---mid = 1
L1 NOTE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.8.4 Android Demo Usage Guide

Overview

This topic uses Android as an example to describe how to connect a device to the

platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

(11 NOTE

The code snippets in this document are only examples and are for trial use only. To put

them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Prerequisites

e You have installed Android Studio. If not, install Android Studio by following

the instructions provided on the Android Studio website and then install the
JDK.

e You have obtained the device access address from the loTDA console. For
details about how to obtain the address, see Platform Connection
Information.

e You have created a product and a device on the I0oTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
e Install Android Studio.

Go to the Android Studio website to download and install a desired version.
The following uses Android Studio 3.5 running on 64-bit Windows as an
example.

Android Studio downloads

55555

768 ME

LLLLL

e Install the JDK. You can also use the built-in JDK of the IDE.

a. Go to the Oracle website to download a desired version. The following
uses JDK 8 for Windows x64 as an example.

b. After the download is complete, run the installation file and install the
JDK as prompted.

Importing Sample Code

Step 1 Download the sample code quickStart(Android).
Step 2 Run Android Studio, click Open, and select the sample code downloaded.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

https://developer.android.google.cn/studio/#downloads
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://developer.android.google.cn/studio/#downloads
https://www.oracle.com/java/technologies/javase-downloads.html
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip

loT Device Access

Developer Guide 3 Development on the Device Side

Welcome to Android Studio

Open File or Project

i S @ Hide path

\MgttAndroidClient-master1\quickStart(Android)

v : y

quickStart(Android)
L] mqttdemo(android)

 app Android Studio

libs R
Version 5.0
sre
= .gitignore
& build.gradle + Start a new Android Studio project

= proguard-rules.pro
% Open an existing Android Studio project

gradle
wrapper [check out project from Version Control v
= .gitignore
€ build.gradle [4' Profile or debug APK

L1 gradle.properties
2 gradiew 1¥ Import project (Gradle, Eclipse ADT, etc.)
= gradlew.bat ¥ Import an Android code sample
.1 local.properties

& settings.gradle
[drop a file into the space above to quickly locate it in the tree

arra | .. Heln

@ Events ¥ %X Configure ¥

Step 3 Import the sample code.

Android « (3]

K
b2
|

- app
manifests
e AndroidManifest.xml
java
com.iot. mgttdemo
€ ConnectUtils
€ MainActivity
com.iot. mqttdemo (androidTest)
com.iot.mqttdemo (test)
java (generated)
assets
- DigiCertGlobalRootCA.bks
res
res (generated)
@ Gradle Scripts
build.gradle (Project: MqttDemo)
build.gradle (Module: app)
.1 gradle-wrapper.properties (Gradle Version)
= proguard-rules.pro (ProGuard Rules for app)
.1 gradle.properties (Project Properties)
settings.gradle (Project Settings)
11 local.properties (SDK Location)

Get Help =

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

263

IoT Device Access
Developer Guide 3 Development on the Device Side

mqttdemo(android) app libs
Project « D =
mgqttdemo(android) [MqttDemo]

.gradle
.idea

app
build

libs
org.eclipse.paho.android.service-1.1.0.jar
org.eclipse.paho.client.mqttv3-1.2.0jar
src
= .gitignore
app.iml
build.gradle
= proguard-rules.pro
gradle

Description of the directories:

e manifests: configuration file of the Android project
e java: Java code of the project

MainActivity: demo Ul class

ConnectUtils: MQTT connection auxiliary class
e asset: native file of the project

DigiCertGlobalRootCA.bks: certificate used by the device to verify the
platform identity. It is used for login authentication when the device connects
to the platform.

e res: project resource file (image, layout, and character string)
e gradle: global Gradle build script of the project
e libs: third-party JAR packages used in the project

org.eclipse.paho.android.service-1.1.0.jar: component for Android to start
the background service component to publish and subscribe to messages

org.eclipse.paho.client. mqttv3-1.2.0.jar: MQTT java client component

Step 4 (Optional) Understand the key project configurations in the demo. (By default,
you do not need to modify the configurations.)

e AndroidManifest.xml: Add the following information to support the MQTT
service.
<service android:name="org.eclipse.paho.android.service.MqttService" />

e build.gradle: Add dependencies and import the JAR packages required for the
two MQTT connections in the libs directory. (You can also add the JAR

package to the website for reference.)
implementation files('libs/org.eclipse.paho.android.service-1.1.0.jar")
implementation files('libs/org.eclipse.paho.client.mqttv3-1.2.0.jar")

--—-End

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

loT Device Access
Developer Guide

3 Development on the Device Side

Ul Display

O

Sery

e D aevice_I«

Secret)
Mo S5L Encryption Qos 0
celD Battery

Property level Value 75

QOperation Log (click to clear)

The MainActivity class provides Ul display. Enter the device ID and secret,
which are obtained after the device is registered on the I0TDA console or by
calling the API Creating a Device.

In the example, the domain name accessed by the device is used by default.
(The domain name must match and be used together with the corresponding

certificate file during SSL-encrypted access.)
private final static String IOT_PLATFORM_URL = "iot-mqtts.cn-north-4.myhuaweicloud.com";

Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS 2 is not supported.

For details, see Constraints.
checkbox_mgqtt_connet_ssl.setOnCheckedChangeListener(new
CompoundButton.OnCheckedChangeListener() {
@Override
public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
if (isChecked) {
isSSL = true;
checkbox_maqtt_connet_ssl.setText ("SSL encryption");
}else {
isSSL = false;
checkbox_mgqtt_connet_ssl.setText ("no SSL encryption");
}
}
b))

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

loT Device Access
Developer Guide

3 Development on the Device Side

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1.

Call the MainActivity class to establish an MQTT or MQTTS connection. By
default, MQTT uses port 1883, and MQTTS uses port 8883 (a certificate must

be loaded).

if (isSSL) {
editText_mqtt_log.append("Starting to establish an MQTTS connection" + "\n");
serverUrl = "ssl://" + IOT_PLATFORM_URL + ":8883";

}else {
editText_mqtt_log.append("Starting to establish an MQTT connection" + "\n");
serverUrl = "tcp://" + IOT_PLATFORM_URL + ":1883";

}

Call the getMqttsCertificate method in the ConnectUtils class to load an
SSL certificate. This step is required only if an MQTTS connection is
established.

DigiCertGlobalRootCA.bks: certificate used by the device to verify the
platform identity for login authentication when the device connects to the
platform. You can download the certificate file using the link provided in

Certificates.

SSLContext sslContext = SSLContext.getInstance("SSL");

KeyStore keyStore = KeyStore.getInstance("bks");

The keyStore.load(context.getAssets().open("DigiCertGlobalRootCA.bks"), null);// Load the certificate
in the libs directory.

TrustManagerFactory trustManagerFactory = TrustManagerFactory.getinstance("X509");
trustManagerFactory.init(keyStore);

TrustManager[] trustManagers = trustManagerFactory.getTrustManagers();

sslContext.init(null, trustManagers, new SecureRandom());

sslSocketFactory = sslContext.getSocketFactory();

Call the intitMqgttConnectOptions method in the MainActivity class to
initialize MqgttConnectOptions. The recommended heartbeat interval for

MQTT connections is 120 seconds. For details, see Constraints.
mqttAndroidClient = new MqttAndroidClient(mContext, serverUrl, clientld);
private MqgttConnectOptions intitMgttConnectOptions(String currentDate) {

String password =
ConnectUtils.sha256_HMAC(editText_mqtt_device_connect_password.getText().toString(),
currentDate);

MgttConnectOptions mqttConnectOptions = new MqttConnectOptions();

mqttConnectOptions.setAutomaticReconnect(true);

mqttConnectOptions.setCleanSession(true);

mqttConnectOptions.setKeepAlivelnterval(120);

mqttConnectOptions.setConnectionTimeout(30);
mqttConnectOptions.setUserName(editText_mqtt_device_connect_deviceld.getText().toString());
mqttConnectOptions.setPassword(password.toCharArray());

return mqgttConnectOptions;

}
Call the connect method in the MainActivity class to set up a connection and

the setCallback method to process the message returned after the

connection is set up.
mqttAndroidClient.connect(mqgttConnectOptions, null, new IMqttActionListener()
mgqttAndroidClient.setCallback(new MgttCallBack4loTHub());

If the connection fails, the onFailure function in initMqttConnects executes
backoff reconnection. Sample code:

@Override

public void onFailure(IMgttToken asyncActionToken, Throwable exception) {
exception.printStackTrace();
Log.e(TAG, "Fail to connect to: " + exception.getMessage());
editText_mgqtt_log.append("Failed to set up the connection: "+ exception.getMessage() + "\n");

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

loT Device Access
Developer Guide 3 Development on the Device Side

// Backoff reconnection
int lowBound = (int) (defaultBackoff * 0.8);
int highBound = (int) (defaultBackoff * 1.2);
long randomBackOff = random.nextInt(highBound - lowBound);
long backOffWithlitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff + lowBound);
long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithlitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithlitter);
try {
Thread.sleep(waitTImeUntilNextRetry);
} catch (InterruptedException e) {
System.out.println("sleep failed, the reason is" + e.getMessage().toString());
}

retryTimes++;
MainActivity.this.initMgttConnects();

Subscribing to a Topic

Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The MainActivity class provides the methods for delivering subscription
commands to topics, subscribing to topics, and unsubscribing from topics.

String mqtt_sub_topic_command_json = String.format("$oc/devices/%s/sys/commands/#",
editText_mgqtt_device_connect_deviceld.getText().toString());
mqttAndroidClient.subscribe(getSubscriptionTopic(), gos, null, new IMqttActionListener()
mqttAndroidClient.unsubscribe (getSubscriptionTopic(), null, new IMqttActionListener()

If the connection is established, you can subscribe to the topic using a callback
function.

mqttAndroidClient.connect(mgttConnectOptions, null, new IMqttActionListener() {
@Overridepublic void onSuccess(IMgttToken asyncActionToken) {
subscribeToTopic();
}

After the connection is established, the following information is displayed in the
log area of the application page:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html

IoT Device Access
Developer Guide 3 Development on the Device Side

MQTT Demo

SSL Encryption Qos 0

Service ID Battery

Property level Value 79

Operaticn Log (click to clear)

1303
Subscribe to topic:Soc/devices/

MQTT connection
established.ssl://iot-mqtts.cn-north-4
.myhuaweicloud.com:8883

Topic subscribed.

Reporting Properties

Devices can report their properties to the platform. For details about the API, see
Device Reporting Properties.

The MainActivity class implements the property reporting topic and property
reporting.

String mqtt_report_topic_json = String.format("$oc/devices/%s/sys/properties/report",
editText_mqtt_device_connect_deviceld.getText().toString());

MgttMessage mqttMessage = new MqttMessage();
mqttMessage.setPayload(publishMessage.getBytes());
mgqttAndroidClient.publish(publishTopic, mgttMessage);

If the reporting is successful, the reported device properties are displayed on the
device details page.

Figure 3-210 Viewing reported data - PeriodicalReportConfig

10TDA Instances / Al Devices / Device Details

< | I — e O © auickLnks

Devicelnfo CloudRunlogs Cloud Delivery

Product Model Data

Latest Reported Time:

backoffTime period retryTimes. retryinterval
a e period retryTimes retrylnterval

10 40 88 42

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-211 Viewing reported data - Battery_level

ccccccccccccccccc

Product Model Data

|||||

(11 NOTE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

Receiving a Command

The MainActivity class provides the methods for receiving commands delivered by
the platform. After an MQTT connection is established, you can deliver commands
on the device details page of the IoTDA console or by using the demo on the
application side. For example, deliver a command carrying the parameter name
command and parameter value 5. After the command is delivered, a result is

received using the MQTT callback.

private final class MqttCallBack4loTHub implements MqttCallbackExtended {

@Overridepublic void messageArrived(String topic, MgttMessage message) throws Exception {
Log.i(TAG, "Incoming message: " + new String(message.getPayload(), StandardCharsets.UTF_8));
editText_mgqtt_log.append("MQTT receives the delivered command: " + message + "\n")

}

On the device details page, you can view the command delivery status. In this
example, timeout is displayed because this demo does not return a response to

the platform.

If the property reporting and command receiving are successful, the following
information is displayed in the log area of the application:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 3 Development on the Device Side

SSL Encryption Qos 0
service ID Battery
Property level Value 75

Operation Log (click to clear)

Properties to report: {"services":
[{"service_id":'Battery", properties"{'level""75"}}]}
Property reporting topic: Soc/devices/

/sys/
properties/report

MQTT message to push: {"services™
[{"service_id""Battery", properties"{'level""75]}
Properties reported.

3.8.5 C Demo Usage Guide

Overview
This topic uses C as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.
(10 NOTE
The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the loT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.
Prerequisites
e You have installed the Linux operating system (OS) and GCC (4.8 or later).
e You have obtained OpenSSL (required in MQTTS scenarios) and Paho library
dependencies.
e You have obtained the device access address from the 10TDA console. For
details, see Platform Connection Information.
e You have created a product and a device on the IoTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.
Preparations

e Compiling the OpenSSL library

a. Visit the OpenSSL website (https://www.openssl.org/source/), download
the latest OpenSSL version (for example, openssl-1.1.1d.tar.gz), upload it

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://www.openssl.org/source/

loT Device Access
Developer Guide

3 Development on the Device Side

to the Linux compiler (for example, to the /home/test directory), and run
the following command to decompress the package:

tar -zxvf openssl-1.1.1d.tar.gz

Generate a makefile.

Run the following command to access the OpenSSL source code
directory:
cd openssl-1.1.1d

Run the following configuration command:

./config shared --prefix=/home/test/openssl --openssldir=/home/test/openssl/ssl

In this command, prefix is the installation directory, openssldir is the
configuration file directory, and shared is used to generate a dynamic-
link library (.so library).

If an exception occurs during the compilation, add no-asm to the
configuration command (indicating that the assembly code is not used).

.Jconfig no-asm shared --prefix=/home/test/openssl --openssldir=/home/
test/openssl/ssl

Generate library files.

Run the following command in the OpenSSL source code directory:
make depend

Run the following command for compilation:

make

Install OpenSSL.

make install

Find the lib directory in home/test/openssl under the OpenSSL
installation directory.

The library files libcrypto.so.1.1, libssl.so.1.1, libcrypto.so, and libssl.so
are generated. Copy these files to the lib folder of the demo and copy the
content in /home/test/openssl/include/openssl to include/openssl of
the demo.

engines-1.1
pkgeconfig

| libcrypto

| liberypto.so

| libcrypto.so.1.1

| libssl.a

| libssl.so

| libsslse.1.1

Note: Some compilation tools are 32-bit. If these tools are used on a 64-
bit Linux computer, delete -m64 from the makefile before the
compilation.

Compiling the Eclipse Paho library file

a.

Visit https://github.com/eclipse/paho.mqtt.c to download the source
code paho.mqtt.c.

Decompress the package and upload it to the Linux compiler.
Modify the makefile.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

https://github.com/eclipse/paho.mqtt.c

loT Device Access
Developer Guide

3 Development on the Device Side

i. Run the following command to edit the makefile:
vim Makefile

ii. Search for the string.
/DOXYGEN_COMMAND =

iii. Add the following two lines (customized OpenSSL header files and

library files) under /DOXYGEN_COMMAND =doxygen:
CFLAGS += -I/home/test/openssl/include
LDFLAGS += -L/home/test/openssl/lib -lrt

iv. Replace the OpenSSL addresses of CCDLAGS_SO, LDFLAGS_CS,
LDFLAGS_AS and FLAGS_EXES to the actual ones.

Start the compilation.

i. Run the following command:
make clean

ii. Run the following command:
make

After the compilation is complete, you can view the libraries that are
compiled in the build/output directory.
e

samples
test
| libpaho-mgtt3a.so

| libpahe-mgtt3a.se.]

| libpaho-mgtt3a.so.1.0
| libpaho-mgtt3as.so

| libpaho-mqtt3as.so.]
| libpahe-mgtt3as.se.1.0
| libpahe-mgtt3c.so

| libpaho-mqtt3c.so.]

| libpaho-matt3c.s0.1.0
| libpaho-mqtt3cs.s0.1.0
| libpahe-mgtt3cs.se.1.1

| libpaho-mgtt3cs.so.1.50

| paho_c_version

Copy the Paho library file.

Currently, only libpaho-mqtt3as is used in the SDK. Copy the libpaho-
mgqtt3as.so and libpaho-mqtt3as.so.1 files to the lib folder of the demo.
Go back to the Paho source code directory, and copy MQTTAsync.h,
MQTTClient.h, MQTTClientPersistence.h, MQTTProperties.h,
MQTTReasonCodes.h, and MQTTSubscribeOpts.h in the src directory to
the include/base directory of the demo.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

IoT Device Access
Developer Guide 3 Development on the Device Side

{11 NOTE

Some Paho versions have the MQTTExportDeclarations.h header file. You are
advised to add all MQTT-related header files to the folder.

Importing Sample Code
Step 1 Download the sample code quickStart(C).

Step 2 Copy the code to the Linux runtime environment. The following figure shows the
code file hierarchy.

v =% mqgtt_c_demo
it Includes
v 2 src
w = util
lg] string util.c
] mgtt ¢ demo.c
v = conf
v = include
= base

l.cﬁ' wtil
= lib
Makefile

Description of the directories:

e src: source code directory
mqtt_c_demo: core source code of the demo
util/string_util.c; utility resource file

e conf: certificate directory

rootcert.pem is used by the device to verify the platform identity when the
device connects to the platform. For not basic edition instance, copy the
content of the c/ap-southeast-1-device-client-rootcert.pem file in the
certificate file to the conf/rootcert.pem file.

e include: header files
base: dependent Paho header files
openssl: dependent OpenSSL header files
util: header files of the dependent tool resources
e lib: dependent library file
libcrypto.so*/libssl.so*: OpenSSL library file
libpaho-mqtt3as.so*: Paho library file
o Makefile: Makefile

--—-End

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip

loT Device Access
Developer Guide

3 Development on the Device Side

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1.

Set parameters.

char *uri = "ssl://iot-mqtts.cn-north-4.myhuaweicloud.com:8883";

int port = 8883;

char *username = "+t /deviceld

char *password = ",

Note: MQTTS uses port 8883 for access. If MQTT is used for access, the URL is
tcp:// Domain name space:1883 and the port is 1883. For details about how
to obtain the domain name space, see Platform Connection Information.
The default heartbeat interval is 120 seconds. To change it, modify the
keepAlivelnterval parameter. For details about the heartbeat interval range,
see Constraints.

Start the connection.

- Add -lm to the end of the 15th line in Makefile and run the make
command for compilation. Delete -m64 from the makefile in a 32-bit
Os.

- Run export LD_LIBRARY_PATH=./lib/ to load the library file.
- Run./MQTT_Demo.o.

//connect
int ret = mqtt_connect();
if (ret!=0) {
printf("connect failed, result %d\n", ret);

If the connection is successful, the message "connect success" is displayed.
The device is also displayed as Online on the console.

begin to connect the server.

connect

If the connection fails, the mqtt_connect_failure function executes
backoff reconnection. The example code is as follows:

void mqtt_connect_failure(void *context, MQTTAsync_failureData *response) {

retryTimes++;

printf("connect failed: messageld %d, code %d, message %s\n", response->token, response->code,
response->message);

// Backoff reconnection

int lowBound = defaultBackoff * 0.8;

int highBound = defaultBackoff * 1.2;

int randomBackOff = rand() % (highBound - lowBound + 1);

long backOffWithlitter = (int) (pow(2.0, (double)retryTimes) - 1) * (randomBackOff + lowBound);

long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithlitter) > maxBackoff ? (minBackoff
+ backOffWithlitter) : maxBackoff;

TimeSleep(waitTImeUntilNextRetry);

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

loT Device Access
Developer Guide

3 Development on the Device Side

//connect
int ret = mqtt_connect();
if (ret!=0) {
printf("connect failed, result %d\n", ret);
}
}

Subscribing to a Topic

Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

Subscribe to a topic.

//subscribe
char *cmd_topic = combine_strings(3, "$oc/devices/", username, "/sys/commands/#");
ret = mqtt_subscribe(cmd_topic);
free(cmd_topic);
cmd_topic = NULL;
if (ret <0) {
printf("subscribe topic error, result %d\n", ret);

}

If the subscription is successful, the message "subscribe success" is displayed in the
demo.

Reporting Properties

Devices can report their properties to the platform. For details, see Reporting
Device Properties.

//publish data
char *payload = "{\"services\":[{\"service_id\":\"parameter\",\"properties\":{\"Load\":\"123\" \"ImbA_strVal
\"\"456\"}}}";
char *report_topic = combine_strings(3, "$oc/devices/", username, "/sys/properties/report");
ret = mqtt_publish(report_topic, payload);
free(report_topic);
report_topic = NULL;
if (ret <0){
printf("publish data error, result %d\n", ret);
}

If the property reporting is successful, the message "publish success" is displayed
in the demo.

The reported properties are displayed on the device details page.

Figure 3-213 Viewing reported data - Parameter

nnnnnnnnnnnnnnnn

123 456

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

IoT Device Access
Developer Guide 3 Development on the Device Side

(11 NOTE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

Receiving a Command

After subscribing to a command topic, you can deliver a synchronous command on
the console. For details, see Command Delivery to an Individual MQTT Device.

If the command delivery is successful, the command received is displayed in the
demo:

5/sys/commands/request_id=b5fb4352-43

, "command_name" : "timeRead"}

The code for receiving commands in the demo is as follows:

//receive message from the server
int mqtt_message_arrive(void *context, char *topicName, int topicLen, MQTTAsync_message *message) {
printf("mqtt_message_arrive() success, the topic is %s, the payload is %s \n", topicName, message-
>payload);
return 1; // cannot return 0 here, otherwise the message will not update or something wrong would
happen

}
(10 NOTE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.8.6 C# Demo Usage Guide

Overview

This topic uses C# as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

(11 NOTE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites

e You have installed Microsoft Visual Studio. If not, follow the instructions
provided in Install Microsoft Visual Studio.

e You have obtained the device access address from the loTDA console. For
details, see Platform Connection Information.

e You have created a product and a device on the 10TDA console. For details,
see Create a Product, Registering an Individual Device, and Registering a
Batch of Devices.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0339.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html

IoT Device Access
Developer Guide 3 Development on the Device Side

Preparations

e Go to the Microsoft website to download and install Microsoft Visual Studio
of a desired version. (The following uses Windows 64-bit, Microsoft Visual
Studio 2017, and .NET Framework 4.5.1 as examples.)

e After the download is complete, run the installation file and install Microsoft
Visual Studio as prompted.
Importing Sample Code
Step 1 Download the sample code quickStart(C#).

Step 2 Run Microsoft Visual Studio 2017, click Open Project/Solution, and select the
sample code downloaded.

system or open

W Class Library (NET Standard)

Step 3 Import the sample code.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

https://visualstudio.microsoft.com/
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip

loT Device Access
Developer Guide 3 Development on the Device Side

Solution Explorer

Team Explorer

Description of the directories:

e App.config: configuration file containing the server address and device
information

e C#: C# code of the project
EncryptUtil.cs: auxiliary class for device secret encryption
FrmMgqttDemo.cs: window Ul
Program.cs: entry for starting the demo

e dll third-party libraries used in the project

MQTTnet v3.0.11 is a high-performance, open-source .NET library based on
MQTT. It supports both MQTT servers and clients. The reference library files
include MQTTnet.dlL

MQTTnet.Extensions.ManagedClient v3.0.11 is an extension library that uses
MQTTnet to provide additional functions for the managed MQTT client.
Step 4 Set the project parameters in the demo.

e App.config: Set the server address, device ID, and device secret. When the
demo is started, the information is automatically written to the demo main
page.
<add key="serverUri" value="serveruri"/>
<add key="deviceld" value="deviceid"/>
<add key="deviceSecret" value="secret"/>
<add key="PortlsSsl" value="8883"/>

<add key="PortNotSsl" value="1883"/>

--—-End

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

loT Device Access
Developer Guide

3 Development on the Device Side

Ul Display

Log

a5l MQTT Device Access Simulator — O %

Topic

[] 55L Connection [] Enable Backeff Recormec t QS [0 v Comnect

eeeee Address ‘int-mqtts cnnorth-4. myhuaweicl| Deviee ID [Bebde ._test_1Ed3T46511 | Device Secret |********I

to Subseribe ‘$nc/dsvices/5eh4c(31_test_L 4746511 /sys/conmands/ 4 \

Clear Loz

Topic to Publish ‘$ucf’devices/5eb 31_test_1£d8746511/sys/properties/report ‘

{"serviges”; [{"properties”:
"alarm”:1, “temperaturs":92 670784, "huni di ty": 76. 37673, "smokeConcentration’s 18, 97006}, "service 14" “snokeletector”, “svent_tine” mill}]}

The FrmMgqttDemo class provides a Ul. By default, the FrmMqttDemo class
automatically obtains the server address, device ID, and device secret from the
App.config file after startup. Set the parameters based on the actual device
information.

- Server address: domain name. For details on how to obtain the domain
name, see Platform Connection Information.

- Device ID and secret: obtained after the device is registered on the
IoTDA console or the APl Creating a Device is called.

In the example, enter the server address. (The server address must match and
be used together with the corresponding certificate file during SSL-encrypted
access.)

<add key="serverUri" value="iot-mqtts.cn-north-4.myhuaweicloud.com"/>;

Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS 2 is not supported.
For details, see Constraints.

Establishing a Connection

To

connect a device or gateway to the platform, upload the device information to

bind the device or gateway to the platform.

1.

The FrmMgqttDemo class provides methods for establishing MQTT or MQTTS
connections. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS connections, you must load the
DigiCertGlobalRootCA.crt.pem certificate for verifying the platform identity.
This certificate is used for login authentication when the device connects to
the platform. You can download the certificate file from Obtaining
Resources.) Call the ManagedMqttClientOptionsBuilder class to set the
initial KeepAlivePeriod. The recommended heartbeat interval for MQTT

connections is 120 seconds. For details, see Constraints.
int portlsSsl = int.Parse(ConfigurationManager.AppSettings["PortIsSsl"]);
int portNotSsl = int.Parse(ConfigurationManager.AppSettings["PortNotSsl"]);

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html

IoT Device Access
Developer Guide 3 Development on the Device Side

if (client == null)
{

client = new MqttFactory().CreateManagedMqttClient();
}

string timestamp = DateTime.Now.ToString("yyyyMMddHH");
string clientID = txtDeviceld.Text + "_0_0_" + timestamp;

// Encrypt passwords using HMAC SHA256.
string secret = string.Empty;
if (!string.IsNullOrEmpty(txtDeviceSecret.Text))

secret = EncryptUtil.HmacSHA256 (txtDeviceSecret.Text, timestamp);
}

// Check whether the connection is secure.
if (!cbSSLConnect.Checked)
{
options = new ManagedMqttClientOptionsBuilder()
WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
.WithClientOptions(new MqttClientOptionsBuilder()
\WithTcpServer (txtServerUri.Text, portNotSsl)
.WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
\WithCredentials(txtDeviceld.Text, secret)
.WithClientld(clientID)
.WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
\WithCleanSession(false)
.WithProtocolVersion(MqttProtocolVersion.V311)
.Build())
.Build();
}
else
{
string caCertPath = Environment.CurrentDirectory + @"\certificate\rootcert.pem";
X509Certificate2 crt = new X509Certificate2(caCertPath);

options = new ManagedMqttClientOptionsBuilder ()
.WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
.WithClientOptions(new MqttClientOptionsBuilder()
\WithTcpServer(txtServerUri.Text, portlsSsl)
.WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
\WithCredentials(txtDeviceld.Text, secret)
.WithClientld(clientID)
.WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
\WithCleanSession(false)
WithTls(new MqttClientOptionsBuilderTlsParameters()

{
AllowUntrustedCertificates = true,
UseTls = true,
Certificates = new List<X509Certificate> { crt },
CertificateValidationHandler = delegate { return true; },
IgnoreCertificateChainErrors = false,
IgnoreCertificateRevocationErrors = false
b
.WithProtocolVersion(MqttProtocolVersion.V311)
.Build())
.Build();

}

2. Call the StartAsync method in the FrmMqttDemo class to set up a
connection. After the connection is set up, the OnMqttClientConnected is

called to print connection success logs.
Invoke ((new Action(() =>

ShowLogs($"{"try to connect to server " + txtServerUri.TextH{Environment.NewLine}");

)

if (client.IsStarted)
{

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

IoT Device Access
Developer Guide 3 Development on the Device Side

await client.StopAsync();
}

// Register an event.

client.ApplicationMessageProcessedHandler = new
ApplicationMessageProcessedHandlerDelegate (new
Action<ApplicationMessageProcessedEventArgs>(ApplicationMessageProcessedHandlerMethod)); //
Called when a message is published.

client.ApplicationMessageReceivedHandler = new
MgqttApplicationMessageReceivedHandlerDelegate(new
Action<MgqttApplicationMessageReceivedEventArgs>(MqttApplicationMessageReceived)); // Called
when a command is delivered.

client.ConnectedHandler = new MgqttClientConnectedHandlerDelegate(new
Action<MgttClientConnectedEventArgs>(OnMgttClientConnected)); // Called when a connection is set
up.

Callback function when the client.DisconnectedHandler = new
MgttClientDisconnectedHandlerDelegate(new
Action<MgttClientDisconnectedEventArgs>(OnMgqttClientDisconnected)); // Called when a connection
is released.

// Connect to the platform.
await client.StartAsync(options);

If the connection fails, the OnMqttClientDisconnected function executes
backoff reconnection. Sample code:

private void OnMqttClientDisconnected (MqttClientDisconnectedEventArgs e)
{
try {
Invoke((new Action(() =>
{

ShowLogs("mqtt server is disconnected" + Environment.NewLine);

txtSubTopic.Enabled = true;

btnConnect.Enabled = true;

btnDisconnect.Enabled = false;

btnPublish.Enabled = false;

btnSubscribe.Enabled = false;
b))k

if (cbReconnect.Checked)
{

Invoke ((new Action(() =>

ShowLogs("reconnect is starting" + Environment.NewLine);

)

// Backoff reconnection

int lowBound = (int) (defaultBackoff * 0.8);

int highBound = (int) (defaultBackoff * 1.2);

long randomBackOff = random.Next(highBound - lowBound);

long backOffWithlitter = (int) (Math.Pow(2.0, retryTimes)) * (randomBackOff + lowBound);

long waitTImeUtilNextRetry = (int) (minBackoff + backOffWithlitter) > maxBackoff ?
maxBackoff : (minBackoff + backOffWithlitter);

Invoke((new Action(() =>
{
ShowLogs("next retry time: " + waitTImeUtilNextRetry + Environment.NewLine);
)N
Thread.Sleep((int)waitTImeUtilNextRetry);

retryTimes++;

Task.Run(async () => { await ConnectMqttServerAsync(); });

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

IoT Device Access
Developer Guide 3 Development on the Device Side

catch (Exception ex)
Invoke ((new Action(() =>

ShowLogs("mqtt demo error: " + ex.Message + Environment.NewLine);

)
}

Subscribing to a Topic

Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The FrmMqttDemo class provides the method for delivering subscription
commands to topics.

List<MgqttTopicFilter> listTopic = new List<MqttTopicFilter>();

var topicFilterBulderPreTopic = new MqttTopicFilterBuilder().WithTopic(topic).Build();
listTopic.Add(topicFilterBulderPreTopic);

// Subscribe to a topic.
client.SubscribeAsync(listTopic.ToArray()).Wait();

After the connection is established and a topic is subscribed, the following
information is displayed in the log area on the home page of the demo:

gl MQTT Device Access Simulator -] e

[]55L Connection []Enable Backoff Recornect QoS |0 v Disoommect

Server Address |ts enmor th4. mybusweicloud con| Devige ID (Sebde G1_test_1£d3746511 | Davice Secret

Topie to Subseribe foc/devices/Gebde B1_test 1Ed3T46511/zys/conmands,#

Log Clesr Log

2020-11-12 02:22:33 - try to connect to server iot-mgqtts. onTwrth—4. myhuaweicloud com
2070-11-12 022239 — connect to mgtt server success, deviceld is Bebds 61_test_1fdA746511
2020-11-12 02:22:47 - tople | [$oo/derices/Bebdod 51_test_1FdBT46E11/sys/oonnands/H] is subseribe suscess

Topic to Publish |$uc/aevms/5eb4u 1_test_LEBT46511/sys /proper ties/repert

{"services™ [["properties”:
["alarn”:1, "tenperature” 52, 670734, "hani di ty”: 76, 37673, “smokeloncentration”: 19, 87906}, "service_id": "smokeleteotor”, “event_time”:null} 1}

Publish

Receiving a Command

The FrmMgqttDemo class provides the method for receiving commands delivered
by the platform. After an MQTT connection is established and a topic is
subscribed, you can deliver a command on the device details page of the loTDA
console or by using the demo on the application side. After the command is
delivered, the MQTT callback receives the command delivered by the platform.

private void MqttApplicationMessageReceived (MqttApplicationMessageReceivedEventArgs e)

Invoke ((new Action(() =>

{

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 3 Development on the Device Side

ShowLogs($"received message is {Encoding.UTF8.GetString(e.ApplicationMessage.Payload)}
{Environment.NewLine}");

string msg = "{\"result_code\": 0,\"response_name\": \"COMMAND_RESPONSE\",\"paras\": {\"result\":
\"success\"}}";

string topic = "$oc/devices/" + txtDeviceld.Text + "/sys/commands/response/request_id=" +
e.ApplicationMessage.Topic.Split('=")[1];

ShowLogs($"{"response message msg =" + msgH{Environment.NewLine}");

var appMsg = new MqttApplicationMessage();

appMsg.Payload = Encoding.UTF8.GetBytes(msg);

appMsg.Topic = topic;

appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue.ToString()) == 0 ?
MgqttQualityOfServiceLevel. AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;

appMsg.Retain = false;

// Return the upstream response.

client.PublishAsync(appMsg).Wait();
M
}

For example, deliver a command carrying the parameter name
SmokeDetectorControl: SILENCE and parameter value 50.

Figure 3-214 Command delivery - Synchronous command delivery

10TDA Instances / All Devices / Device Details

< online @

Device Info Cloud Run Logs Cloud Deliveryn Device Shadow Message Trace Device Monitoring Child Devices Tags

Message Delivery ‘Command Delivery 9 Deliver Command

@ Iithe product that the device belongs to has commands configured, you can ¢ tery, and NE-loT

© For synchronously delivered command, davice should send response within 20 seconds after the command
is sent. Otherwise, the status of this command wil be set as Timed Out. Leam more (7

Synchronous Command Delivery noe: Historical record query is not

Deliver Command] *Command [v | @
value [

(o) GO

After the command is delivered, the following information is displayed on the
demo page:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

loT Device Access

Developer Guide 3 Development on the Device Side
85! MOTT Device Access Simulator - O X
[]38L Cormection []Enable Backeff Eecormect o3 |0 v Discomnect
Surver Adress [ts onmorthd mybuareicLond oon| Devios T [Sebdo |_test_LEAGT4E6L] | Device Seeret
Topic to Subsoribe $oo/devices/Gebdo 61_test_LEd874651 1 sys/oonm ands,/#
Log Clear Loz
2020-11-12 02:22:30 - try to commsct to server iot-mgtts. cnmorth4. mybuaweicloud e
2020-11-12 02:22:39 - connect to nqtt server success, deviee L o 404D5 5087 7 4861 _teat - 1£45746511
2020-11-12 02:22.47 = topic : [$oo/devipes/Bebdoc] st_LES746511/sys/oomnandz/] is subsoribe suosess
2020-11-12 02:24'17 - received message is |’ parxs { valueted ervice_id"; "smokeletector”, "conmand name”:"SILENCE"}
2020-11-12 02:24:17 - respense message msg = { result_oode”: adlce nane’ ! “COMMAND_EESEONSE", “peras™: [“result”: “suocess‘}}
2020-11-12 02:24:17 — publish messagsId 01440099 38981531% e D6bboed3a08d, topic
$oc/deri ces/Bebdcd 5 _test IFHBHEEI1fs¥s/cnmman&sfraspnnsafraquast {70 2423500094760 e E5dde c204208, payload:

["result_code”: 0, "response_name”: "COMMAFD_RESPONSE", "paras”: {"result”: “success”}} is published suocess

Topic to Publish |$nc/aevacas/5emc 1_test_1£d3746511/sys/properties/report |

{"services” [{“properties”:
["alarn”:1, “temperature”: 92, 670784, "hunidi ty": 76, 37673, “smokeConsentration” 19, 879061, "service_id": “smokeDetestor”, "event_tine" null}]}

Fublish

Publishing a Topic

Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the APl Device Reporting Properties.

The FrmMgqttDemo class implements the property reporting topic and property
reporting.

var appMsg = new MqttApplicationMessage();

appMsg.Payload = Encoding.UTF8.GetBytes(inputString);

appMsg.Topic = topic;

appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue.ToString()) == 0 ?
MgttQualityOfServiceLevel AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;
appMsg.Retain = false;

// Return the upstream response.
client.PublishAsync(appMsg).Wait();

After a topic is published, the following information is displayed on the demo
page:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

loT Device Access

Developer Guide 3 Development on the Device Side

a5l MQTT Device Access Simulator

- [m] x
[] 5L Connection [] Enable Backeff Reconnect Qo5 |0 v Di sconnect
Server Airess [ts. onmorth~t myhuaweiclond oon| Device I0 [Sebie 1_test_LEdBT46511 | Device Tecret [#hbbres
Topic to Subseribe foo/derices/Sebdes 1_test_LEdBT46511/sys/conmands/B
Loz Clear Loz

2020-11-12 02:22:38 - try to connect to server ilot-mqtts. enmorth—4. myhuaweieloud com

2020-11-12 02:22:38 ~ comect to mqtt server success, deviceId is Seb test 1243746511

2020-11-12 0222 47 = topic : [$oc/devices/Seb _test_1EdBT46511 /sys/comnands 4] is subseribe success

2020-11-12 02:24:17 — reeeived message is [paras’:{"valuetest”;50}, “service_jd"; smokeDetector”, “connand nams”: "SILENCE”

2020-11-12 02:24 17 - response message msz = {'result_code”: 0, "response_name": "CONMAND_RESPONSE®, “paras’: {'result’: “snccess’}}

2020-11-12 02:24:17 ~ publish messageld 014400993696 46al-B97e-08bboed3e88d, topic:

$nc/dav|cas/EeHcMDiBsEabDSTde‘iSEl test 1£da?46511/;¥5/cnmmms/mpnnse/nquast § d=T0had235-3088~47 shi-O0ef-Gddec2Deddds, payload:
TIMMAND L

"result_code”: 0, response_name paras’: {'result’! “success’}} is published suceess2020-11-12 02:356:23 - publish
nessage Fopic = §oc/devicesiebdodiAds5ab0BTATAER test lfﬂﬁT‘iEEll/sys/prnpartlas/rapnrt

2020-11-12 02:36:23 - publish messageld dfeddf37-8elo—4767-bf67-Badan76996e8, topic:

$oc/dev:ces/seucawwas.bosrdrd4361 test LE43T6E11 /ays/propertion/report, payload: {services”: [{'properties”

11, ‘temperature” 92 670784, "hunidity”: 78. 37673, “smokeConcentration” 19, 97906), "service_id": “smekeletector”, "event_time” mull}]}
iz publ:s}.e& success

Topic to Publish |$oo/devices/Bebdoc 61_test_1fd3746611/sys/properties/Teport |

N "elerm™ 1, *tenperature” 92 670784, "huni dity" 78. 37673, "smokelonoentration” 1997906} N service 3" “snckeletector”, "event_tine’ mll}]}

If the reporting is successful, the reported device properties are displayed on the
device details page.

Figure 3-215 Viewing reported data - Demo_smokeDetector

Product Model Data

Latest Reportea Time

alarm (Unit: centigrade) temperature humidity smokeConcentration
1 12.670784 18.37673 19.97906
ol " .

(1 NOTE

If the latest data is not displayed on the device details page, check whether the services and
properties reported by the device are the same as those in the product model.

(11 NOTE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.8.7 Node.js Demo Usage Guide

Overview

This topic uses Node.js as an example to describe how to connect a device to the

platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html

loT Device Access
Developer Guide 3 Development on the Device Side

(11 NOTE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites

e You have installed Node.js by following the instructions provided in Install
Node.js.

e You have obtained the device access address from the loTDA console. For
details, see Platform Connection Information.

e You have created a product and a device on the IoTDA console. For details,

see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations

1. Go to the Node.js website to download and install a desired version. The
following uses Windows 64-bit and Node.js v12.18.0 (npm 6.14.4) as an
example.

Downloads

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS Current
Recommended For Most Users Latest Features

]| - ~
[o L
Windows Installer macOS Installer Source Code
Windows Installer (.msi) 32-bit 64-bit
Windows Binary (.zip) 32-bit 64-bit
macOS Installer (.pkg) 64-bit
macO$ Binary (tar.gz) 64-bit
Linux Binaries (x64) 64-bit
Linux Binaries (ARM) ARMVT ARMYS
Source Code node-v12.18.0.tar.gz

2. After the download is complete, run the installation file and install Node.js as
prompted.

3. Verify that the installation is successful.

Press Win+R, enter cmd, and press Enter. The command-Lline interface (CLI) is
displayed.

Enter node -v and press Enter. The Node.js version is displayed. Enter npm -v.
If any version information is displayed, the installation is successful.

Importing Sample Code

Step 1 Download the sample code quickStart(Node.js) and decompress the package.

Step 2 Press Win+R, enter cmd, and press Enter to open the CLI. Run the following
commands to install the global module:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://nodejs.org/en/download/
https://obs-pipeline.obs.cn-north-4.myhuaweicloud.com/sdkDeploy/quickStart/quickStart%28nodejs%29.zip

loT Device Access
Developer Guide

3 Development on the Device Side

Step 3

Step 4

Step 5

npm install mqtt -g: This command is used to install the MQTT protocol module.

npm install crypto-js -g: This command is used to install the device secret
cryptographic algorithm module.

npm install fs -g: This command is used to load the platform certificate.

Find the directory where the package is decompressed.

&8 Command Prompt - O X

Microsoft Windows [Version 10.6.18363.720]
(c) 2019 Microsoft Corporation. All rights reserved.

[C: \Users\ 1 numm—d :

D:\>cd quickstart(nodejs)\huaweicloud-iot-device-nodejs-demo

D:\quickStart(nodejs)\huaweicloud-iot-device-nodejs-demo>

Code directory:
e DigiCertGlobalRootCA.crt.pem: platform certificate file

e MgqttDemo.js: Node.js source code for MQTT or MQTTS connection to the
platform, property reporting, and command delivery.

Set the project parameters in the demo. In MgttDemao.js, set the server address,
device ID, and device secret for connecting to the device registered on the console
when the demo is started.

e Server address: domain name. For details on how to obtain the server address,
see Platform Connection Information. The server address must match and
be used together with the corresponding certificate file during SSL-encrypted
access.

e Device ID and secret: obtained after the device is registered on the I0TDA
console or the API Creating a Device is called.

var TRUSTED_CA = fs.readFileSync("DigiCertGlobalRootCA.crt.pem");// Obtain a certificate.

// MQTT connection address of the platform (Replace it with the domain name of the IoT platform that
the device is connected to.)

var serverUrl = "xxx.myhuaweicloud.com"; // Enter the access address of the platform that the device is
connected to.

// Device ID and secret obtained during device registration (Replace them with the actual values.)
var deviceld = "722cb*****srkikikiiiin,

var secret = "R

var timestamp = dateFormat("YYYYmmddHH", new Date());

var propertiesReportJson = {'services":[{'properties":
{'alarm"1,'temperature':12.670784,'humidity':18.37673,'smokeConcentration':19.97906},'service_id':'smokeDet
ector','event_time":null}]};

var responseReqlson = {'result_code": 0,'response_name": '"COMMAND_RESPONSE','paras": {'result" 'success'}};

Select different options from mqtt.connect(options) to determine whether to
perform SSL encryption during connection establishment on the device. You are
advised to use the default MQTTS connection.

// MQTTS connection
var options = {

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

loT Device Access
Developer Guide

3 Development on the Device Side

}

host: serverUrl,

port: 8883,

clientld: getClientld(deviceld),
username: deviceld,
password:HmacSHA256(secret, timestamp).toString(),
ca: TRUSTED_CA,

protocol: 'mqtts’,
rejectUnauthorized: false,
keepalive: 120,
reconnectPeriod: 10000,
connectTimeout: 30000

// MQTT connection is insecure and is not recommended.
var option = {

}

host: serverUrl,

port: 1883,

clientld: getClientld(deviceld),

username: deviceld,

password: HmacSHA256(secret, timestamp).toString(),
keepalive: 120,

reconnectPeriod: 10000,

connectTimeout: 30000

//protocol: 'mqtts'

//rejectUnauthorized: false

// By default, options is used for secure connection.
var client = mqtt.connect(options);

--—-End

Starting the Demo

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1.

This demo provides methods such as establishing an MQTT or MQTTS

connection. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS connections, you must load the certificate for verifying the
platform identity. The certificate is used for login authentication when the
device connects to the platform.) Call the mqtt.connect(options) method to

establish an MQTT connection.
var client = mqtt.connect(options);

client.on('connect’, function () {
log("connect to mqtt server success, deviceld is " + deviceld);
// Subscribe to a topic.
subScribeTopic();
// Publish a message.
publishMessage();
)

// Respond to the command.
client.on('message’, function (topic, message) {
log('received message is ' + message.toString());

var jsonMsg = responseReq;
client.publish(getResponseTopic(topic.toString().split("=")[1]), jsonMsg);
log('response message is ' + jsonMsg);

b))

Find the Node.js demo source code directory, modify key project parameters,
and start the demo.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

IoT Device Access
Developer Guide 3 Development on the Device Side

¥ Command Prompt - o X

Microsoft Windows [Version 10.6.18363.720]
(c) 2019 Microsoft Corporation. All rights reserved.

C: \Users\ 1 EE—>d :

D:\>cd quickstart(nodejs)\huaweicloud-iot-device-nodejs-demo

D: \quickstart (nodejs)\huaweicloud-iot-device-nodejs-demo>node MgttDemo.js

Before the demo is started, the device is in the offline state.

Figure 3-216 Device list - Device offline status

<0 . © Running @ etais & Mociy -+

All Devices 210 .

After the demo is started, the device status changes to online.

Figure 3-217 Device list - Device online status

If the connection fails, the reconnect function executes backoff
reconnection. The example code is as follows:

client.on('reconnect’, () => {
log("reconnect is starting");
// Backoff reconnection
var lowBound = Number(defaultBackoff)*Number(0.8);
var highBound = Number(defaultBackoff)*Number(1.2);
var randomBackOff = parselnt(Math.random()*(highBound-lowBound+1),10);
var backOffWithlitter = (Math.pow(2.0, retryTimes)) * (randomBackOff + lowBound);

var waitTImeUtilNextRetry = (minBackoff + backOffWithlitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithlitter);

client.options.reconnectPeriod = waitTImeUtilNextRetry;
log("next retry time: " + waitTImeUtilNextRetry);

retryTimes++;

b))

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

IoT Device Access
Developer Guide 3 Development on the Device Side

2. Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics. This
demo calls the subScribeTopic method to subscribe to a topic. After the

subscription is successful, wait for the platform to deliver a command.
// Subscribe to a topic for receiving commands.
function subScribeTopic() {

client.subscribe (getCmdRequestTopic(), function (err) {

if (err) {
log("subscribe error:" + err);
}else {
log("topic : " + getCmdRequestTopic() + " is subscribed success");
}
)

}

3. Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the API Device Reporting
Properties. After the connection is successful, call the publishMessage

method to report properties.
// Report JSON data. serviceld must be the same as that defined in the product model.
function publishMessage() {

var jsonMsg = propertiesReport;

log("publish message topic is " + getReportTopic());

log("publish message is " + jsonMsg);

client.publish(getReportTopic(), jsonMsg);

log("publish message successful");

}

Reported properties in the JSON format are as follows:

var propertiesReportJson = {'services":[{'properties':
{'alarm':1,'temperature":12.670784,'humidity':18.37673,'smokeConcentration':19.97906},'service_id":'smo
keDetector','event_time':null}]};

The following figure shows the CLI.

@8 Commond Prompt - node MqttDemo.js —] X

If the properties are reported, the following information is displayed on the
IoTDA console:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

loT Device Access
Developer Guide

3 Development on the Device Side

Figure 3-218 Viewing reported data - Demo_smokeDetector

<

Devielnto Ci

o) (@)

aaa

peratu nur ncent
1 12.670784 18.37673 19.97906

(10 NOTE

If the latest data is not displayed on the device details page, check whether the
services and properties reported by the device are the same as those in the product
model.

Receiving a Command

The demo provides the method for receiving commands delivered by the platform.
After an MQTT connection is established and a topic is subscribed, you can deliver
a command to a device of specific ID on the device details page of the loTDA
console or by using the demo on the application side. After the command is
delivered, the MQTT callback function receives the command delivered by the
platform.

For example, deliver a command carrying the parameter name smokeDetector:
SILENCE and parameter value 50.

Figure 3-219 Command delivery - SILENCE
Deliver Command

@ For synchronously delivered command, davice should send response within 20 seconds after the command
is sent. Otherwise, the status of this command will be set as Timed Out’. Learn more 3

Command smokeDetector: SILEMCE v

value 50

' ™,
[Cancel)
(e) 2D

After the command is delivered, the demo receives a 50 message. The following
figure shows the command execution page.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 3 Development on the Device Side

(11 NOTE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

3.9 OTA Upgrade Adaptation on the Device Side

3.9.1 Adaptation Development on the Device Side

Overview

Software OTA is implemented using the Huawei proprietary PCP protocol. You
must perform adaptation development on devices in accordance with the
interaction process defined in the protocol. The following describes how a device
constructs a PCP request and response based on the software upgrade interactions
between the IoT platform and device. This helps you better develop software
upgrade functions on the devices.

PCP requests and responses have the same message structure, as shown below.

For details on each field in the message structure, see the table below.

Field Type Description

Start ID WORD The value is fixed at OXFFFE.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4

loT Device Access

Developer Guide 3 Development on the Device Side
Field Type Description
Version BYTE The four most significant bits are

reserved. The four least significant
bits indicate the protocol version.
Currently, the version is 1.

Message code BYTE Type of the request exchanged
between the platform and device.
The message code of a response is
the same as that of the request. The
following message codes have been
defined:

e 0-18: reserved

e 19: device version query

e 20: software package notification
e 21: software package download
e 22: download result reporting

e 23: upgrade execution

e 24: upgrade result reporting

e 25-127: reserved

Check code WORD CRC16 check value calculated from
the start ID to the last byte of the
data zone. Before the calculation,
this field is set to 0. The result is then
written to the field after the CRC16
calculation.

NOTE
CRC16 algorithm: CRC16/CCITT
X16+x12+x5+1
Data zone length WORD Length of the data zone.
Data zone BYTE[n] Variable length, which is defined by

each instruction. For details, see the
definitions of the request and
response corresponding to each

instruction.
Data Type Description
BYTE Unsigned 1-byte integer
WORD Unsigned 2-byte integer
DWORD Unsigned 4-byte integer
BYTE[n] Hexadecimal number of n bytes

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

loT Device Access
Developer Guide

3 Development on the Device Side

Data Type

Description

STRING

String

Query on the Device Version

In the software upgrade process, the platform delivers a version query request to
the device and the device responds to the request. (The process below includes
only the PCP interactions between the platform and device.)

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

loT Device Access

Developer Guide 3 Development on the Device Side
]]

Queries the software version.

Y

Sends a response.

flf— — — — — — — — — — — — — —
Notifies a new software
package version. -
Sends a response.
- ——————— ——— —
Requests segment 1.
— — — — — — ————————
Sends a response.
Requests segment 2.
- — —

Sends a response.

— Assembles and

L) verifies the

-_R_ep_or‘E the download result. ~ upgrade package.
Sends a response. _
Executes the upgrade. o
Sends a response.
I

Sends a response.

]

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
request as follows:

e Start ID: The value is fixed at the first two bytes of a message stream, that is,
FFFE.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

loT Device Access
Developer Guide

3 Development on the Device Side

Version: The value is a 1-byte integer and is fixed at 1 (hexadecimal value:
01).

Message code: The value is a 1-byte integer. The message code for device
version query is 19 (hexadecimal value: 13).

Check code: The value is a 2-byte integer. The system sets the check code to
0000, calculates the complete message stream by using the CRC16 algorithm
to obtain a new check code, and then replaces 0000 with the new code.

Data zone length: The value is a 2-byte integer, indicating the length of the
data zone. Based on the structure of the data zone, a version query request
has no data zone. Therefore, the length is 0000.

Data zone: indicates the data to be sent to the device. Based on the structure
of the data zone, this message does not contain the data to send. The data
zone field is null.

Field Data Type Description

No data zone

Therefore, the combined code stream is FFFE 01 13 0000 0000. This stream is
calculated using the CRC16 algorithm to obtain check code 4C9A. (The platform
provides CRC16 code examples based on Java and C.) Then, the generated check
code is used to replace 0000 in the original code stream to obtain FFFE 01 13
4C9A 0000. This code stream is sent by the platform to the device to query its
version.

Message Sent by the Device

After receiving the version query request from the platform, the device returns the
query result. The fields in the response are as follows:

Start ID: The value is fixed at FFFE.

Version: The value is fixed at 01.

Message code: The value is 13 (the same as that in the request).
Check code: The value 0000 is used before CRC16 calculation.

Data zone length: In accordance with the data type of the fields in the data
zone, the length is 17 bytes (hexadecimal value: 0011).

Data zone: Based on the structure of the data zone, the result code of
successful processing is 00. Assume that the version is V0.9, which is
converted to ASCII characters 56302E39. The data type of the version is
BYTE[16], which indicates 16 bytes. The version 56302E39 has only 4 bytes.
Therefore, 0 is appended to obtain 56302E39000000000000000000000000.
The data zone is 0056302E39000000000000000000000000.

Field Data Type Description

Result code BYTE The value is 0X00,
indicating that the
processing was
successful.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

loT Device Access
Developer Guide

3 Development on the Device Side

Field

Data Type

Description

Current version

BYTE[16]

The version is described
using ASCII characters.
If there are not enough
available digits, 0X00 is
appended.

The combined code stream is FFFE 01 13 0000 0011

0056302E39000000000000000000000000. The check code after CRC16 calculation
is 8DE3. Therefore, the device returns the code stream FFFE 01 13 8DE3 0011
0056302E39000000000000000000000000 to the platform.

Notification of a New Software Package

After obtaining the software version, the platform notifies the device of the
software package of the new version.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

loT Device Access

Developer Guide 3 Development on the Device Side
]]

Queries the software version.

Y

Sends a response.

. = =
Notifies a new software
package version. -
Sends a response.
- ——————— ——— —
Requests segment 1.
— — — — — — ————————
Sends a response.
Requests segment 2.
- — —

Sends a response.

— Assembles and

L) verifies the

-_R_ep_or‘E the download result. ~ upgrade package.
Sends a response. _
Executes the upgrade. o
Sends a response.
I

Sends a response.

]

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
notification as follows:

e Start ID: The value is fixed at FFFE.
e Version: The value is fixed at 01.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

loT Device Access
Developer Guide

3 Development on the Device Side

Message code: Based on the message code, the message code of the new
software package notification is 20 (hexadecimal value: 14).

Check code: The value 0000 is used before CRC16 calculation.

Data zone length: In accordance with the data type of the fields in the data
zone, the length is 22 bytes (hexadecimal value: 0016).

Data zone:

- Target version: The value consists of 16 bytes. If the target version is
v1.0, the hexadecimal value appended with 0 is
56312E30000000000000000000000000.

- Upgrade package segment size: The value consists of two bytes. You
can manually enter the size of the upgrade package segment when
uploading the software package. The default value is 500 bytes. The size
ranges from 32 bytes to 500 bytes. For example, if the value is 500 bytes,
the hexadecimal value is 01F4.

- Number of upgrade package segments: The value consists of two bytes.
The value is obtained by rounding up the result of the software package
size divided by the segment size. If the software package size is 500
bytes, the number of segments is 1 (hexadecimal value: 0001).

- Check code: The value consists of two bytes. This field has been
deprecated. The fixed value is 0000.

Field Data Type Description

Target version BYTE[16] The version is
described using ASCII
characters. If there
are not enough
available digits, 0X00

is appended.
Upgrade package WORD Size of each segment.
segment size
Number of upgrade WORD Number of upgrade
package segments package segments.
Check code WORD The value is fixed at
0000.

The combined code stream is FFFE 01 14 0000 0016
56312E30000000000000000000000000 01F4 0001 0000. The check code after
CRC16 calculation is 02F7. Therefore, the code stream in the message sent by
the platform to instruct the device to download the new software package is
FFFE 01 14 02F7 0016 56312E3000000000000000000000000001F400010000.

Message Sent by the Device

After receiving the notification, the device returns a response to the platform,
indicating whether to allow the upgrade. The fields in the response are as
follows:

- Start ID: The value is fixed at FFFE.
- Version: The value is fixed at 01.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

IoT Device Access
Developer Guide 3 Development on the Device Side

- Message code: The value is 14 (the same as that in the request).
- Check code: The value 0000 is used before CRC16 calculation.

- Data zone length: In accordance with the data type of the fields in the
data zone, the length is 1 byte (hexadecimal value: 0001).

- Data zone: The device responds to the new software package notification
based on the actual situation. In this example, the device responds with
"The upgrade is allowed". The data zone is 00. The other result codes
must be adapted accordingly.

Field Data Type Description

Result code BYTE 0X00: The upgrade is
allowed.

0XO01: The device is in
use.

0X02: The signal is
weak.

0X03: The latest
version is in use.

0X04: The battery
power is low.

0XO05: The remaining
space is insufficient.
0X09: The memory is
insufficient.

O0X7F: An internal
error has occurred.

The combined code stream is FFFE 01 14 0000 0001 00. The check code after
CRC16 calculation is D768. Therefore, the code stream in the message
returned by the device is FFFE 01 14 D768 000100.

Downloading the Software Package

After the platform notifies the device of the new software package, the device
requests to download the package according to the sequence number of each
segment.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

loT Device Access

Developer Guide 3 Development on the Device Side
]

Queries the software version.

Y

Sends a response.

f— — — — - - — - — — —
Notifies a new software
package version. -
Sends a response.
- — — — — — — — — — — — —
Requests segment 1.
— — — — — — ————————
Sends a response.
Requests segment 2.
- — —

Sends a response. Assembles and
—, verifies the
__/ upgrade package.

Reports the download result.

y— - — — — — — — — — — — — —

Sends a response.

Executes the upgrade.

Sends a response.

Sends a response.

]

Message Sent by the Device

The device sends the first message to the platform to request packet
segmentation. In accordance with the PCP message structure, the device fills
each field in the first message as follows:

e Start ID: The value is fixed at FFFE.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

loT Device Access
Developer Guide

3 Development on the Device Side

e Version: The value is fixed at 01.

e Message code: In accordance with the message code, the message code for
requesting the software package is 21 (hexadecimal value: 15).

e Check code: The value 0000 is used before CRC16 calculation.

e Data zone length: In accordance with the data type of the fields in the data
zone, the length is 18 bytes (hexadecimal value: 0012).

e Data zone: The target version is the version in the notification delivered by

the platform, v1.0 (hexadecimal value:

56312E30000000000000000000000000). The segment sequence number is 0

(hexadecimal value: 0000).

Field

Data Type

Description

Target version

BYTE[16]

The version is described
using ASCII characters.

If there are not enough
available digits, 0X00 is
appended.

Segment sequence
number

WORD

Sequence number of
the requested segment.
The value starts from 0.
The total number of
segments is obtained
by rounding up the
result of the software
package size divided by
the segment size. The
device can save the
received segments and
request for the missing
segments next time.
Resumable download is
supported.

The combined code stream is FFFE 01 15 0000 0012

56312E30000000000000000000000000 0000. The check code after CRC16
calculation is 5618. Therefore, the code stream in the first segment request sent by
the device is FFFE 01 15 5618 0012 56312E300000000000000000000000000000.

For the code stream in other segment requests, only the segment sequence
number needs to be replaced, and the check code needs to be replaced after

CRC16 calculation. Details are not provided.

Message Sent by the Platform

After receiving a segment request, the platform delivers the segmented data to
the device. The fields in the response to the first segment request are as follows:

e Start ID: The value is fixed

at FFFE.

e Version: The value is fixed at 01.

e Message code: The value is 15 (the same as that in the request).

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

IoT Device Access
Developer Guide 3 Development on the Device Side

e Check code: The value 0000 is used before CRC16 calculation.

e Data zone: The result code is 00. The segment sequence number is 0000. The
segment data depends on the content defined in the software package. If the
software package content is HELLO, loT SOTA!, the hexadecimal value
converted through ASCII code is 48454C4C4F2C20496F5420534F544121, 16
bytes in total. When uploading a software package, you need to manually
enter the size of the upgrade package segment, which is 500 bytes. In this
case, no 0 needs to be appended.

e Data zone length: In accordance with the data type of the fields in the data
zone, the length is 19 bytes (hexadecimal value: 0013).

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.

0X80: The upgrade task
does not exist.

0X81: The specified
segment does not exist.

Segment sequence WORD Sequence number of a
number returned segment.
Segment data BYTE[n] Content of the

segment. n indicates
the segment size. If the
result code is not 0, this
field is not included.

The combined code stream is FFFE 01 15 0000 0013 00 0000
48454C4CAF2C20496F5420534F544121. The check code after CRC16 calculation is
E107. The code stream in the message sent by the platform to respond to the first
segment request is FFFE 01 15 E107 0013 00 0000
48454CAC4AF2C20496F5420534F544121.

For the code stream in responses to the other segment requests, the segment
sequence number and segment data need to be replaced, and the check code
needs to be replaced after CRC16 calculation. Details are not provided.

Download Result Reporting

After receiving all segments and assembling them, the device reports the
download result to the platform.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

loT Device Access

Developer Guide 3 Development on the Device Side
]

Queries the software version.

Y

Sends a response.

f— — — — - - — - — — —
Notifies a new software
package version. -
Sends a response.
- ——————— ——— —
Requests segment 1.
— — — — — — ————————
Sends a response.
Requests segment 2.
- — —

Sends a response. Assembles and
—, verifies the
__/ upgrade package.

Reports the download result.

y— - — — — — — — — — — — — —

Sends a response.

Executes the upgrade.

Sends a response.

Sends a response.

]

Message Sent by the Device

In accordance with the PCP message structure, the device fills each field in the
message as follows:

e Start ID: The value is fixed at FFFE.
e Version: The value is fixed at 01.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

loT Device Access
Developer Guide

3 Development on the Device Side

Message code: The value is 16 (the same as that in the request).
Check code: The value 0000 is used before CRC16 calculation.

Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

Data zone: carries the software package download results. For example, if the
download was successful, the device reports 00.

Field Data Type Description

Download status BYTE 0X00: The upgrade
package has been
downloaded.

0X05: The remaining
space is insufficient.

0X06: The download
timed out.

0XO07: The upgrade
package failed to be
verified.

0X08: The upgrade
package is not
supported.

The combined code stream is FFFE 01 16 0000 0001 00. The check code after
CRC16 calculation is 850E. The code stream in the download result message sent
by the device is FFFE 01 16 850E 0001 00.

Message Sent by the Platform

After receiving the software package download results from the device, the
platform returns a response. The fields in the response are as follows:

Start ID: The value is fixed at FFFE.

Version: The value is fixed at 01.

Message code: The value is 16 (the same as that in the request).
Check code: The value 0000 is used before CRC16 calculation.

Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

Data zone: If the processing is successful, 00 is returned. If the processing
fails, 80 is returned. In this example, 00 is returned.

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.

0X80: The upgrade task
does not exist.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

loT Device Access
Developer Guide 3 Development on the Device Side

The combined code stream is FFFE 01 16 0000 0001 00. The check code after
CRC16 calculation is 850E. The code stream in the message sent by the platform is
FFFE 01 16 850E 0001 00.

Upgrade Execution

After receiving the software package download result from the device, the
platform instructs the device to start the upgrade.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

loT Device Access

Developer Guide 3 Development on the Device Side
]

Queries the software version.

Y

Sends a response.

f— — — — - - — - — — —
Notifies a new software
package version. -
Sends a response.
- ——————— ——— —
Requests segment 1.
— — — — — — ————————
Sends a response.
Requests segment 2.
- — —

Sends a response. Assembles and
—, verifies the
__/ upgrade package.

Reports the download result.

y— - — — — — — — — — — — — —

Sends a response.

Executes the upgrade.

Sends a response.

Sends a response.

]

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
instruction as follows:

e Start ID: The value is fixed at FFFE.
e Version: The value is fixed at 01.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

loT Device Access
Developer Guide

3 Development on the Device Side

Message code: The value is 17 (the same as that in the request).
Check code: The value 0000 is used before CRC16 calculation.

Data zone length: In accordance with the data type of the fields in the data
zone, the length is 0 bytes (hexadecimal value: 0000).

Data zone: This field is not carried.

Field

Data Type Description

No data zone

The combined code stream is FFFE 01 17 0000 0000. The check code after CRC16
calculation is CF90. The code stream in the message sent by the platform is FFFE
01 17 CF90 0000.

Message Sent by the Device

After receiving the upgrade execution message from the platform, the device
responds to the message. The fields in the message are as follows:

Start ID: The value is fixed at FFFE.

Version: The value is fixed at 01.

Message code: The value is 17 (the same as that in the request).
Check code: The value 0000 is used before CRC16 calculation.

Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

Data zone: If the processing is successful, 00 is returned. For other processing
results, see the data zone definition. In this example, 00 is returned.

Field Data Type Description

Result code BYTE 0X00: The processing

was successful.

0X01: The device is in
use.

0X04: The battery
power is low.

0X05: The remaining
space is insufficient.

0X09: The memory is

insufficient.

The combined code stream is FFFE 01 17 0000 0001 00. The check code after
CRC16 calculation is B725. The code stream in the message returned by the device
is FFFE 01 17 B725 0001 00.

Reporting the Upgrade Result

After executing the software upgrade, the device reports the upgrade result to the
platform.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

loT Device Access

Developer Guide 3 Development on the Device Side
]

Queries the software version.

Y

Sends a response.

f— — — — - - — - — — —
Notifies a new software
package version. -
Sends a response.
- ——————— ——— —
Requests segment 1.
— — — — — — ————————
Sends a response.
Requests segment 2.
- — —

Sends a response. Assembles and
—, verifies the
__/ upgrade package.

Reports the download result.

y— - — — — — — — — — — — — —

Sends a response.

Executes the upgrade.

Sends a response.

Sends a response.

]

Message Sent by the Device

In accordance with the PCP message structure, the platform fills each field in an
upgrade result message as follows:

e Start ID: The value is fixed at FFFE.
e Version: The value is fixed at 01.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

loT Device Access
Developer Guide

3 Development on the Device Side

Message code: The value is 18 (the same as that in the request).
Check code: The value 0000 is used before CRC16 calculation.

Data zone length: In accordance with the data type of the fields in the data
zone, the length is 17 bytes (hexadecimal value: 0011).

Data zone: carries the result code and current version. In this example, the
result code is 00, indicating that the upgrade was successful. The current
version is the same as the software version delivered by the platform, v1.0
(hexadecimal value: 56312E30000000000000000000000000).

Field Data Type Description

Result code BYTE 0X00: The upgrade was
successful.
0XO01: The device is in
use.

0X04: The battery
power is low.

0X05: The remaining
space is insufficient.

0X09: The memory is
insufficient.

0XO0A: The upgrade
package failed to be
installed.

0X7F: An internal error
has occurred.

Current version BYTE[16] Current version of the
device.

The combined code stream is FFFE 01 18 0000 0011
0056312E30000000000000000000000000. The check code after CRC16 calculation
is C7D2. The code stream in the upgrade result message reported by the device is
FFFE 01 18 C7D2 0011 0056312E30000000000000000000000000.

Message Sent by the Platform

After receiving the upgrade result message, the platform responds to the device.
The fields of each message are as follows:

Start ID: The value is fixed at FFFE.

Version: The value is fixed at 01.

Message code: The value is 18 (the same as that in the request).
Check code: The value 0000 is used before CRC16 calculation.

Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

Data zone: If the processing is successful, 00 is returned. If the upgrade task
does not exist, 80 is returned. In this example, 00 is returned.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

loT Device Access
Developer Guide

3 Development on the Device Side

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.

0X80: The upgrade task
does not exist.

The combined code stream is FFFE 01 18 0000 0001 00. The check code after
CRC16 calculation is AFA1. The code stream in the response returned by the
platform is FFFE 01 18 AFA1 0001 00.

CRC16 Code Examples
Code example using the Java-based CRC16 algorithm:

public class CRC16 {

/*

* CCITT standard CRC16(1021) remainder table CRC16-CCITT ISO HDLC, ITU X.25, x16+x12+x5+1
polynomial

* Polynomial generated in the case of highest order first: Gm=0x11021; polynomial generated in the
case of lowest order first: Gm=0x8408. In this example, highest order first is used.

*/

private static int[] crc16_ccitt_table = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,

/**

*

0x8108, 0x9129, Oxa14a, O0xb16b, 0xc18c, Oxd1ad, Oxelce, Oxf1ef, 0x1231, 0x0210, 0x3273, 0x2252,
0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, Oxd3bd, 0xc39c, 0xf3ff, Oxe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509,
Oxe5ee, 0xf5cf, Oxc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, Oxa77a, 0x9719, 0x8738, 0xf7df, Oxe7fe, 0xd79d, Oxc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7,
0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, Oxe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, Oxdbfd, Oxcbdc, Oxfbbf, Oxeb9e,
0x9b79, 0x8b58, 0xbb3b, Oxab1a, 0x6cab, 0x7c87, 0x4ced, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
Oxedae, 0xfd8f, Oxcdec, Oxddcd, Oxad2a, OxbdOb, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4,
0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xffof, Oxefbe, Oxdfdd, Oxcffc, Oxbf1b, Oxaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, Oxb1ca, Oxaleb, 0xd10c, Oxc12d, 0xf14e, Oxe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3,
0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, Oxb3da, 0xc33d, Oxd31c, Oxe37f, Oxf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, Oxb5ea, Oxa5cb, 0x95a8, 0x8589,
0xf56e, Oxe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
Oxa7db, Oxb7fa, 0x8799, 0x97b8, Oxe75f, 0xf77e, Oxc71d, Oxd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0,
0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99¢8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, Oxcb7d, Oxdb5c, Oxeb3f, Oxfb1e,
0x8bf9, 0x9bd8, Oxabbb, Oxbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, Ox1ad0, 0x2ab3, 0x3a92,
0xfd2e, OxedOf, Oxdd6c, Oxcd4d, Oxbdaa, Oxad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45,
0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, Oxef1f, Oxff3e, Oxcf5d, Oxdf7c, Oxaf9b, Oxbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, Ox1ef0 };

* @param reg_init

*

initial value during the CRC

* @param message

*

check code

* @return

*/

private static int do_crc(int reg_init, byte[] message) {

int crc_reg = reg_init;
for (inti = 0; i < message.length; i++) {
crc_reg = (crc_reg >> 8) A crc16_ccitt_table[(crc_reg A messagel[i]) & 0xff];

return crc_reg;

}
/**

* Generate a CRC code based on the data.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

311

loT Device Access
Developer Guide

3 Development on the Device Side

*

* @param message

* byte data

* @return int verification code

*/

public static int do_crc(byte[] message) {
// The initial value of the CRC starts from 0x0000.
int crc_reg = 0x0000;
return do_crc(crc_reg, message);

}

}

Code example using the C-based CRC16 algorithm:
/**

* CCITT standard CRC16(1021) remainder table CRC16-CCITT ISO HDLC, ITU X.25, x16+x12+x5+1 polynomial
* Polynomial generated in the case of highest order first: Gm=0x11021; polynomial generated in the case of

lowest order first: Gm=0x8408. In this example, highest order first is used.

*/

const unsigned short crc16_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, Oxa14a, Oxb16b, 0xc18c, Oxd1ad, Oxelce, Oxf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, Oxf3ff, Oxe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
Oxa56a, 0xb54b, 0x8528, 0x9509, Oxe5ee, 0xf5cf, Oxc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, Oxa77a, 0x9719, 0x8738, 0xf7df, Oxe7fe, 0xd79d, Oxc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, Oxf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, Oxcbdc, Oxfbbf, Oxeb9e, 0x9b79, 0x8b58, Oxbb3b, Oxab1a,
0x6cab, 0x7c87, Ox4ce4d, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, Ox1c41,
Oxedae, 0xfd8f, Oxcdec, Oxddcd, Oxad2a, OxbdOb, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xffof, Oxefbe, Oxdfdd, Oxcffc, Oxbf1b, Oxaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, Oxb1ca, Oxaleb, 0xd10c, Oxc12d, 0xf14e, Oxe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, Oxe37f, Oxf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
Oxb5ea, Oxa5cb, 0x95a8, 0x8589, 0xf56e, Oxe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
Oxa7db, Oxb7fa, 0x8799, 0x97b8, Oxe75f, 0xf77e, Oxc71d, Oxd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, Oxe92f, 0x99c8, 0x89e9, 0xb98a, Oxa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
Oxcb7d, Oxdb5c, Oxeb3f, Oxfb1e, 0x8bf9, 0x9bd8, Oxabbb, Oxbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, Ox1ad0, Ox2ab3, 0x3a92,
0xfd2e, OxedOf, Oxdd6c, Oxcd4d, Oxbdaa, Oxad8b, 0x9de8, 0x8dc9,
0x7¢c26, 0x6c07, 0x5c64, 0x4c45, Ox3ca2, 0x2c83, 0x1ce0, 0x0cc1,
oxef1f, Oxff3e, Oxcf5d, Oxdf7c, Oxaf9b, Oxbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0

b5

int do_crc(int reg_init, byte* data, int length)
{
int cnt;
int crc_reg = reg_init;
for (cnt = 0; cnt < length; cnt++)
{
crc_reg = (crc_reg >> 8) A crc16_table[(crc_reg A *(data++)) & OxFF];
}
return crc_reg;

}
int main(int argc, char **argv)

// FFFE011300000000 is represented by a byte array.
byte message[8] = {OxFF,0xFE,0x01,0x13,0x00,0x00,0x00,0x00};

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

312

IoT Device Access
Developer Guide 3 Development on the Device Side

// The initial value of the CRC starts from 0x0000.
int a = do_crc(0x0000, message, 8);
printf("a ==> %x\n", a);

}

FAQ
OTA Upgrades

Best Practices

Performing OTA Firmware Upgrade for MQTT Devices

3.9.2 PCP Introduction

The PCP protocol stipulates the communication content and format between the
loT platform and devices.

PCP runs at the application layer for device upgrade.

Communication Method

1. PCP runs at the application layer. LwM2M, CoAP, MQTT, or other non-
streaming protocols can be used at the underlying layer.

2. PCP messages are not allocated with independent ports and are independent
from protocols at the underlying layer. To differentiate PCP messages from
device service messages, OXFFFE is used as the start bytes of the PCP
messages, and the first two bytes of the service messages cannot be OXFFFE.
For details, see PCP Message Identification.

3. PCP uses a question-and-answer communication mode. All request messages
have a response message.

Message Structure

Field Type Description

Start ID WORD Start ID: The value is fixed at
OXFFFE.

Version BYTE The four most significant bits are

reserved. The four least significant
bits indicate the protocol version.
Currently, the version is 1.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0039.html

loT Device Access
Developer Guide

3 Development on the Device Side

Data Type

Field Type

Description

Message code BYTE

Type of the request exchanged
between the platform and device.
The message code of a response is
the same as that of the request. The
following message codes have been
defined:

e 0-18: reserved

e 19: device version query

e 20: software package notification
e 217: software package download
e 22: download result reporting

e 23: upgrade execution

e 24: upgrade result reporting

e 25-127: reserved

Check code WORD

CRC16 check value calculated from
the start ID to the last byte of the
data zone. Before the calculation,
this field is set to 0. The result is then
written to the field after the CRC16
calculation.

NOTE

CRC16 algorithm: CRC16/CCITT
X16+x12+x5+1

Data zone length WORD

Length of the data zone.

Data zone BYTE[n] Variable length, which is defined by
each instruction. For details, see the
definitions of the request and
response corresponding to each
instruction.

Data Type Description

BYTE Unsigned 1-byte integer

WORD Unsigned 2-byte integer

DWORD Unsigned 4-byte integer

BYTE[n] Hexadecimal number of n bytes

STRING String

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

314

IoT Device Access
Developer Guide 3 Development on the Device Side

(11 NOTE

PCP uses the network sequence to transmit WORD and DWORD data.

Device Version Query
Request

Direction: from the platform to a device

Field Data Type Description

No data zone

Response

Direction: from a device to the platform

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.

Current version BYTE[16] The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

(11 NOTE

e The platform determines whether the device needs to be upgraded based on the
version. If it does, the platform sends a request to upgrade the device.

e If the response times out, the platform stops the upgrade task.
Software Package Notification

Request

Direction: from the platform to a device

Field Data Type Description

Target version BYTE[16] The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

Upgrade package WORD Size of each segment.
segment size

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

loT Device Access
Developer Guide

3 Development on the Device Side

Field Data Type Description
Number of upgrade WORD Number of upgrade
package segments package segments
Check code WORD The value is fixed at
0000.
Response

Direction: from a device to the platform

Field

Data Type

Description

Result code

BYTE

0X00: The upgrade is
allowed.

0X01: The device is in
use.

0X02: The signal is weak.
0X03: The latest version
is in use.

0X04: The battery power
is low.

0XO05: The remaining
space is insufficient.

0X09: The memory is
insufficient.

O0X7F: An internal error
has occurred.

(11 NOTE

e If the upgrade is not allowed by the device, the platform stops the upgrade task.

e [f the response times out, and the request for the upgrade package is not received, the
platform stops the upgrade task.

Software Package Requesting

Request

Direction: from a device to the platform

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

loT Device Access
Developer Guide

3 Development on the Device Side

Field

Data Type

Description

Target version

BYTE[16]

The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

Segment sequence
number

WORD

Sequence number of the
requested segment. The
value starts from 0. The
total number of
segments is obtained by
rounding up the result of
the software package
size divided by the
segment size. The device
can save the received
segments and request
for the missing segments
next time. Resumable
download is supported.

Response

Direction: from the platform to a device

Field Data Type Description
Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.
0X81: The specified
segment does not exist.
Segment sequence WORD Sequence number of a
number returned segment.
Segment data BYTE[n] Content of the segment.

n indicates the segment
size. If the result code is
not O, this field is not
included.

Download Result Reporting

Request

Direction: from a device to the platform

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

loT Device Access

Developer Guide 3 Development on the Device Side
Field Data Type Description
Download status BYTE 0X00: The upgrade
package has been
downloaded.

0X05: The remaining
space is insufficient.

0X06: The download
timed out.

0XO07: The upgrade
package failed to be
verified.

0X08: The upgrade
package is not

supported.
Response
Direction: from the platform to a device
Field Data Type Description
Result code BYTE 0X00: The processing

was successful.

0X80: The upgrade task
does not exist.

Upgrade Execution
Request

Direction: from the platform to a device

Field Data Type Description

No data zone

Response

Direction: from a device to the platform

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

loT Device Access

Developer Guide 3 Development on the Device Side
Field Data Type Description
Result code BYTE 0XO00: The processing

was successful.

0XO01: The device is in
use.

0X04: The battery power
is low.

0XO05: The remaining
space is insufficient.

0X09: The memory is

insufficient.
Upgrade Result Reporting
Request
Direction: from a device to the platform
Field Data Type Description
Result code BYTE 0X00: The upgrade was
successful.
0X01: The device is in
use.
0X04: The battery power
is low.

0X05: The remaining
space is insufficient.

0X09: The memory is
insufficient.

0XO0A: The upgrade
package failed to be
installed.

O0X7F: An internal error
has occurred.

Current version BYTE[16] Current version of the
device.

Response

Direction: from the platform to a device

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

loT Device Access
Developer Guide

3 Development on the Device Side

Field Data Type Description

Result code BYTE 0XO00: The processing

was successful.

0X80: The upgrade task
does not exist.

PCP Message Identification

PCP messages and device service messages share the same port and URL. When
receiving a message from the device, the platform performs the following steps to
determine whether the message is a PCP message or a service message:

1.

Checks whether the device supports software upgrades (defined by
omCapability.upgradeCapability in the product model). If the device does
not support software upgrades, the message is considered to be a service
message.

Checks whether the software upgrade protocol is PCP. If the protocol is not
PCP, the message is considered to be a service message.

Checks whether the first two bytes of the message are OXFFFE. If the bytes
are not OXFFFE, the message is considered to be a service message.

Checks whether the version is valid. If the version is invalid, the message is
considered as a service message.

Checks whether the message code is valid. If the message code is invalid, the
message is considered as a service message.

Checks whether the check code is correct. If the check code is incorrect, the
service message is considered to be a service message.

Checks whether the length of the data zone is correct. If the length is
incorrect, the message is considered to be a service message.

If all the preceding check items are passed, the message is considered as a
PCP message.

(11 NOTE

The start bytes of a service message cannot be OXFFFE.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

loT Device Access
Developer Guide 4 Development on the Application Side

Development on the Application Side

4.1 APl Usage Guide

The loT platform provides a variety of APIs to make application development
easier and more efficient. You can call these open APIs to quickly integrate
platform functions, such as management of products, devices, subscriptions,
commands, and rules.

(11 NOTE

The application needs to be authenticated by the IAM service. To obtain a token, see
Debugging the API Obtaining the Token for an IAM User.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

loT Device Access
Developer Guide

4 Development on the Application Side

Applicationside APIs (see API

Java demo)

Gets authenticated.

Returns & token.

Queries the application access
address on the console.

Creates and manages a product.

Creates and manages a device.

Delivers a command, properties, or
a message.

Makes a subscription.

Pushes data.

Application Development Resources

The platform provides a wealth of application-side APIs to ease application
development. Applications can call these APIs to implement services such as
secure access, device management, data collection, and command delivery.

Resource Package

Description

Download Link

Application API Java
Demo

You can call application-
side APIs to experience
service functions and
service processes.

API Java Demo

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

322

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip

loT Device Access
Developer Guide

4 Development on the Application Side

Resource Package

Description

Download Link

Application Java SDK

You can use Java
methods to call
application-side APIs to
communicate with the
platform. For details, see
Java SDK.

Application Java SDK

Application .NET SDK

You can use .NET
methods to call
application-side APIs to
communicate with the
platform. For details,

see .NET SDK.

Application .NET SDK

Application Python SDK

You can use Python
methods to call
application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Application Python SDK

Application Go SDK

You can use Go methods
to call application-side
APIs to communicate
with the platform. For
details, see Go SDK.

Application Go SDK

Application Node.js SDK

You can use Node.js
methods to call
application-side APIs to
communicate with the
platform. For details, see
Node.js SDK.

Application Node.js
SDK

Application PHP SDK

You can use PHP
methods to call
application-side APIs to
communicate with the
platform. For details, see
PHP SDK.

Application PHP SDK

API Introduction

API Group Scenario

Product Used to manage product models that have been imported to the
manageme | platform. A product model defines the capabilities or features of
nt all devices under a product.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

323

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html

loT Device Access
Developer Guide

4 Development on the Application Side

API Group Scenario

Device Used by applications to manage devices, including basic device

manageme | details and device data.

nt

Device Used by applications to transparently transmit messages to

message devices.

Device Used by applications to deliver commands to devices for control.

command A product model defines commands that the platform can

deliver to devices.

Device Used by applications to deliver properties to devices. A product

property model defines properties that the platform can deliver to devices.

AMQP Used to create, delete, and view queues. AMQP queues can

queue receive messages through AMQP clients after subscribing to

manageme | rules.

nt

Access Used for authentication when long connections are established

credential using protocols such as AMQP and MQTTS.

manageme

nt

Data Used by applications to set rules to implement service linkage or

transfer forward data to other Huawei Cloud services. Device linkage and

rule data forwarding rules are available.

manageme | o A device linkage rule consists of triggers and actions. When

zt APIs and the configured trigger is met, the corresponding action is
evice

linkage rule
APIs

triggered, for example, delivering commands, sending
notifications, reporting alarms, and clearing alarms.

e For a data forwarding rule, you need to set forwarding data,
set forwarding targets, and start the rule. Data can be
forwarded to Data Ingestion Service (DIS), Distributed
Message Service (DMS) for Kafka, Object Storage Service
(OBS), ROMA Connect, third-party application (HTTP push),
and AMQP message queue.

Subscriptio
n
manageme
nt APIs

Used by applications to subscribe to resources provided by the
platform. If the subscribed resources change, the platform
notifies the applications of the change.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

324

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html

loT Device Access
Developer Guide

4 Development on the Application Side

API Group Scenario
Device Used by applications to operate and manage the device shadow.
shadow A device shadow is a file used to store and retrieve the status of
APIs a device.

e Each device has only one device shadow, which is uniquely
identified by the device ID.

e The device shadow saves only the latest data reported by the
device and the desired data set by an application.

e You can use the device shadow to query and set the device
status regardless of whether the device is online.

Device Used by applications to manage device groups, including group
group details and device members in a group.

manageme

nt APIs

Tag Used by applications to bind tags to or unbind tags from
manageme | resources.

nt APls Currently, only devices support tags.

Resource Used by applications to manage resource spaces, including
space adding, deleting, modifying, and querying resource spaces.
manageme

nt

Batch task | Used by applications to perform batch operations on devices
APIs connected to the platform.

e Supported batch operations: upgrading software and
firmware, creating, deleting, updating, freezing, and
unfreezing devices, creating synchronous and asynchronous
commands, creating messages, and setting device shadow.

e Up to 10 unfinished tasks of the same type is allowed for a
user. When the maximum number is reached, new tasks
cannot be created.

Device CA Used by applications to manage device CA certificates, including
certificate uploading, verifying, and querying certificates. The platform
manageme | supports device access authentication using certificates.

nt APIs

OTA Used by applications to operate and manage upgrade packages,
upgrade including creating, querying, and deleting upgrade packages.
package

manageme

nt

Broadcast Used by applications to broadcast messages to all online devices
message that subscribe to specified topics.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

325

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/BroadcastMessage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/BroadcastMessage.html

loT Device Access
Developer Guide

4 Development on the Application Side

FAQ

API Group Scenario

Device
tunnel
manageme
nt

Used for data transmission between applications and devices.

Data stack
policy
manageme
nt

Used by applications to manage stack policies, including creating,
querying, modifying, and deleting stack policies.

Data flow
control
policy
manageme

Used by applications to manage flow control policies, including
creating, querying, modifying, and deleting flow control policies.

nt

Application Integration

Message Communications
Subscription and Push

How Does IoTDA Obtain Device Data?

What Should | Do If | Want to Call an APl But Have No Permissions to Do So
as an IAM User?

4.2 Debugging Using Postman

Overview

Postman is a visual editing tool for building and testing API requests. It provides
an easy-to-use Ul to send HTTP requests, including GET, PUT, POST, and DELETE
requests, and modify parameters in HTTP requests. Postman also returns response
to your requests.

To fully understand APIs, refer to APl Reference on the Application Side. The
Postman Collection is already available, in which the structure of API call requests
are ready for use.

This topic uses Postman as an example to describe how to debug the following
APIs when the application simulator connects to the IoT platform using HTTPS:
e Obtaining the Token of an IAM User

e Listing Projects Accessible to an IAM User

e Creating a Product

e Querying a Product

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 326

https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01004.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00225.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00011.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iothub_faq_0002.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iothub_faq_0002.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html

loT Device Access
Developer Guide

4 Development on the Application Side

Prerequisites

Creating a Device
Querying a Device

You have installed Postman. If Postman is not installed, install it by following
the instructions provided in Installing and Configuring Postman.

You have downloaded the Collection.
You have developed a product model and a codec on the console.

Installing and Configuring Postman

Step 1 Install Postman.

1.

2.

Visit the Postman website, and download and install the latest version of
Postman (64-bit) for Windows.

Choose your platform:

s [0
s A
S5 &

Postman for Mac Postman for Windows Postman for Linux

(11 NOTE

- Postman requires the .NET Framework 4.5 component.

- To ensure successful API calls, you are advised to download the latest version of
Postman (32-bit) for Windows.

Enter the email address, username, and password to register Postman.

Step 2 Import the Postman environment variables.

Click t in the upper right corner to open the MANAGE ENVIRONMENTS
window.

No Environment v © #

Click Import. On the page displayed, click Select File to import the
loTDA.postman_environment.json file (obtained after the Collection
package is decompressed).

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 327

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/PostmanCollection/Collection_environment_of_postman_V5.zip
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://dl.pstmn.io/download/latest/win64
https://www.postman.com/ https://dl.pstmn.io/download/latest/win32
https://www.postman.com/ https://dl.pstmn.io/download/latest/win32
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/PostmanCollection/Collection_environment_of_postman_V5.zip

loT Device Access
Developer Guide

4 Development on the Application Side

3.

4.

MANAGE ENVIRONMENTS

Learn more about environments

Create an environment

Click the 10TDA environment imported.

MANAGE ENVIRONMENTS

loTDA

Configure parameters based on the following table.

Globals

Import

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

328

loT Device Access
Developer Guide

4 Development on the Application Side

MANAGE ENVIRONMENTS

Environment Name

loTDA

VARIABLE

CURRENT VALUE @ sss Persist A

IAMEndpoint

IOTDAEndpoint

iam.cn-narth-4 myhuaweicloud.com

iotda.cn-nerth-4.myhuaweicloud.com

FhkAkRE

IAMUse

riName

|1AMPassword

I1AMDoaminld

regio

¥-Auth-Token

Al

-]

Use variables to reuse values in different places. Work with the current value of a variable to prevent

sharing sensitive values with your team. Learn more about variable

Parameter Description

IAMEndpoint IAM endpoint. For details, see Regions and

Endpoints.

loTDAENndpoint IoTDA endpoint. For details, see Step 2.5.

IAMUserName IAM username, which can be obtained from the My
Credentials page.

IAMPassword Password for logging in to Huawei Cloud.

IAMDoaminld Account name, which can be obtained from the My
Credentials page.

region Region where 10TDA is enabled.

5. Obtain lIoTDA endpoints.

Log in to the console. In the navigation pane, choose Overview. Click Access
Details in the Instance Information area. Select the access address based on
the access type and protocol.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 329

https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential

loT Device Access
Developer Guide

4 Development on the Application Side

Figure 4-1 Obtaining access information

Ovvspeun s Srpl ol 3

6.

Return to the home page and set the environment variable to the imported
I0TDA.

loTDA

Step 3 Click Import in the upper left corner and click Choose Files to import the API call
(V5).postman_collection.json file.

File Edit View Help

Drop files here

After the file is uploaded, the dialog box shown in the following figure is
displayed.

Issue 1.0 (2025-07-29)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 330

IoT Device Access
Developer Guide 4 Development on the Application Side

. Postman
File Edit View Help

MNew Import

Q

History Collections APIls
<+ New Collection

* IS

* B [1Token management s
Get |AM user token
* B (2Project management e
GET Query the list of projects that IAM
* B 03Product management wee
Create product
GET Query product
DEL Delete product
* B (4Device management s
GET (Query device
DEL Delete device
----End

Debugging the API Obtaining the Token for an IAM User

Before using platform APIs, an application must call the APl Obtaining the Token
of an IAM User for authentication. After the authentication is successful, Huawei
Cloud returns X-Subject-Token.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens
Content-Type: application/json

{
"auth": {
"identity": {
"methods": [
"password"

]I

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 331

IoT Device Access
Developer Guide 4 Development on the Application Side

"password": {
"user": {
"name": "username”,
"paSSWOI’ ": "********"’
"domain": {
"name": "domainname"
}
}
}
by
"scope": {
"project": {
"name": " xxxxxxxx"
}

}
}
}

Debug the API by following the instructions provided in Obtaining the Token of
an IAM User.

Step 1 Configure the HTTP method, URL, and headers of the API.

loTDA v Lo]
Get IAM user token X e ° &
» Get IAM user token Examples 0 v
Params Authorization Headers (3) Body® PrevequestSeript Tests® Settings Cookies Co
Headers
KEY VALUE DESCRIPTION *** | BulkEdit = Presets v
Content-Type application/json;charset=ut-8
Step 2 Configure the body of the API.
Get 4N user token X 4 e loTDA v o &
» Get IAM user token Examples 0 v
T P —— “ save
Param thorizatio e re- aipt Tests Settings Cookies Code

Wserfiane}}",
word}}",

Doaninld}}"

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 332

https://support.huaweicloud.com/intl/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_30_0001.html

loT Device Access
Developer Guide

4 Development on the Application Side

Step 4 Use the returned X-Subject-Token value in the header field to update X-Auth-
Token in the I10TDA environment so that it can be used in other API calls. If the
token expires, the Authentication APl must be called again to obtain a new

Headers (16) Status: 201 Created Time: 473ms Size: 27.77KB Save Response v
Kev vALUE

Date Wed, 04 Mar 2020 01:00:53 GMT

Content-Type application/json; charset=UTF-8

Content-Length 18468

Connection keep-alive

X-IAM-Trace-ld token_cn-north-4_null_5e627b3ddfc776374456059¢3666a8

Cache-Control no-cache, no-store, mustrevalidate

Pragma no-cache

Expires Thu, 01 Jan 1970 00:00:00 GMT

X-Subject-Token MIlbZAYJKoZIhveNAQCCollbVTCCG1ECAQEXDTALBglghkgBZQMEAZEWgI2BgkqhkiGOWOBBWGgEh...
X-Requestd €93¢1b0311803c589f61b8Ief900basd

Server api-gateway

Strict-Transport-Security max-age=31536000; includeSubdomains;

X-Frame-Options SAMEORIGIN

X-Content-Type-Options nosniff

X-Download-Options noopen

X-XSS-Protection 1; mode=block;

token.

MANAGE ENVIRONMENTS

Environment Name

IoTDA
VARIABLE CURHENT VALUE O ==+ | persistA eser A
IAMEndpoint iarn.cn-north-4.myhuaweicloud.com
= I0TDAEndpaint iotda.cn-north-4.myhuaweicloud.com X wen

IAMUserName

Fhhmh

I1AMPassword

(OISR CIN<RI<N<BE<BE<BN< <]

IAMDoaminld FEEEERE

region cn-north-4

X-Auth-Token MIlXsg¥)KoZlhveNAQcCollXozCCFS8CAQEXDTALBE;
project_id 06f54d66beB02668X 000000000

product_id 5ea8df2bXCOONGON00000CN

device_id 5ea8df2b6772b707X0000000C0OOOOCC000000N

-]

Use variables to reuse values in different places. Work with the current value of a variable to prevent

sharing sensitive values with your team. Learn more about variable values

Cancel Update

The X-Auth-Token parameter is automatically updated in Postman. You do not

need to manually update it.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

333

IoT Device Access
Developer Guide 4 Development on the Application Side

loTDA - o

--—-End

Debugging the API Listing Projects Accessible to an IAM User

Before accessing platform APIs, the application must call the API Listing Projects
Accessible to an IAM User to obtain the project ID of the user.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iam.cn-north-4.myhuaweicloud.com/v3/auth/projects

Content-Type: application/json
X-Auth-Token: **+s

Debug the API by following the instructions provided in Listing Projects
Accessible to an IAM User.

Step 1 Configure the HTTP method, URL, and headers of the API.

10TDA v ®
hatl X e #

» Query the list of projects that IAM users can access Examples 0 v

DESCRIPTION we | BukEdit | Presets v

Content-Type application/json

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 334

https://support.huaweicloud.com/intl/en-us/api-iam/iam_06_0003.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_06_0003.html

loT Device Access
Developer Guide

4 Development on the Application Side

(15) Status: 200 OK

BETA JSON v =

"projects": [

{

s

"domain_id": "ba21fbl2cfc440569954a2ac9a99323a",
"is_domain": false,
"parent_id": "ba21fbl2cfc440569954a2ac9a99323a",

"name": "ap-southeast-1",
"description": "",
"links": {

"self": "https://iam.myhuaweicloud.com/v3/projects/072a8dcbc980100d2f0ec0146f237196"

>
"id": "@72a8dcbc980100d2foec0146237196",
"enabled": true

"domain_id": "ba21fbl2cfc440569954a2ac9a99323a",
false,
: "ba21fbl2cfc440569954a2ac9a99323a",
"name": "MOS",
"description":
"links": {
"self'

B

"https://iam.myhuaweicloud.com/v3/projects/b6c7508ff62e4beb9lceelclced49ecd9”

3
"id": "bec7508ff62ed4beb9lceelclced9ecds”,
"enabled": true

Step 3 The returned body contains a list of projects. Search for the item whose name is
the same as the value of region in the I0TDA environment, and use the id value
to update project_id in the I0TDA environment so that it can be used in other API

calls.

Body

Pretty

95
96
97
98

(5) Status: 200 OK
BEA 5oN v

1,
"id": "@72a8dcbdese26542feecelsee62ff50",
"enabled": true

"domain_id": "ba21fbl2cfc440569954a2ac9a99323a",
in": false,
a21fb12cfc440569954a2ac9a99323a",

"links": {
"self": "https://iam.myhuaweicloud.com/v3/projects/e6f54d66be8e26682f21c014815a69ba"

}
"id": "@6f54d66be8026682f21c014815a69ba",
"enabled": true

"domain_id": "ba21fbl2cfc440569954a2ac9a99323a",
false,
: "ba21fbl2cfc440569954a2ac9a99323a",
ap-southeast-3",
"description": "",
"links": {
"self": "https://iam.myhuaweicloud.com/v3/projects/072a8dcbcd0@26502fblcol4ead6fc7a"

"is_domain"

3
"id": "@72a8dcbcdee26502fblcel4ead6fc7a",
"enabled": true

Issue 1.0 (2025-07-29)

Co

pyright © Huawei Cloud Computing Technologies Co., Ltd. 335

IoT Device Access
Developer Guide 4 Development on the Application Side

MANAGE ENVIRONMENTS

Environment Name

IoTDA
VARIABLE CURRENT VALUE @ ==s | pPErSISTA HEseT A
IAMEndpoint iam.cn-north-4.myhuaweicloud.com
IOTDAEndpoint iotda.cn-north-4.myhuaweicloud.com
IAMUserName i
1AMPassword i
IAMDoaminld i
region cn-north-4
X-Auth-Token MIlXsgY)KoZlhveNAQcCollXozCCFS8CAQEXDTALBgIE
project_id 06f54d66beB02668X 0000000000
product_id 5eaBdf2bXCOONGO0GGO000
device_id 5ea8df2b6772b70700000000NNNNNN00000ONN

-

Use variables to reuse values in different places. Work with the current value of a variable to prevent

sharing sensitive values with your team. Learn m

In this example, the project_id parameter is automatically updated in Postman.
You do not need to manually update it.

15TDA v e
GET Que + . o Q

» Query thelist of projects that IAM users can access Examples 0 v

GET v | hitpsi/{IAMEndpointiifv3/auth/projects Send

M| save -

Params Auhorizaion Headers (8 Body PrevequesiSeript Tess® Semings

ver region = pm.enviromment.get(“region’);

var jsondata = pm.response. jsond) ;

var projects = jsonData.projects;

for (1= 0; 1 ¢ projects.lengtn; i++) {

5 if (projects[i].name == region) {

6 pm. environment.set("project_id", projects[i].id);

oo

I
3}

--—-End

Debugging the API Creating a Product

Before connecting a device to the platform, an application must call the API
Creating a Product. The product created will be used during device registration.

To call this API, the application constructs an HTTP request. An example request is
as follows:

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 336

loT Device Access
Developer Guide

4 Development on the Application Side

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products

Content-Type: application/json
X-Auth-Token; **ixkxix

{

"name" : "Thermometer",

"device_type" : "Thermometer",

"protocol_type" : "MQTT",
"data_format" : "binary",

"manufacturer_name" : "ABC",

"industry" : "smartCity",

"description" : "this is a thermometer produced by Huawei",

"service_capabilities" : [{

"service_type" : "temperature",

"service_id" : "temperature",

"description" : "temperature",

"properties” : [{

"unit" : "centigrade",
"min": "1",

"method" : "R",

"max" : "100",
"data_type" : "decimal”,
"description" : "force",
"step" : 0.1,

"enum_Llist" : ["string"],
"required" : true,

"property_name" : "temperature”,

"max_length" : 100
11

"commands" : [{

"command_name" : "reboot",

"responses" : [{
"response_name" : "ACK",

"paras" : [{
"unit" : "km/h",
"min" :"1",
"max" : "100",

"para_name" : "force",
"data_type" : "string",
"description" : "force",
"step" : 0.1,

"enum_list" : ["string"],
"required" : false,
"max_length" : 100

1]

IR

"paras" : [{
"unit" : "km/h",
"min" : "1",
"max" : "100",

"para_name" : "force",
"data_type" : "string",
"description" : "force",
"step" : 0.1,
"enum_Llist" : ["string"],
"required" : false,
"max_length" : 100
1]
11
"option" : "Mandatory"
1]

"app_id" : "jeQDJQZItUSIKgFFoW060F55GZka"
}

Debug the API by following the instructions provided in Creating a Product.

Note: Only the parameters used in the debugging example are described in the

following steps.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 337

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html

IoT Device Access
Developer Guide 4 Development on the Application Side

Step 1 Configure the HTTP method, URL, and headers of the API.

loTDA v Rod
Create product X+ e %
» Create product Examples 0 v
I —— “ =
Params Authorization Headers (10) Body® PrerequestScript Tess® Sermings
Headers © 8hidde
KeY VALUE DESCRIPTION
ContentType application/json
¥eAuth-Token
IoTDA r o
X + %
¥ Create product Examples 0
e — m save |+
Params Authorization Headers (10) Body® PrerequestScript Tests® Settings
none form-data xwww-form-urlencoded @ raw binary GraphQL JSON v

tion": "force”,

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

Body Cookies Headers (6) TestResults Status: 201 Created

Pretty Raw Preview Visualize JSON ¥ 5

1 {

2 "app_id": "PAutVGQZoEVICncftiaSMFeeUlEa",

3 "app_name": "DefaultApp_hwstaff_y@e465615_iot",

4 "product_id": "5ea8df2b6772b707c6d8d35f",

5 "name": "Thermometers",

6 "device_type": "Thermometer",

7 "protocol_type": "MQTT",

8 "data_format": "binary",

9 "manufacturer_name": "ABC",

10 "industry": “"smartCity",

11 "description": "this is a thermometer produced by Huawei",
12 "service_capabilities": [

Step 4 Use the returned product_id value to update the product_id parameter in the
[oTDA environment so that it can be used in other API calls.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 338

IoT Device Access
Developer Guide 4 Development on the Application Side

MANAGE ENVIRONMENTS

Environment Name
IoTDA
VARIABLE CURRENI VALUE @ === | pErsistA HESET A
IAMEndpoint iam.cn-north-4.myhuaweicloud.com
IOTDAEndpoint iotda.cn-north-4.myhuaweicloud.com
IAMUserMName i
1AMPassword FEAEREEE
IAMDoaminld FEAREAS
region cn-north-4
= X-Auth-Token MIXsgY]KoZlheeMAQcCollXozCCFSBCAQEXDTAX. s
project_id 06f54d66be802668X 0000000
product_id 5ea8df2bX0CO0000CO0CO0K
device_id 5ealdf2b6772b70TC00CO00NNCONG000C0NNN
B Use variables to reuse values in different places. Work with the current value of a variable to prevent >
sharing sensitive values with your team. Learn more about variable values
Cancel Update

Note: The product_id parameter is automatically updated in Postman. You do not
need to manually update it.

1oTDA - o

--—-End

Debugging the API Querying a Product

An application can call the APl Querying a Product to query details about a
product.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}

Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Querying a Product.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 339

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0052.html

loT Device Access
Developer Guide

4 Development on the Application Side

Step 1

Step 2

Note: Only the parameters used in the debugging example are described in the
following steps.

Configure the HTTP method, URL, and headers of the API.

loTDA ¥ o
GET Query product X 4 Q
» Query product Examples 0 v
Params Authorization Headers ()] Body Pre-requestScript

eade

KEY VALUE DESCRIPTION
ContentType applicat
Xehuth-Token

Click Send. The returned code and response are displayed in the lower part of the
page.

Body Cookies Headers (6) Test Results Status: 200 OK
Pretty Raw Preview Visualize JSON ~ 5
1 q
2 "app_id": "PAutVGQZoEVICncftiaSMFeeUlEa",
3 "app_name": "DefaultApp_hwstaff_yee465615_iot",
a4 "product_id": "5ea8df2b6772b707c6d8d35f",
5 "name": "Thermometers",
6 "device_type": "Thermometer",
7 "protocol_type": "MQTT",
8 "data_format": "binary",
9 "manufacturer_name": "ABC",
10 "industry": "smartCity",
11 "description”: "this is a thermometer produced by Huawei",
12 "service_capabilities": [
13 {
14 "service_id": "temperature",
15 "service_type": "temperature",
16 "properties": [
17 {
18 “"property_name": "temperature",
19 "required": true,
20 "data_type": "decimal",
21 “enum_list": [
22 "string"
23 1,
24 "min": "1",
25 "max": "1ee",
26 "max_length": 1ee,
27 "step": 0.1,
28 "unit": "centigrade",
29 "method": "R",
30 "description": "force",
31 "default_value": null
32 ¥
33 1

Debugging the API Creating a Device

Before connecting a device to the platform, an application must call the API
Registering a Device. Then, the device can use the unique identification code to
get authenticated and connect to the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:
POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices

Content-Type: application/json
X-Auth-Token: ******xx

{
"node_id" : "ABC123456789",

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 340

IoT Device Access
Developer Guide 4 Development on the Application Side

"device_name" : "dianadevice",
"product_id" : "b640f4c203b7910fc3cbd446ed437cbd",
"auth_info" : {
"auth_type" : "SECRET",
"secure_access" : true,
"fingerprint" : MR,
"secret" "********"’
"timeout" : 300
I
"description" : "water meter device"

}
Debug the API by following the instructions provided in Creating a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

3 IoTDA v o
x| [+ [wee 2 »

* Register device Examples 0 v

POST | hupsiAOTOAEGpoima)iShot(project ddevics m =
s Authorizaton Headers (10) Pre-request Seript Sexings Cookies Code

KeY VALUE DESCRIPTION

Step 2 Configure the body of the API.

»
POST v https://{{|OTDAEndpoint}}/v5/iot/{{project_id}}/devices
Params Authorization Headers (10) Body @ Pre-request Script Tests @ Settings
none form-data x-www-form-urlencoded ® raw binary GraphQL SON ~
1v({
2 "node_id": "ABC123456789",
3 "device_name": "testdevice",
4 "product_id": "{{product_id}}",
5w "auth_info": {
6 "auth_type": "SECRET",
7 "secure_access": true,
8 "fingerprint": y
9 "secret": ' A
10 "timeout": 300
11 1
12 "description": "watermeter device"
13 }

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 341

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

loT Device Access

Developer Guide 4 Development on the Application Side
Body @) Status: 201 Created

Pretty BETA JSON v =

1 q

2 >

3 w "
4

5 . 4 '
6 "device_name

7 "node_type": "GATEWAY",

8 "description": "watermeter device",

9 "fw_version": null,

10 "sw_version": null,

11 "auth_info": {

12 "auth_type": "SECRET",

13 "secret": " ",

14 "fingerprint": null,

15 "secure_access": true,

16 "timeout": 3e0

17 iR

18 "product_id": " ",

19 "status": "INACTIVE",

20 "create_time": " ',

21 "tags": []

22 ¥

Step 4 Use the returned device_id value to update the device_id parameter in the loTDA
environment so that it can be used in other API calls.

MAMAGE ENVIRONMENTS

Environment Name

loTDA
VARIABLE LUHKENT VALUE ©F == PErSISLA Heser A
IAMEndpoint iam.cn-north-4.myhuaweicloud.com
IOTDAEndpaint iotda.cn-north-4.myhuaweicloud.com
IAMUserMName i
1AMPassword FEEEEEE

IAMDoaminld

Sl

region cn-north-4

X-Auth-Token MIIXsgYlKoZlhveNAQcCollXozCCF58CAQExDTALBglg
project_id 06f54d66beB802668X0000000000(

product_id 52a8df2 bX0OO0000CO000NX

device_id S5eaddf2b6772b707X00000O0NCCCCROCNG000N

ﬂ Use variables to reuse values in different places. Work with the current value of a variable to prevent

sharing sensitive values with your team. Learn more about variable values

Cance Update

Note: The device_id parameter is automatically updated in Postman. You do not
need to manually update it.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 342

IoT Device Access
Developer Guide 4 Development on the Application Side

--—-End

Debugging the APl Querying a Device

An application can call the APl Querying a Device to query details about a device
registered with the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices/{device_id}
Content-Type: application/json
X-Auth-Token; ***+ex

Debug the API by following the instructions provided in Querying a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

1TDA - ©
X e ‘ »

xamples 0 v
G v PO e v {deic “ o |
arams Authorizat dy PrerequestSeript Tests Settings Cookies Code

nnnnnnnnnnn
ContentType applicationfjson

eAuth-Token

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 343

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0055.html

loT Device Access

Developer Guide 4 Development on the Application Side
Body (14 Status: 200 OK
Pretty BETA JSON ¥ =
1 {
2 "app_id": " B
3 "device_id": " "
4 "node_id" ABC123456789",
5 "gateway_id": " . [,
6 "device_name": "dianadevice",
7 "node_type": "GATEWAY",
8 "description": "watermeter device",
9 "fw_version": null,
10 "sw_version": null,
11 "auth_info": {
12 "auth_type": "SECRET",
13 "secret": MikEEkRN
14 "fingerprint": null,
15 "secure_access": true,
16 "timeout": ©
17 b
18 "product_id": " ',
19 "status": "INACTIVE",
20 "create_time": " ',
21 "tags": []

Issue 1.0 (2025-07-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 344

	Contents
	1 Before You Start
	2 Obtaining Resources
	3 Development on the Device Side
	3.1 Device Access
	3.2 Product Development
	3.2.1 Product Development Guide
	3.2.2 Creating a Product
	3.2.3 Developing a Product Model
	3.2.3.1 Product Model Definition
	3.2.3.2 Developing a Product Model Online
	3.2.3.3 Developing a Product Model Offline
	3.2.3.4 Exporting and Importing a Product Model

	3.2.4 Developing a Codec
	3.2.4.1 Codec Definition
	3.2.4.2 Online Development
	3.2.4.3 JavaScript Script-based Development
	3.2.4.4 FunctionGraph-based Development
	3.2.4.4.1 Overview
	3.2.4.4.2 MQTT(S) Codec Example
	3.2.4.4.3 NB-IoT (CoAP) Codec Example

	3.2.5 Online Debugging

	3.3 Device Registration
	3.3.1 Registering a Device
	3.3.2 Registering a Batch of Devices
	3.3.3 Registering a Device Authenticated by an X.509 Certificate
	3.3.4 Device Self-Registration

	3.4 Device SDK Access
	3.5 MQTT(S) Access
	3.5.1 Protocol Introduction
	3.5.2 Secret Authentication
	3.5.3 Certificate Authentication
	3.5.3.1 Usage
	3.5.3.2 Certificate Validity Verification (OCSP)

	3.5.4 Custom Authentication
	3.5.5 Custom-Template Authentication
	3.5.5.1 Usage
	3.5.5.2 Examples
	3.5.5.3 Internal Functions

	3.6 HTTP(S) Access
	3.7 LwM2M/CoAP Access
	3.8 Access Using MQTT Demos
	3.8.1 MQTT Usage Guide
	3.8.2 Java Demo Usage Guide
	3.8.3 Python Demo Usage Guide
	3.8.4 Android Demo Usage Guide
	3.8.5 C Demo Usage Guide
	3.8.6 C# Demo Usage Guide
	3.8.7 Node.js Demo Usage Guide

	3.9 OTA Upgrade Adaptation on the Device Side
	3.9.1 Adaptation Development on the Device Side
	3.9.2 PCP Introduction

	4 Development on the Application Side
	4.1 API Usage Guide
	4.2 Debugging Using Postman

