
IoT Device Access

SDK Reference

Issue 1.0

Date 2025-06-24

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Overview..1

2 SDKs for the Application Side...4
2.1 Application Java SDK..4
2.2 Application Python SDK.. 7
2.3 Application .NET SDK... 9
2.4 Application Go SDK.. 11
2.5 Application Node.js SDK... 13
2.6 Application PHP SDK... 15

3 Device SDKs.. 18
3.1 Overview.. 18
3.2 IoT Device Java SDK... 23
3.3 IoT Device C SDK for Linux/Windows.. 43
3.4 IoT Device C# SDK.. 44
3.5 IoT Device Android SDK.. 45
3.6 IoT Device Go SDK..46
3.7 IoT Device Tiny C SDK for Linux/Windows.. 46
3.8 IoT Device Python SDK... 47
3.9 IoT Device ArkTS (OpenHarmony) SDK..48

IoT Device Access
SDK Reference Contents

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Overview

IoTDA provides SDKs for the application and device sides so that devices can
connect to the platform and applications can call platform APIs to implement
secure access, device management, data collection, and command delivery.

NO TE

If you cannot access the GitHub repositories, check whether your network can access the
public network.

Resource
Package

Description Download Link

Application Java
SDK

You can use Java methods to
call application-side APIs to
communicate with the
platform. For details, see Java
SDK.

Application Java SDK

Application .NET
SDK

You can use .NET methods to
call application-side APIs to
communicate with the
platform. For details, see .NET
SDK.

Application .NET SDK

Application
Python SDK

You can use Python methods to
call application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Application Python SDK

Application Go
SDK

You can use Go methods to call
application-side APIs to
communicate with the
platform. For details, see Go
SDK.

Application Go SDK

IoT Device Access
SDK Reference 1 Overview

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/releases

Resource
Package

Description Download Link

Application
Node.js SDK

You can use Node.js methods to
call application-side APIs to
communicate with the
platform. For details, see
Node.js SDK.

Application Node.js
SDK

Application PHP
SDK

You can use PHP methods to
call application-side APIs to
communicate with the
platform. For details, see PHP
SDK.

Application PHP SDK

IoT Device Java
SDK

Devices can connect to the
platform by integrating the IoT
Device Java SDK. The demo
provides the code sample for
calling the SDK APIs. For
details, see IoT Device Java
SDK.

IoT Device Java SDK

IoT Device C SDK
for Linux/
Windows

Devices can connect to the
platform by integrating the IoT
Device C SDK for Linux/
Windows. The demo provides
the code sample for calling the
SDK APIs. For details, see
IoT Device C SDK for Linux/
Windows.

IoT Device C SDK for
Linux/Windows

IoT Device C# SDK Devices can connect to the
platform by integrating the IoT
Device C# SDK. The demo
provides the code sample for
calling the SDK APIs. For
details, see
IoT Device C# SDK.

IoT Device C# SDK

IoT Device
Android SDK

Devices can connect to the
platform by integrating the IoT
Device Android SDK.
The demo provides the code
sample for calling the SDK APIs.
For details, see
IoT Device Android SDK.

IoT Device Android SDK

IoT Device Access
SDK Reference 1 Overview

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/releases
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0089.html
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0089.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android

Resource
Package

Description Download Link

IoT Device SDK
(Go Community
Edition)

Devices can connect to the
platform by integrating the IoT
Device SDK (Go Community
Edition). The demo provides the
code sample for calling the SDK
APIs. For details, see IoT Device
SDK (Go Community Edition).

IoT Device Go SDK
(Community Edition)

IoT Device Tiny C
SDK for Linux/
Windows

Devices can connect to the
platform by integrating the IoT
Device Tiny C SDK for Linux/
Windows. The demo provides
the code sample for calling the
SDK APIs. For details, see
IoT Device Tiny C SDK for
Linux/Windows.

IoT Device Tiny C SDK
for Linux/Windows

IoT Device ArkTS
(OpenHarmony)
SDK

Devices can connect to the
platform by integrating the IoT
Device ArkTS (OpenHarmony)
SDK. The demo provides the
code sample for calling the SDK
APIs. For details, see
IoT Device ArkTS
(OpenHarmony) SDK.

IoT Device ArkTS
(OpenHarmony) SDK

IoT Device Python
SDK

Devices can connect to the
platform by integrating the IoT
Device Python SDK. The demo
provides the code sample for
calling the SDK APIs. For
details, see
IoT Device Python SDK.

IoT Device Python SDK

IoT Device Access
SDK Reference 1 Overview

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/blob/main/huaweicloud_iot_device_library/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/blob/main/huaweicloud_iot_device_library/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-arkts/tree/main
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python/blob/main/README_CN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python/tree/main

2 SDKs for the Application Side

2.1 Application Java SDK
IoTDA provides an application SDK in Java for developers. This topic describes how
to install and configure the Java SDK and how to use it to call application-side
APIs.

SDK Obtaining and Installing

Step 1 Install the Java development environment.

Visit the Java website, and download and install the Java development
environment.

NO TE

The Java SDK can be used in Java JDK 1.8 or later.

Step 2 Install Maven.

Download and install Maven. After Maven is installed, add the dependencies to
the pom.xml file of the Java project.

Step 3 Install the Java SDK.

Add Maven dependencies.

<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-core</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-iotda</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>

----End

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://www.oracle.com/java/technologies/javase-downloads.html
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html

Code Sample

CA UTION

Use a version range for the Maven dependency versions. If you use a specific
version, use 3.0.60 or later.

The following code sample shows how to use the Java SDK to call the API for
querying the device list.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
package com.huaweicloud.sdk.test;

import com.huaweicloud.sdk.core.auth.ICredential;
import com.huaweicloud.sdk.core.exception.ConnectionException;
import com.huaweicloud.sdk.core.exception.RequestTimeoutException;
import com.huaweicloud.sdk.core.exception.ServiceResponseException;
import com.huaweicloud.sdk.core.region.Region;
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.iotda.v5.*;
import com.huaweicloud.sdk.iotda.v5.model.*;

public class ListDevicesSolution {

 // REGION_ID: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
 private static final String REGION_ID = "<YOUR REGION ID>";
 //ENDPOINT: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 private static final String ENDPOINT = "<YOUR ENDPOINT>";

 public static void main(String[] args) {
 // There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt
the AK/SK in the configuration file or environment variables for storage, and decrypt the AK/SK when using
them;
 // In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
 String ak = System.getenv("HUAWEICLOUD_SDK_AK");
 String sk = System.getenv("HUAWEICLOUD_SDK_SK");
 String projectId = "<YOUR PROJECTID>";

 // Create a credential.
 ICredential auth = new BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 // WithDerivedPredicate is used for the standard or enterprise edition. For the basic edition,
delete the line.
 .withDerivedPredicate(BasicCredentials.DEFAULT_DERIVED_PREDICATE)
 .withProjectId(projectId);

 // Create and initialize an IoTDAClient instance.
 IoTDAClient client = IoTDAClient.newBuilder()
 .withCredential(auth)
 // For the standard or enterprise edition, create a region object. For the basic edition, select the
region object in IoTDARegion. For example, withRegion(IoTDARegion.CN_NORTH_4).
 .withRegion(new Region(REGION_ID, ENDPOINT))
 // .withRegion(IoTDARegion.CN_NORTH_4)
 // Whether to ignore SSL certificate verification (not ignored by default).

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

 // .withHttpConfig(new HttpConfig().withIgnoreSSLVerification(true))
 .build();

 // Instantiate a request object.
 ListDevicesRequest request = new ListDevicesRequest();
 try {
 // Call the API for querying the device list.
 ListDevicesResponse response = client.listDevices(request);
 System.out.println(response.toString());
 } catch (ConnectionException e) {
 e.printStackTrace();
 } catch (RequestTimeoutException e) {
 e.printStackTrace();
 } catch (ServiceResponseException e) {
 e.printStackTrace();
 System.out.println(e.getHttpStatusCode());
 System.out.println(e.getErrorCode());
 System.out.println(e.getErrorMsg());
 }
 }
}

----End

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud console. For details, see Access
Keys.

sk Secret access key (SK) of your Huawei Cloud account.

projectId Project ID. For details on how to obtain a project ID, see
Obtaining a Project ID.

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located. The
available regions of the IoT platform have been defined in the
SDK code IoTDARegion.java.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

REGION_ID If CN East-Shanghai1 is used, enter cn-east-3. If CN North-
Beijing4 is used, enter cn-north-4. If CN South-Guangzhou is
used, enter cn-south-4.

ENDPOINT On the console, choose Overview and click Access Addresses
to view the HTTPS application access address.

NO TE

For details on the project source code and usage guide, see Huawei Cloud Java Software
Development Kit (Java SDK).

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/tree/master/services/iotda/src/main/java/com/huaweicloud/sdk/iotda/v5/region/IoTDARegion.java
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md

2.2 Application Python SDK
IoTDA provides an application SDK in Python for developers. This topic describes
how to install and configure the Python SDK and how to use it to call
application-side APIs.

SDK Obtaining and Installing

Step 1 Install the Python development environment.

Visit the Python website, and download and install the Python development
environment.

NO TE

The application Python SDK can be used in Python 3 and later versions.

Step 2 Install PiP.

Visit the PiP website, and download and install PiP.

Step 3 Install the Python SDK.

Run the following commands to install the Python SDK core library and related
service libraries.

Install the core library.
pip install huaweicloudsdkcore

Install the IoTDA service library.
pip install huaweicloudsdkiotda

----End

Code Sample
The following code sample shows how to use the Python SDK to call API
Querying the Device List.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
import os

from huaweicloudsdkcore.exceptions import exceptions
from huaweicloudsdkcore.region.region import Region
from huaweicloudsdkiotda.v5 import *
from huaweicloudsdkcore.auth.credentials import BasicCredentials
from huaweicloudsdkcore.auth.credentials import DerivedCredentials

if __name__ == "__main__":
 # There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt
the AK/SK in the configuration file or environment variables for storage, and decrypt the AK/SK when using
them;
 # In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://www.python.org/downloads
https://pip.pypa.io/en/stable/installation/
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

 ak = os.environ["HUAWEICLOUD_SDK_AK"]
 sk = os.environ["HUAWEICLOUD_SDK_SK"]
 project_id = "<YOUR PROJECTID>"
 # region_id: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
 region_id = "<YOUR REGION ID>"
 # endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 endpoint = "<YOUR ENDPOINT>"

 # For the standard or enterprise edition, create a region object.
 REGION = Region(region_id, endpoint)

 # Create a credential.
 # Create and initialize a BasicCredentials instance.
 credentials = BasicCredentials(ak, sk, project_id)

 # with_derived_predicate is used for the standard or enterprise edition. For the basic edition, delete the
line.
 credentials.with_derived_predicate(DerivedCredentials.get_default_derived_predicate())

 # For the basic edition, select the region object in IoTDAClient. For
example, .with_region(IoTDARegion.CN_NORTH_4).
 # For the standard or enterprise edition, create a region object.
 # Whether to ignore SSL certificate verification (not ignored by
default): .with_http_config(HttpConfig(ignore_ssl_verification=True) \
 client = IoTDAClient.new_builder() \
 .with_credentials(credentials) \
 .with_region(REGION) \
 .build()

 try:
 # Instantiate a request object.
 request = ListDevicesRequest()
 # Call the API for querying the device list.
 response = client.list_devices(request)
 print(response)
 except exceptions.ClientRequestException as e:
 print(e.status_code)
 print(e.request_id)
 print(e.error_code)
 print(e.error_msg)

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud console. For details, see Access
Keys.

sk Secret access key (SK) of your Huawei Cloud account.

project_id Project ID. For details on how to obtain a project ID, see
Obtaining a Project ID.

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located. The
available regions of the IoT platform have been defined in the
SDK code iotda_region.py.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/tree/master/huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/region/iotda_region.py
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

Parameter Description

region_id If CN East-Shanghai1 is used, enter cn-east-3. If CN North-
Beijing4 is used, enter cn-north-4. If CN South-Guangzhou is
used, enter cn-south-4.

endpoint On the console, choose Overview and click Access Addresses
to view the HTTPS application access address.

----End

Additional Information

For details on the project source code and usage guide, see Huawei Cloud Python
Software Development Kit (Python SDK).

2.3 Application .NET SDK
IoTDA provides an application SDK in C# for developers. This topic describes how
to install and configure the .NET SDK and how to use it to call application-side
APIs.

SDK Obtaining and Installing

Step 1 Install the .NET development environment.

Visit the .NET website, and download and install the .NET development
environment.

NO TE

The .NET SDK can be used in the following environments:

● .NET Framework 4.5 and later

● .NET Standard 2.0 and later

● C# 4.0 and later

Step 2 Use the .NET CLI tool to install the SDK.
dotnet add package HuaweiCloud.SDK.Core
dotnet add package HuaweiCloud.SDK.IoTDA

----End

Code Sample

The following code sample shows how to use the .NET SDK to call API Querying
the Device List.

Step 1 Create a credential.

Step 2 Create and initialize a BasicCredentials instance.

Step 3 Instantiate a request object.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://dotnet.microsoft.com/download
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

Step 4 Call the API for querying the device list.
using System;
using System.Collections.Generic;
using HuaweiCloud.SDK.Core;
using HuaweiCloud.SDK.Core.Auth;
using HuaweiCloud.SDK.IoTDA;
using HuaweiCloud.SDK.IoTDA.V5;
using HuaweiCloud.SDK.IoTDA.V5.Model;

namespace ListDevicesSolution
{
 class Program
 {
 static void Main(string[] args)
 {
 var listDevicesRequest = ListDevices();
 var res = JsonUtils.Serialize(listDevicesRequest.Result);
 Console.WriteLine(res);
 }

 private static async Task<ListDevicesResponse> ListDevices()
 {
 // There will be security risks if the AK/SK used for authentication is directly written into code.
Encrypt the AK/SK in the configuration file or environment variables for storage, and decrypt the AK/SK
when using them;
 // In this example, the AK/SK stored in the environment variables are used. Configure the
environment variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment
first.
 var ak = Environment.GetEnvironmentVariable("HUAWEICLOUD_SDK_AK",
EnvironmentVariableTarget.Machine);
 var sk = Environment.GetEnvironmentVariable("HUAWEICLOUD_SDK_SK",
EnvironmentVariableTarget.Machine);
 const string projectId = "<YOUR PROJECTID>";
 // region_id: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
 const string regionId = "<YOUR REGION ID>";
 // endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 const string endpoint = "<YOUR ENDPOINT>";

 // Create a credential.
 var auth = new BasicCredentials(ak, sk, projectId);

 // Used for the standard or enterprise edition. For the basic edition, delete the line.
 auth.WithDerivedPredicate(BasicCredentials.DefaultDerivedPredicate);

 var config = HttpConfig.GetDefaultConfig();
 config.IgnoreSslVerification = false;
 // Create and initialize an IoTDAClient instance.
 var client = IoTDAAsyncClient.NewBuilder()
 .WithCredential(auth)
 .WithHttpConfig(config)
 // For the standard or enterprise edition, create a region object.
 .WithRegion(new Region(regionId, endpoint))
 // For the basic edition, select the region object in IoTDARegion.
 // .WithRegion(IoTDARegion.CN_NORTH_4)
 // .NET Framework does not support content-type in the get request header.
 // Whether to ignore SSL certificate verification (not ignored by default).
 // .WithHttpConfig(new
HttpConfig().WithIgnoreBodyForGetRequest(true).WithIgnoreSslVerification(true))
 .Build();

 // Instantiate a request object.
 var req = new ListDevicesRequest
 {
 };

 try
 {

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

 // Call the API for querying the device list.
 var resp =await client.ListDevicesAsync(req);
 Console.WriteLine(resp.GetHttpStatusCode());
 return resp;
 }
 catch (RequestTimeoutException requestTimeoutException)
 {
 Console.WriteLine(requestTimeoutException.ErrorMessage);
 }
 catch (ServiceResponseException clientRequestException)
 {
 Console.WriteLine(clientRequestException.HttpStatusCode);
 Console.WriteLine(clientRequestException.ErrorCode);
 Console.WriteLine(clientRequestException.ErrorMsg);
 }
 catch (ConnectionException connectionException)
 {
 Console.WriteLine(connectionException.ErrorMessage);
 }
 return new ListDevicesResponse();
 }
 }
}

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud console. For details, see Access
Keys.

sk Secret access key (SK) of your Huawei Cloud account.

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located. The
available regions of the IoT platform have been defined in the
SDK code IoTDARegion.cs.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

----End

Additional Information
For details on the project source code and usage guide, see Huawei Cloud .NET
Software Development Kit (.NET SDK).

2.4 Application Go SDK
IoTDA provides an application SDK in Go for developers. This topic describes how
to install and configure the Go SDK and how to use it to call application-side
APIs.

SDK Obtaining and Installing
Step 1 Install the Go development environment.

Visit the Go website, and download and install the Go development environment.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/tree/master/Services/IoTDA/V5/Region/IoTDARegion.cs
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://golang.org/dl/

NO TE

The Go SDK can be used in Go 1.14 and later versions.

Step 2 Install the Huawei Cloud Go library.
go get github.com/huaweicloud/huaweicloud-sdk-go-v3

Step 3 Install dependencies.
go get github.com/json-iterator/go

----End

Code Sample
The following code sample shows how to use the Go SDK to call API Querying
the Device List.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.

package main

import (
 "fmt"
 "github.com/huaweicloud/huaweicloud-sdk-go-v3/core/auth"
 "github.com/huaweicloud/huaweicloud-sdk-go-v3/core/auth/basic"
 // For the standard or enterprise edition, use github.com/huaweicloud/huaweicloud-sdk-go-v3/core/
region.
 // For the basic edition, use github.com/huaweicloud/huaweicloud-sdk-go-v3/services/iotda/v5/
region.
 "github.com/huaweicloud/huaweicloud-sdk-go-v3/core/region"
 //"github.com/huaweicloud/huaweicloud-sdk-go-v3/services/iotda/v5/region"
 iotda "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/iotda/v5"
 "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/iotda/v5/model"
)

func main() {
 // There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt
the AK/SK in the configuration file or environment variables for storage, and decrypt the AK/SK when using
them;
 // In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
 ak := os.Getenv("HUAWEICLOUD_SDK_AK")
 sk := os.Getenv("HUAWEICLOUD_SDK_SK")
 projectId := "<YOUR PROJECTID>"

 // The regionId and endpoint are used to create regions for the standard edition and enterprise edition.
For the basic edition, delete these two lines.
 // region_id: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
 regionId := "<YOUR REGION ID>"
 // endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 endpoint := "<YOUR ENDPOINT>"

 // Create a credential.
 auth := basic.NewCredentialsBuilder().
 WithAk(ak).
 WithSk(sk).
 WithProjectId(projectId).
 // WithDerivedPredicate is used for the standard or enterprise edition. For the basic edition, delete

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

the line.
 WithDerivedPredicate(auth.GetDefaultDerivedPredicate()).
 Build()

 // Create and initialize an IoTDAClient instance.
 client := iotda.NewIoTDAClient(
 iotda.IoTDAClientBuilder().
 // For the standard or enterprise edition, create a region object. For the basic edition, select the
region object in IoTDARegion.
 WithRegion(region.NewRegion(regionId, endpoint)).
 // WithRegion(region.CN_NORTH_4).
 WithCredential(auth).
 // Whether to ignore SSL certificate verification (not ignored by default).
 // WithHttpConfig(config.DefaultHttpConfig().WithIgnoreSSLVerification(true)).
 Build())
 // Instantiate a request object.
 request := &model.ListDevicesRequest{}
 // Call the API for querying the device list.
 response, err := client.ListDevices(request)
 if err == nil {
 fmt.Printf("%+v\n", response)
 } else {
 fmt.Println(err)
 }
}

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud console. For details, see Access
Keys.

sk Secret access key (SK) of your Huawei Cloud account.

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located. The
available regions of the IoT platform have been defined in the
SDK code region.go.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

----End

Additional Information
For details on the project source code and usage guide, see Huawei Cloud Go
Software Development Kit (Go SDK).

2.5 Application Node.js SDK
IoTDA provides an application SDK in Node.js for developers. This topic describes
how to install and configure the Node.js SDK and how to use it to call
application-side APIs.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/tree/master/services/iotda/v5/region/region.go
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html

SDK Obtaining and Installing

Step 1 Install the Node.js development environment.

Visit the Node.js website, and download and install the Node.js development
environment.

NO TE

The Node.js SDK can be used in Node 10.16.1 and later versions.

Step 2 Install dependencies.
npm install @huaweicloud/huaweicloud-sdk-core
npm install @huaweicloud/huaweicloud-sdk-iotda

----End

Code Sample
The following code sample shows how to use the Node.js SDK to call API
Querying the Device List.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
const core = require('@huaweicloud/huaweicloud-sdk-core');
const iotda = require("@huaweicloud/huaweicloud-sdk-iotda");
// There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt the
AK/SK in the configuration file or environment variables for storage, and decrypt the AK/SK when using
them;
// In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
const ak = process.env.HUAWEICLOUD_SDK_AK;
const sk = process.env.HUAWEICLOUD_SDK_SK;
// endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS application
access address.
// const endpoint = "https://iotda.cn-north-4.myhuaweicloud.com";
const endpoint = "<YOUR ENDPOINT>";
const project_id = "<YOUR PROJECT_ID>";
// region_id: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-north-4.
If CN South-Guangzhou is used, enter cn-south-1.
const region_id = "<YOUR REGION_ID>";
// (Optional) Skip server certificate verification.
process.env.NODE_TLS_REJECT_UNAUTHORIZED = "0"
// Create a credential.
const credentials = new core.BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 // WithDerivedPredicate is used for the standard or enterprise edition. For the basic edition,
delete the line.
 .withDerivedPredicate(core.BasicCredentials.getDefaultDerivedPredicate)
 .withProjectId(project_id)
// Create and initialize an IoTDAClient instance.
const client = iotda.IoTDAClient.newBuilder()
 .withCredential(credentials)
 .withEndpoint(endpoint)
 .withRegion(new core.Region(region_id, endpoint))
 .build();
// Instantiate a request object.
const request = new iotda.ListDevicesRequest();
// Call the API for querying the device list.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

http://nodejs.cn/download/
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

const result = client.listDevices(request);
result.then(result => {
 console.log("JSON.stringify(result)::" + JSON.stringify(result));
}).catch(ex => {
 console.log("exception:" + JSON.stringify(ex));
});

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud console. For details, see Access
Keys.

sk Secret access key (SK) of your Huawei Cloud account.

endpoint Endpoint of the region where the Huawei Cloud service to be
accessed is located.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

project_id ID of the project where the Huawei Cloud service to be
accessed is located. Select a project ID based on the region to
which the project belongs.

region_id If CN East-Shanghai1 is used, enter cn-east-3. If CN North-
Beijing4 is used, enter cn-north-4. If CN South-Guangzhou is
used, enter cn-south-4.

----End

Additional Information
For details on the project source code and usage guide, see Huawei Cloud
Node.js Software Development Kit (Node.js SDK).

2.6 Application PHP SDK
IoTDA provides an application SDK in PHP for developers. This topic describes how
to install and configure the PHP SDK and how to use it to call application-side
APIs.

SDK Obtaining and Installing

Step 1 Install the PHP development environment.

Visit the PHP website, and download and install the PHP development
environment.

NO TE

Huawei Cloud PHP SDKs support PHP 5.6, PHP 6, and PHP 7, but do not support PHP 8.
Before running PHP SDKs, run the php --version command to check the current PHP
version. If PHP of other languages is installed, an error may occur when you run PHP SDKs.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://windows.php.net/download/

Step 2 Install Composer.
curl -sS https://getcomposer.org/installer | php

Step 3 Install the PHP SDK.
composer require huaweicloud/huaweicloud-sdk-php

Step 4 Introduce the autoload.php file of Composer.
require 'path/to/vendor/autoload.php';

----End

Code Sample
The following code sample shows how to use the PHP SDK to call API Querying
the Device List.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
<?php
namespace HuaweiCloud\SDK\IoTDA\V5\Model;
require_once "vendor/autoload.php";
use HuaweiCloud\SDK\Core\Auth\BasicCredentials;
use HuaweiCloud\SDK\Core\Http\HttpConfig;
use HuaweiCloud\SDK\Core\Auth\Credentials;
use HuaweiCloud\SDK\Core\Exceptions\ConnectionException;
use HuaweiCloud\SDK\Core\Exceptions\RequestTimeoutException;
use HuaweiCloud\SDK\Core\Exceptions\ServiceResponseException;
use HuaweiCloud\SDK\Core\Region\Region;
use HuaweiCloud\SDK\IoTDA\V5\IoTDAClient;
// There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt the
AK/SK in the configuration file or environment variables for storage, and decrypt the AK/SK when using
them;
// In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
$ak = getenv('HUAWEICLOUD_SDK_AK');
$sk = getenv('HUAWEICLOUD_SDK_SK');
// endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS application
access address.
// $endpoint = "https://iotda.cn-north-4.myhuaweicloud.com";
$endpoint = "<YOUR ENDPOINT>";
$projectId = "<YOUR PROJECT_ID>";
// REGION_ID: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
$regionId = "<YOUR REGION ID>";
// Create a credential.
$credential = new BasicCredentials($ak,$sk,$projectId);
// withDerivedPredicate is used for the standard or enterprise edition. For the basic edition, delete the line.
$credential->withDerivedPredicate(Credentials::getDefaultDerivedPredicate());
// Modify the default configuration and skip the server certificate verification.
$config = HttpConfig::getDefaultConfig();
$config->setIgnoreSslVerification(true);
// Create an IoTDAClient instance and initialize it. (If the default configuration is not modified, you do not
need to add config.)
$client = IoTDAClient::newBuilder(new IoTDAClient)
 ->withHttpConfig($config)
 ->withEndpoint($endpoint)
 ->withCredentials($credential)
 ->withRegion(new Region($regionId, $endpoint))
 ->build();
// Instantiate a request object.
$request = new ListDevicesRequest();

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

try {
// Call the API for querying the device list.
 $response = $client->ListDevices($request);
} catch (ConnectionException $e) {
 $msg = $e->getMessage();
 echo "\n". $msg ."\n";
} catch (RequestTimeoutException $e) {
 $msg = $e->getMessage();
 echo "\n". $msg ."\n";
} catch (ServiceResponseException $e) {
 echo "\n";
 echo $e->getHttpStatusCode(). "\n";
 echo $e->getErrorCode() . "\n";
 echo $e->getErrorMsg() . "\n";
}
echo "\n";
echo $response;

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud console. For details, see Access
Keys.

sk Secret access key (SK) of your Huawei Cloud account.

endpoint Endpoint of the region where the Huawei Cloud service to be
accessed is located.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

projectId ID of the project where the Huawei Cloud service to be
accessed is located. Select a project ID based on the region to
which the project belongs.

----End

Additional Information
For details on the project source code and usage guide, see Huawei Cloud PHP
Software Development Kit (PHP SDK).

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md

3 Device SDKs

3.1 Overview
You can use Huawei IoT Device SDKs to quickly connect devices to the IoT
platform. After being integrated with an IoT Device SDK, devices that support the
TCP/IP protocol stack can directly communicate with the platform. Devices that do
not support the TCP/IP protocol stack, such as Bluetooth and ZigBee devices, need
to use a gateway integrated with the IoT Device SDK to communicate with the
platform.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

1. Create a product on the IoTDA console or by calling the API for creating a
product.

2. Register a device on the IoTDA console or by calling the API Creating a
Device.

3. Implement the functions demonstrated in the preceding figure, including
reporting messages/properties, receiving commands/properties/messages,
OTA upgrades, topic customization, and generic-protocol access (see
Developing a Protocol Conversion Gateway for Access of Generic-Protocol
Devices).

The platform provides two types of SDKs. The table below describes their
differences.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0009.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0009.html

SDK Type Pre-integration Solution IoT Protocols
Supported

IoT Device
SDK

Embedded devices with strong computing
and storage capabilities, such as gateways
and collectors

MQTT

IoT Device
SDK Tiny

Devices that have strict restrictions on
power consumption, storage, and
computing resources, such as single-chip
microcomputer and modules

LwM2M over
CoAP and MQTT

The table below describes hardware requirements for devices.

SDK RAM
Capaci
ty

Flash
Memory

CPU
Frequenc
y

OS Type Programmi
ng
Language

IoT Device
SDK

> 4 MB > 2 MB > 200
MHz

C (Linux), Java
(Linux/
Windows), C#
(Windows),
Android
(Android), Go
Community
Edition (Linux/
Windows/Unix-
like OS), and
OpenHarmony

C, Java, C#,
Android,
and Go

IoT Device
SDK Tiny

> 32
KB

> 128 KB > 100
MHz

It adapts to
LiteOS, Linux,
macOS, and
FreeRTOS. You
can modify the
SDK to adapt to
other
environments.

C

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/os/Readme.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/os/Readme.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/os/Readme.md

For details on the SDK usage, visit the following links:

● IoT Device C SDK for Linux/Windows
● IoT Device Java SDK
● IoT Device C# SDK
● IoT Device Android SDK
● IoT Device Go SDK
● IoT Device Tiny C SDK for Linux/Windows
● IoT Device Python SDK

The following table shows the main function matrix of the SDK.

Table 3-1 SDK function matrix

Functi
on

C Java C# Androi
d

Go Pytho
n

C Tiny Ark
TS

Propert
y
reporti
ng

√ √ √ √ √ √ √ √

Messa
ge
reporti
ng and
deliver
y

√ √ √ √ √ √ √ √

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Functi
on

C Java C# Androi
d

Go Pytho
n

C Tiny Ark
TS

Event
reporti
ng and
deliver
y

√ √ √ √ √ √ √ ×

Comm
and
deliver
y and
respon
se

√ √ √ √ √ √ √ √

Device
shado
w

√ √ √ √ √ √ √ √

OTA
upgrad
e

√ √ √ √ √ √ √ ×

bootstr
ap

√ √ √ √ √ √ √ ×

Time
synchr
onizati
on

√ √ √ √ √ √ √ ×

Gatew
ay and
child
device
manag
ement

√ √ √ √ √ √ √ ×

Device
-side
Rules

√ × √ × × × √ ×

Remot
e SSH

√ × √ × × × × ×

Anoma
ly
detecti
on

√ × √ × × × × ×

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Functi
on

C Java C# Androi
d

Go Pytho
n

C Tiny Ark
TS

Device
-cloud
secure
comm
unicati
on
(soft
bus)

√ × √ × × × × ×

M2M
functio
n

√ × √ × × × × ×

Generi
c-
protoc
ol
access

√ √ √ √ × √ × ×

FAQ
IoT Device SDKs

Device Integration

3.2 IoT Device Java SDK

Maven Reference
<dependencies>
 <dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.2.0</version>
 </dependency>
</dependencies>

Requirements
● JDK (version 1.8 or later) and Maven have been installed.
● Download the SDK. The project contains the following subprojects:

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01002.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01003.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java

iot-device-sdk-java: SDK code

iot-device-demo: demo code for common directly connected devices

iot-gateway-demo: demo code for gateways

iot-bridge-sdk: SDK code for the bridge

iot-bridge-demo: demo code for the bridge, which is used to bridge a TCP
device to the platform

iot-bridge-sample-tcp-protocol: sample code of a child device using TCP to
connect to a bridge

iot-device-code-generator: device code generator, which can automatically
generate device code for different product models

● Go to the SDK root directory and run the mvn install command to build and
install the SDK.

Creating a Product

A smoke detector product model is provided to help you understand the product
model. This smoke detector can report the smoke density, temperature, humidity,
and smoke alarms, and execute the ring alarm command. The following uses the
smoke detector as an example to introduce the procedures of message reporting
and property reporting.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card. Check and save the MQTTS device access domain name.

Step 2 Choose Products in the navigation pane and click Create Product.

Step 3 Set the parameters as prompted and click OK.

Set Basic Info

Resource
Space

The platform automatically allocates the created product to the
default resource space. If you want to allocate the product to
another resource space, select the resource space from the
drop-down list box. If a resource space does not exist, create it
first.

Product
Name

Customize the product name. The name can contain letters,
numbers, underscores (_), and hyphens (-).

Protocol Select MQTT.

Data Type Select JSON.

Device Type
Selection

Select Custom.

Device Type Select smokeDetector.

Advanced Settings

Product ID Leave this parameter blank.

Description Set this parameter based on service requirements.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html

----End

Uploading a Product Model

Step 1 Download the smokeDetector product model file.

Step 2 Click the name of the product created in 3 to access its details.

Step 3 On the Basic Information tab page, click Import from Local to upload the
product model file obtained in 1.

Figure 3-1 Product - Uploading a product model

----End

Registering a Device

Step 1 In the navigation pane, choose Devices > All Devices, and click Register Device.

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

Ensure that the device and the product created in 3 belong to
the same resource space.

Product Select the product created in 3.

Node ID This parameter specifies the unique physical identifier of the
device. The value can be customized and consists of letters and
numbers.

Device Name Customize the device name.

Authenticatio
n Type

Select Secret.

Secret Customize the device secret. If this parameter is not set, the
platform automatically generates a secret.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://iot-developer.obs.cn-north-4.myhuaweicloud.com:443/smokeDetector.zip

After the device is registered, save the node ID, device ID, and secret.

----End

Initializing a Device
1. Enter the device ID and secret obtained in Registering a Device and the

device connection information obtained in 1. The format is ssl://Domain
name:Port or ssl://IP address:Port.
// Obtaining the certificate path: Load the CA certificate of the platform and use the default ca.jks of
the SDK for server verification.
 URL resource = MessageSample.class.getClassLoader().getResource("ca.jks");
 File file = new File(resource.getPath());
 //For example, modify the following parameters in MessageSample.java in the iot-device-demo
file:
 IoTDevice device = new IoTDevice("ssl://Domain name:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret", file);

NO TE

All files that involve device IDs and passwords must be modified accordingly.

2. Establish a connection. Call init of the IoT Device SDK. The thread is blocked
until a result is returned. If the connection is established, 0 is returned.
 if (device.init() != 0) {
 return;
 }

If the connection is successful, information similar to the following is
displayed:
2023-07-17 17:22:59 INFO MqttConnection:105 - Mqtt client connected. address :ssl://Domain name:
8883

3. After the device is created and connected, it can be used for communication.
Call the getClient method of the IoT Device SDK to obtain the device client.
The client provides communication APIs for processing messages, properties,
and commands.

Reporting a Message
Message reporting is the process in which a device reports messages to the
platform.

1. Call getClient of the IoT Device SDK to obtain the client from the device.
2. Call reportDeviceMessage to enable the client to report a device message. In

the sample below, messages are reported periodically.
 while (true) {
 device.getClient().reportDeviceMessage(new DeviceMessage("hello"), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("reportDeviceMessage ok");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportDeviceMessage fail: " + var2);
 }
 });

 // Report messages through custom topics, which must be configured on the platform first.
 String topic = "$oc/devices/" + device.getDeviceId() + "/user/wpy";
 device.getClient().publishRawMessage(new RawMessage(topic, "hello raw message "),
 new ActionListener() {
 @Override

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

 public void onSuccess(Object context) {
 log.info("publishRawMessage ok: ");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("publishRawMessage fail: " + var2);
 }
 });

 Thread.sleep(5000);
 }

3. Replace the device parameters with the actual values in the main function of
the MessageSample class, and run this class. Then view the logs about
successful connection and message reporting.
2024-04-16 16:43:09 INFO AbstractService:103 - create device, the deviceId is
5e06bfee334dd4f33759f5b3_demo
2024-04-16 16:43:09 INFO MqttConnection:233 - try to connect to ssl://Domain name: 8883
2024-04-16 16:43:10 INFO MqttConnection:257 - connect success, the uri is ssl://Domain name: 8883
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"5e06bfee334dd4f33759f5b3_demo","services":[{"paras":
{"type":"DEVICE_STATUS","content":"connect
success","timestamp":"1713256990817"},"service_id":"$log","event_type":"log_report","event_time":"20
240416T084310Z","event_id":null}]}
2024-04-16 16:43:11 INFO MqttConnection:140 - Mqtt client connected. address is ssl://Domain
name: 8883
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"5e06bfee334dd4f33759f5b3_demo","services":[{"paras":
{"device_sdk_version":"JAVA_v1.2.0","fw_version":null,"sw_version":null},"service_id":"$sdk_info","event
_type":"sdk_info_report","event_time":"20240416T084311Z","event_id":null}]}
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo /sys/events/up, msg = {"object_device_id":
"5e06bfee334dd4f33759f5b3_demo ","services": [{"paras":
{"type":"DEVICE_STATUS","content":"connect complete, the url is ssl://Domain name:
8883","timestamp":"1713256991263"},"service_id":"$log","event_type":"log_report","event_time":"2024
0416T084311Z","event_id":null}]}
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/messages/up, msg =
{"name":null,"id":null,"content":"hello","object_device_id":null}
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/user/wpy, msg = hello raw message
2024-04-16 16:43:11 INFO MessageSample:98 - reportDeviceMessage ok
2024-04-16 16:43:11 INFO MessageSample:113 - publishRawMessage ok:

4. On the IoTDA console, choose Devices > All Devices and check whether the
device is online.

Figure 3-2 Device list - Device online status

5. Select the device, click View, and enable message trace on the device details
page.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Figure 3-3 Message tracing - Starting message tracing

6. View the messages received by the platform.

Figure 3-4 Message tracing - Viewing device_sdk_java tracing result

Note: Message trace may be delayed. If no data is displayed, wait for a while and
refresh the page.

Reporting Properties
Open the PropertySample class. In this example, the alarm, temperature,
humidity, and smokeConcentration properties are periodically reported to the
platform.

 // Report properties periodically.
 while (true) {

 Map<String ,Object> json = new HashMap<>();
 Random rand = new Random();

 // Set properties based on the product model.
 json.put("alarm", 1);
 json.put("temperature", rand.nextFloat()*100.0f);
 json.put("humidity", rand.nextFloat()*100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");// The serviceId must the consistent with that
defined in the product model.

 device.getClient().reportProperties(Arrays.asList(serviceProperty), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("pubMessage success");
 }

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportProperties failed" + var2.toString());
 }
 });

 Thread.sleep(10000);
 }
 }

Modify the main function of the PropertySample class and run this class. Then
view the logs about successful property reporting.
2024-04-17 15:38:37 INFO AbstractService:103 - create device, the deviceId is
5e06bfee334dd4f33759f5b3_demo
2024-04-17 15:38:37 INFO MqttConnection:233 - try to connect to ssl://Domain name: 8883
2024-04-17 15:38:38 INFO MqttConnection:257 - connect success, the uri is ssl://Domain name: 8883
2024-04-17 15:38:38 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"661e35467bdccc0126d1a595_feng-sdk-test3","services":[{"paras":
{"type":"DEVICE_STATUS","content":"connect
success","timestamp":"1713339518043"},"service_id":"$log","event_type":"log_report","event_time":"2024041
7T073838Z","event_id":null}]}
2024-04-17 15:38:38 INFO MqttConnection:140 - Mqtt client connected. address is ssl://Domain name: 8883
2024-04-17 15:38:38 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"661e35467bdccc0126d1a595_feng-sdk-test3","services":[{"paras":
{"device_sdk_version":"JAVA_v1.2.0","fw_version":null,"sw_version":null},"service_id":"$sdk_info","event_type"
:"sdk_info_report","event_time":"20240417T073838Z","event_id":null}]}
2024-04-17 15:38:38 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo /sys/events/up, msg = {"object_device_id":
"5e06bfee334dd4f33759f5b3_demo ","services": [{"paras":{"type":"DEVICE_STATUS","content":"connect
complete, the url is ssl://Domain
name :8883","timestamp":"1713339518464"},"service_id":"$log","event_type":"log_report","event_time":"202
40417T073838Z","event_id":null}]}
2024-04-17 15:38:38 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/properties/report, msg = {"services":[{"properties":
{"alarm":1,"temperature":55.435158,"humidity":51.950867,"smokeConcentration":43.89913},"service_id":"sm
okeDetector","event_time":null}]}
2024-04-17 15:38:38 INFO PropertySample:144 - pubMessage success

The latest property values are displayed on the device details page of the
platform.

Figure 3-5 Product model - Property reporting

Reading and Writing Properties
Call the setPropertyListener method of the client to set the property callback. In
PropertySample, the property reading/writing API is implemented.

Property reading: Only the alarm property can be written.

Property reading: Assemble the local property value based on the API format.
 device.getClient().setPropertyListener(new PropertyListener() {

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

 // Process property writing.
 @Override
 public void onPropertiesSet(String requestId, List<ServiceProperty> services) {
 // Traverse services.
 for (ServiceProperty serviceProperty : services) {

 log.info("OnPropertiesSet, serviceId is {}", serviceProperty.getServiceId());

 // Traverse properties.
 for (String name : serviceProperty.getProperties().keySet()) {
 log.info("property name is {}", name);
 log.info("set property value is {}", serviceProperty.getProperties().get(name));
 }

 }
 // Change the local property value.
 device.getClient().respondPropsSet(requestId, IotResult.SUCCESS);
 }

 /**
 * Process property reading. In most scenarios, you can directly read the device shadow on the
platform, so this interface does not need to be implemented.
 * To read device properties in real time, implement this method.
 */
 @Override
 public void onPropertiesGet(String requestId, String serviceId) {
 log.info("OnPropertiesGet, the serviceId is {}", serviceId);
 Map<String, Object> json = new HashMap<>();
 Random rand = new SecureRandom();
 json.put("alarm", 1);
 json.put("temperature", rand.nextFloat() * 100.0f);
 json.put("humidity", rand.nextFloat() * 100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");

 device.getClient().respondPropsGet(requestId, Arrays.asList(serviceProperty));
 }
 });

NO TE

1. The property reading/writing API must call the respondPropsGet and respondPropsSet
methods to report the operation result.

2. If the device does not allow the platform to proactively read data from the device,
onPropertiesGet can be left not implemented.

Run the PropertySample class and check whether the value of the alarm
property is 1 on the Device Shadow tab page.

Figure 3-6 Device shadow - Viewing property (Alarm)

Change the value of the alarm property to 0.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Figure 3-7 Device shadow - Configuring property (alarm)

In the device logs, the value of alarm is 0.

Delivering a Command
You can set a command listener to receive commands delivered by the platform.
The callback API needs to process the commands and report responses.

Command processing in the CommandSample example: Print the received
command, and then call respondCommand method to report the response.

 device.getClient().setCommandListener(new CommandListener() {
 @Override
 public void onCommand(String requestId, String serviceId, String commandName, Map<String,
Object> paras) {
 log.info("onCommand, serviceId = {}", serviceId);
 log.info("onCommand , name = {}", commandName);
 log.info("onCommand, paras = {}", paras.toString());

 // Process the command.

 // Send a command response.
 device.getClient().respondCommand(requestId, new CommandRsp(0));
 }

 });

Run the CommandSample class and deliver a command on the platform. In the
command, set serviceId to smokeDetector, name to ringAlarm, and paras to
duration=20.

The log shows that the device receives the command and reports a response.

Object-oriented Programming
Calling device client APIs to communicate with the platform is flexible but requires
you to properly configure each API.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

The SDK provides a simpler method, object-oriented programming. You can use
the product model capabilities provided by the SDK to define device services and
call the property reading/writing API to access the device services. In this way, the
SDK can automatically communicate with the platform to synchronize properties
and call commands.

Object-oriented programming simplifies the complexity of device code and
enables you to focus only on services rather than the communications with the
platform. This method is much easier than calling client APIs and suitable for most
scenarios.

The following uses smokeDetector to demonstrate the process of object-oriented
programming.

1. Define the service class and properties based on the product model. (If there
are multiple services, define multiple service classes.)
public static class SmokeDetectorService extends AbstractService {

 // Define properties based on the product model. Ensure that the device name and type are the
same as those in the product model. writeable indicates whether the property can be written, and
name indicates the property name.
 @Property(name = "alarm", writeable = true)
 int smokeAlarm = 1;

 @Property(name = "smokeConcentration", writeable = false)
 float concentration = 0.0f;

 @Property(writeable = false)
 int humidity;

 @Property(writeable = false)
 float temperature;

@Property indicates a property. You can use name to specify a property
name. If no property name is specified, the field name is used.
You can add writeable to a property to control permissions on it. If the
property is read-only, add writeable = false. If writeable is not added, the
property can be read and written.

2. Define service commands. The SDK automatically calls the commands when
the device receives commands from the platform.
The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
The following code defines a ring alarm command named ringAlarm. The
delivered parameter is duration, which indicates the duration of the ringing
alarm.
// Define the command. The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
 @DeviceCommand(name = "ringAlarm")
 public CommandRsp alarm(Map<String, Object> paras) {
 int duration = (int) paras.get("duration");
 log.info("ringAlarm duration = " + duration);
 return new CommandRsp(0);
 }

3. Define the getter and setter methods.
– The device automatically calls the getter method after receiving the

commands for querying and reporting properties from the platform. The
getter method reads device properties from the sensor in real time or
from the local cache.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

– The device automatically calls the setter method after receiving the
commands for setting properties from the platform. The setter method
updates the local values of the device. If a property is not writable, leave
the setter method not implemented.

// Ensure that the names of the setter and getter methods comply with the JavaBean specifications so
that the APIs can be automatically called by the SDK.
 public int getHumidity() {

 // Simulate the action of reading data from the sensor.
 humidity = new Random().nextInt(100);
 return humidity;
 }

 public void setHumidity(int humidity) {
 // You do not need to implement this method for read-only fields.
 }

 public float getTemperature() {

 // Simulate the action of reading data from the sensor.
 temperature = new Random().nextInt(100);
 return temperature;
 }

 public void setTemperature(float temperature) {
 // Read-only fields do not need to implement the set method.
 }

 public float getConcentration() {

 // Simulate the action of reading data from the sensor.
 concentration = new Random().nextFloat()*100.0f;
 return concentration;
 }

 public void setConcentration(float concentration) {
 // Read-only fields do not need to implement the set method.
 }

 public int getSmokeAlarm() {
 return smokeAlarm;
 }

 public void setSmokeAlarm(int smokeAlarm) {

 this.smokeAlarm = smokeAlarm;
 if (smokeAlarm == 0){
 log.info("alarm is cleared by app");
 }
 }

4. Create a service instance in the main function and add the service instance to
the device.
 // Create a device.
 IoTDevice device = new IoTDevice(serverUri, deviceId, secret);

 // Create a device service.
 SmokeDetectorService smokeDetectorService = new SmokeDetectorService();
 device.addService("smokeDetector", smokeDetectorService);

 if (device.init() != 0) {
 return;
 }

5. Enable periodic property reporting.
// Enable periodic property reporting.
smokeDetectorService.enableAutoReport(10000);

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

If you do not want to report properties periodically, you can call
firePropertiesChanged to manually report them.

Run the SmokeDetector class to view the logs about property reporting.

View the device shadow on the platform.

Figure 3-8 Device shadow - Viewing property (Alarm)

Modify the alarm property on the platform and view the device logs about
property modification.

Deliver the ringAlarm command on the platform.
View the logs about calling the ringAlarm command and reporting a
response.

Using the Code Generator
The SDK provides a code generator, which allows you to automatically generate a
device code framework only using a product model. The code generator parses the
product model, generates a service class for each service defined in the model, and
generates a device main class based on the service classes. In addition, the code
generator creates a device and registers a service instance in the main function.

To use the code generator to generate device code, proceed as follows:

1. Download the huaweicloud-iot-device-sdk-java project, decompress it, go to
the huaweicloud-iot-device-sdk-java directory, and run the mvn install
command.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

2. Check whether an executable JAR package is generated in the target folder of
iot-device-code-generator.

3. Save the product model to a local directory. For example, save the
smokeDetector.zip file to disk D.

4. Access the SDK root directory and run the java -jar .\iot-device-code-
generator\target\iot-device-code-generator-1.2.0-with-deps.jar
D:\smokeDetector.zip command.

5. Check whether the generated-demo package is generated in the
huaweicloud-iot-device-sdk-java directory.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

The device code is generated.

To compile the generated code, proceed as follows:

1. Go to the huaweicloud-iot-device-sdk-java\generated-demo directory, and
run the mvn install command to generate a JAR package in the target folder.

2. Run the java -jar .\target\iot-device-demo-ganerated-1.2.0-with-deps.jar
ssl://Domain name:8883 device_id secret command. The three parameters
are the device access address, device ID, and password, respectively. Run the
generated demo.
D:\git\huaweicloud-iot-device-sdk-java\generated-demo> java -jar .\target\iot-device-demo-
ganerated-1.2.0-with-deps.jar ssl://Domain name:8883 5e06bfee334dd4f33759f5b3_demo secret
2024-04-17 15:50:53 INFO AbstractService:73 - create device, the deviceId is
5e06bfee334dd4f33759f5b3_demo
2024-04-17 15:50:54 INFO MqttConnection:204 - try to connect to ssl://Domain name: 8883
2024-04-17 15:50:55 INFO MqttConnection:228 - connect success, the uri is ssl://Domain name: 8883
2024-04-17 15:50:55 INFO MqttConnection:268 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"5e06bfee334dd4f33759f5b3_demo","services":[{"paras":

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

{"type":"DEVICE_STATUS","content":"connect
success","timestamp":"1713340255148"},"service_id":"$log","event_type":"log_report","event_time":"20
240417T075055Z","event_id":null}]}
2024-04-17 15:50:55 INFO MqttConnection:111 - Mqtt client connected. address is ssl://Domain
name: 8883
2024-04-17 15:50:55 INFO MqttConnection:268 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"5e06bfee334dd4f33759f5b3_demo","services":[{"paras":
{"device_sdk_version":"JAVA_v1.2.0","fw_version":null,"sw_version":null},"service_id":"$sdk_info","event
_type":"sdk_info_report","event_time":"20240417T075055Z","event_id":null}]}
2024-04-17 15:50:55 INFO MqttConnection:268 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo /sys/events/up, msg = {"object_device_id":
"5e06bfee334dd4f33759f5b3_demo ","services": [{"paras":
{"type":"DEVICE_STATUS","content":"connect complete, the url is ssl://Domain
name :8883","timestamp":"1713340255496"},"service_id":"$log","event_type":"log_report","event_time
":"20240417T075055Z","event_id":null}]}
2024-04-17 15:51:03 INFO smokeDetectorService:78 - report property alarm value = 50
2024-04-17 15:51:03 INFO smokeDetectorService:104 - report property temperature value =
0.3648571367849047
2024-04-17 15:51:03 INFO smokeDetectorService:91 - report property smokeConcentration value =
0.679772877336927
2024-04-17 15:51:03 INFO smokeDetectorService:117 - report property humidity value = 15
2024-04-17 15:51:03 INFO MqttConnection:268 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/properties/report, msg = {"services":[{"properties":
{"alarm":50,"temperature":0.3648571367849047,"smokeConcentration":0.679772877336927,"humidity
":15},"service_id":"smokeDetector","event_time":"20240417T075103Z"}]}

To modify the extended code, proceed as follows:

Service definition and registration have already been completed through the
generated code. You only need to make small changes to the code.

1. Command API: Add specific implementation logic.

2. getter method: Change the value return mode of the generated code from
returning a random value to reading from the sensor.

3. setter method: Add specific processing logic, such as delivering instructions to
the sensor, because the generated code only modifies and saves the
properties.

Developing a Gateway
Gateways are special devices that provide child device management and message
forwarding in addition to the functions of common devices. The SDK provides the
AbstractGateway class to simplify gateway implementation. This class can collect
and save child device information (with a data persistence API), forward message
responses (with a message forwarding API), and report child device list, properties,
statuses, and messages.

● AbstractGateway Class
Inherit this class to provide APIs for persistently storing device information
and forwarding messages to child devices in the constructor.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

 public abstract void onSubdevCommand(String requestId, Command command);

 public abstract void onSubdevPropertiesSet(String requestId, PropsSet propsSet);

 public abstract void onSubdevPropertiesGet(String requestId, PropsGet propsGet);

 public abstract void onSubdevMessage(DeviceMessage message);

● iot-gateway-demo Code
The iot-gateway-demo project implements a simple gateway with
AbstractGateway to connect TCP devices. The key classes include:
SimpleGateway: inherited from AbstractGateway to manage child devices
and forward messages to child devices.
StringTcpServer: implements a TCP server based on Netty. In this example,
child devices support the TCP protocol, and the first message is used for
authentication.
SubDevicesFilePersistence: persistently stores child device information in a
JSON file and caches the file in the memory.
Session: stores the mapping between device IDs and TCP channels.

● SimpleGateway Class
Adding or Deleting a Child Device
Adding a child device: onAddSubDevices of AbstractGateway can store child
device information. Additional processing is not required, and
onAddSubDevices does not need to be overridden for SimpleGateway.
Deleting a child device: You need to modify persistently stored information of
the child device and disconnect the device from the platform. Therefore,
onDeleteSubDevices is overridden to add the link release logic, and
onDeleteSubDevices in the parent class is called.

 @Override
 public int onDeleteSubDevices(SubDevicesInfo subDevicesInfo) {

 for (DeviceInfo subdevice : subDevicesInfo.getDevices()) {
 Session session = nodeIdToSesseionMap.get(subdevice.getNodeId());
 if (session != null) {
 if (session.getChannel() != null) {
 session.getChannel().close();
 channelIdToSessionMap.remove(session.getChannel().id().asLongText());
 nodeIdToSesseionMap.remove(session.getNodeId());
 }
 }
 }
 return super.onDeleteSubDevices(subDevicesInfo);

 }

● Processing Messages to Child Devices
The gateway needs to forward messages received from the platform to child
devices. The messages from the platform include device messages, property
reading/writing, and commands.
– Device messages: Obtain the nodeId based on the deviceId, and then

obtain the session of the device to get a channel for sending messages.
You can choose whether to convert messages during forwarding.
 @Override
 public void onSubdevMessage(DeviceMessage message) {

 // Each platform API carries a deviceId, which consists of a nodeId and productId.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

 //deviceId = productId_nodeId
 String nodeId = IotUtil.getNodeIdFromDeviceId(message.getDeviceId());
 if (nodeId == null) {
 return;
 }

 // Obtain the session based on the nodeId for a channel.
 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 log.error("subdev is not connected " + nodeId);
 return;
 }
 if (session.getChannel() == null){
 log.error("channel is null " + nodeId);
 return;
 }

 // Directly forward messages to the child device.
 session.getChannel().writeAndFlush(message.getContent());
 log.info("writeAndFlush " + message);
 }

– Property Reading and Writing

Property reading and writing include property setting and query.

Property setting:
 @Override
 public void onSubdevPropertiesSet(String requestId, PropsSet propsSet) {

 if (propsSet.getDeviceId() == null) {
 return;
 }

 String nodeId = IotUtil.getNodeIdFromDeviceId(propsSet.getDeviceId());
 if (nodeId == null) {
 return;
 }

 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 return;
 }

 // Convert the object into a string and send the string to the child device. Encoding/
Decoding may be required in actual situations.
 session.getChannel().writeAndFlush(JsonUtil.convertObject2String(propsSet));

 // Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
 getClient().respondPropsSet(requestId, IotResult.SUCCESS);

 log.info("writeAndFlush " + propsSet);

 }

Property query:
 @Override
 public void onSubdevPropertiesGet(String requestId, PropsGet propsGet) {

 // Send a failure response. It is not recommended that the platform directly reads the
properties of the child device.
 log.error("not support onSubdevPropertiesGet");
 deviceClient.respondPropsSet(requestId, IotResult.FAIL);
 }

– Commands: The procedure is similar to that of message processing.
Different types of encoding/decoding may be required in actual
situations.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

@Override
 public void onSubdevCommand(String requestId, Command command) {

 if (command.getDeviceId() == null) {
 return;
 }

 String nodeId = IotUtil.getNodeIdFromDeviceId(command.getDeviceId());
 if (nodeId == null) {
 return;
 }

 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 return;
 }

 // Convert the command object into a string and send the string to the child device.
Encoding/Decoding may be required in actual situations.
 session.getChannel().writeAndFlush(JsonUtil.convertObject2String(command));

 // Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
 getClient().respondCommand(requestId, new CommandRsp(0));
 log.info("writeAndFlush " + command);
 }

● Upstream Message Processing

Upstream message processing is implemented by channelRead0 of
StringTcpServer. If no session exists, create a session.

If the child device information does not exist, the session cannot be created
and the connection is rejected.
 @Override
 protected void channelRead0(ChannelHandlerContext ctx, String s) throws Exception {
 Channel incoming = ctx.channel();
 log.info("channelRead0" + incoming.remoteAddress() + " msg :" + s);

 // Create a session for the first message.
// Create a session for the first message.
 Session session = simpleGateway.getSessionByChannel(incoming.id().asLongText());
 if (session == null) {
 String nodeId = s;
 session = simpleGateway.createSession(nodeId, incoming);

 // The session fails to create and the connection is rejected.
 if (session == null) {
 log.info("close channel");
 ctx.close();
 }
 }

If the session exists, the message is forwarded.
else {
 // Call reportSubDeviceProperties to report properties of the child device.
 DeviceMessage deviceMessage = new DeviceMessage(s);
 deviceMessage.setDeviceId(session.getDeviceId());
 simpleGateway.reportSubDeviceMessage(deviceMessage, null);

 }

For details about the gateway, view the source code. The demo is open-source
and can be extended as required. For example, you can modify the persistence
mode, add message format conversion during forwarding, and support other
device access protocols.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

● Using iot-gateway-demo

a. Create a product for the child device. For details, see Creating a Product.
b. Define a model in the created product and add a service whose ID is

parameter. Add alarm and temperature properties, as shown in the
following figure.

Figure 3-9 Model definition - Child device product

c. Modify the main function of StringTcpServer by replacing the
constructor parameters, and run this class.
 simpleGateway = new SimpleGateway(new SubDevicesFilePersistence(),
 "ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret");

d. After the gateway is displayed as Online on the platform, add a child
device.

Figure 3-10 Device - Adding a child device

Table 3-2 Child device parameters

Parameter Description

Product Product to which the child device belongs. Select the
product created in 1.

Device Name Customize a device name, for example,
subdev_name.

Node ID Enter subdev.

Device ID This parameter is optional and is automatically
generated.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

A log similar to the following is displayed on the gateway:
2024-04-16 21:00:01 INFO SubDevicesFilePersistence:112 - add subdev,
the nodeId is subdev

e. Run the TcpDevice class. After the connection is set up, enter the node ID
of the child device registered in step 3, for example, subdev.

Figure 3-11 Child device connection

A log similar to the following is displayed on the gateway:
2024-04-16 21:00:54 INFO StringTcpServer:196 - initChannel: /127.0.0.1:21889
2024-04-16 21:01:00 INFO StringTcpServer:137 - channelRead0 is /127.0.0.1:21889, the msg is
subdev
2024-04-16 21:01:00 INFO SimpleGateway:100 - create new session ok, the session is
Session{nodeId='subdev', channel=[id: 0xf9b89f78, L:/127.0.0.1:8080 - R:/127.0.0.1:21889],
deviceId='subdev_deviceId'}

f. Check whether the child device is online on the platform.

Figure 3-12 Device list - Device online status

g. Enable the child device to report messages.

Figure 3-13 Enable the child device to report messages.

Logs similar to the following show that the message is reported.
2024-04-16 21:02:36 INFO StringTcpServer:137 - channelRead0 is /127.0.0.1:21889, the msg is
hello

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

2024-04-16 21:02:36 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/messages/up, msg =
{"name":null,"id":null,"content":"hello","object_device_id":"subdev_deviceId"]
2024-04-16 21:02:36 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/gateway/sub_devices/properties/report, msg =
{"devices":[{"services":[{"properties":
{"temperature":2,"alarm":1},"service_id":"parameter","event_time":null}],"device_id":"subdev_de
viceId"}]]

h. View the messages traced.
Click Message Trace on the gateway details page. Send data from the
child device to the platform, and view the messages after a while.

Figure 3-14 Message tracing - Directly connected device

3.3 IoT Device C SDK for Linux/Windows
The IoT Device C SDK for Linux/Windows provides abundant demo code for
devices to communicate with the platform and implement device, gateway, and
Over-The-Air (OTA) services. For details about the integration guide, see IoT
Device C SDK for Linux/Windows.

Requirements
● The SDK runs on Linux.
● The SDK depends on the OpenSSL and Paho libraries. If you have your own

compilation chain, compile library files such as OpenSSL, Paho, zlib, and
Huawei secure function library.

● For some devices that are connected in MCU+module mode, use the C Tiny
SDK for development.

NO TE

For details, see README.

Change History

Table 3-3 Change history

Versio
n

Change Description

1.2.0 Function
enhancement

Added the SDK test code and demo, and optimized the
code usage.

1.1.5 Function
enhancement

Updated the OTA upgrade transmission format.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp/blob/master/README.md

Versio
n

Change Description

1.1.4 Function
enhancement

Fixed the issue of remote login packet reporting
timeout.

1.1.3 Function
enhancement

Updated the conf\rootcert.pem certificates.

1.1.2 New function Added device rules, M2M, GN compilation file,
anomaly detection, timestamp printed in logs,
MQTT_DEBUG, Chinese cryptographic algorithm,
remote configuration, and device-cloud secure
communication (soft bus).

1.1.1 New function Added SSH remote O&M.

1.1.0 New function Supported MQTT 5.0. Optimized the cod to resolve the
memory overflow issue.

1.0.1 Function
enhancement

Added application scenarios, where MQTTS does not
verify the platform public key, using TLS version is
V1.2, and adding message storage examples.

0.9.0 New function Added the API for the gateway to update the child
device status.

0.8.0 Function
enhancement

Added the access domain name (iot-mqtts.cn-
north-4.myhuaweicloud.com) and root certificates.
If the device uses the old domain name (iot-acc.cn-
north-4.myhuaweicloud.com) for access, use the v0.5.0
SDK.

0.5.0 Function
enhancement

Preset the device access address and the matching CA
certificate in the SDK to support interconnection with
the Huawei Cloud IoT platform.

3.4 IoT Device C# SDK
The IoT Device C# SDK provides abundant demo code for devices to communicate
with the platform and implement advanced services such as device, gateway, and
OTA services. For details about the integration guide, see IoT Device C# SDK.

Requirements
● .NET SDK 8.0 has been installed.

– .NET installation guide

– .NET 8.0.

● The corresponding IDE (Visual Studio Code 2017+, Rider 17.0.6+) has been
installed. This SDK does not depend on the IDE. You can select the IDE or
directly use the CLI as required.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp
https://learn.microsoft.com/en-us/dotnet/core/install/
https://dotnet.microsoft.com/en-us/download/dotnet/8.0

NO TE

For details, see README.

Change History

Table 3-4 Change history

Version Change Description

1.3.4 Functio
n
enhance
ment

1. Optimized the log printing function.
2. Modified the topic returned by SubscribeTopic starting

with oc.
3. Optimized demos.
4. Fixed the bug of the gateway interface.
5. Upgraded the target framework.
6. Optimized other features.

1.3.3 New
function

Supported gateway mode for OTA upgrade.

1.3.2 Functio
n
enhance
ment

Updated the CA certificate for the server.

1.3.1 Fixing Resolved issues such as null pointer exceptions and MQTT
object release failures.

1.3.0 New
function

Supported OBS-based upgrade of software and firmware
packages.

1.2.0 New
function

Added the generic-protocol function.

1.1.1 Functio
n
enhance
ment

Added the function of deleting child devices from a
gateway and optimized the description.

1.1.0 New
function

Added the gateway and product model functions.

1.0.0 First
release

Provided basic device access capabilities. Preset the device
access address and the CA certificate matching Huawei
IoTDA in the SDK.

3.5 IoT Device Android SDK
The IoT Device Android SDK provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp/blob/master/README.md

gateway, and OTA services. For details about the integration guide, see IoT Device
Android SDK.

Requirements
Android Studio has been installed.

NO TE

For details, see README.

Change History

Table 3-5 Change history

Version Change Description

1.0.0 First release Provided basic device access capabilities.

3.6 IoT Device Go SDK
The IoT Device Go SDK provides abundant demo code for devices to communicate
with the platform and implement advanced services such as device and OTA
services. For details about the integration guide, see IoT Device Go SDK.

Requirements
● Go 1.18 or later has been installed.
● The dependencies have been installed based on go.mod.

NO TE

For details, see README.

Change History

Table 3-6 Change history

Version Change Description

v1.0.0 New
function

Provided capabilities for connections to the Huawei
Cloud IoT platform to facilitate service scenarios such
as secure access, device management, data collection,
command delivery, device provisioning, and device
rules.

3.7 IoT Device Tiny C SDK for Linux/Windows
The IoT Device Tiny C SDK for Linux/Windows is lightweight interconnection
middleware deployed on devices that have wide area network (WAN) capabilities

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-android/blob/main/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-go
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-go/blob/main/README.md

and limited power consumption, storage, and computing resources. After the SDK
is deployed on such devices, you only need to call APIs to enable the devices to
connect to the IoT platform, report data, and receive commands. For details about
the integration, see development guide on device-cloud communication
components.

NO TE

The IoT Device SDK Tiny can run on devices that do not run Linux OS, and can also be
integrated into modules. However, it does not provide gateway services.

Requirements
● It adapts to LiteOS, Linux, macOS, and FreeRTOS. You can modify the SDK to

adapt to other environments.
● For details about different modules, see the SDK development board porting

list.

FAQ
LwM2M/CoAP Device Access

3.8 IoT Device Python SDK
The IoT Device Python SDK provides abundant demo code for devices to
communicate with the platform and implement device, gateway, and OTA services.
For details, see IoT Device Python SDK.

Requirements
● Python 3.11.4 has been installed.
● The third-party class library paho-mqtt 2.0.0 has been installed (mandatory).
● The third-party class library schedule 1.2.2 has been installed (mandatory).
● The third-party class library APScheduler 3.10.4 has been installed

(mandatory).
● The third-party class library requests 2.32.2 has been installed (optional, used

in the demo of gateway and child device management).
● The third-party class library tornado 6.3.3 has been installed (optional, used in

the demo of gateway and child device management).

NO TE

For details about how to install the components, see IoT Device SDK (Python) Usage
Guide.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/README.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/README.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/os/Readme.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/docs/SDK_Demos_List.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/docs/SDK_Demos_List.md
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01005.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python

Change History

Table 3-7 Change history

Version Change Description

1.2.0 New
function

Added the functions of rule engine, device provisioning,
customized reconnection upon disconnection, and
component version upgrade.

1.1.4 New
function

Supported gateway mode for OTA upgrade.

1.1.3 Function
enhancem
ent

Updated the CA certificate for the server.

1.1.2 New
function

Supported MicroPython and the corresponding demo,
OTA downloading from OBS, and description
documents.

1.1.1 New
function

Provided capabilities for connections to the Huawei
Cloud IoT platform to facilitate service scenarios such as
secure access, device management, data collection, and
command delivery.

3.9 IoT Device ArkTS (OpenHarmony) SDK
The IoT Device ArkTS (OpenHarmony) SDK provides abundant demo code for
devices to communicate with the platform.

Preparations
● DevEco Studio 5.0.0 or later has been installed.

– Installing DevEco Studio
– DevEco Studio Downloading

● The matching Node.js has been installed.

Requirements
● Download and installation: In DevEco Studio, run the following command to

import and install the SDK.
ohpm install @huaweicloud/iot-device-sdk

● Permission configuration: To use the SDK, add the
ohos.permission.INTERNET permission to requestPermissions in the
module.json5 file.
{
 "module": {
 "requestPermissions": [
 {
 "name": "ohos.permission.INTERNET"
 }
]

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

https://developer.huawei.com/consumer/en/doc/harmonyos-guides-V5/ide-software-install-V5
https://developer.huawei.com/consumer/en/download/

 }
}

Creating a Product

A smoke detector product model is provided to help you understand the product
model. This smoke detector can report the smoke density, temperature, humidity,
and smoke alarms, and execute the ring alarm command. The following uses the
smoke detector as an example to introduce the procedures of message reporting
and property reporting.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card. Check and save the MQTTS device access domain name.

Step 2 Choose Products in the navigation pane and click Create Product.

Step 3 Set the parameters as prompted and click OK.

Set Basic Info

Resource
Space

The platform automatically allocates the created product to the
default resource space. If you want to allocate the product to
another resource space, select the resource space from the
drop-down list box. If a resource space does not exist, create it
first.

Product
Name

Customize the product name. The name can contain letters,
numbers, underscores (_), and hyphens (-).

Protocol Select MQTT.

Data Type Select JSON.

Device Type
Selection

Select Custom.

Device Type Select smokeDetector.

Advanced Settings

Product ID Leave this parameter blank.

Description Set this parameter based on service requirements.

----End

Uploading a Product Model

Step 1 Download the smokeDetector product model file.

Step 2 Click the name of the product created in 3 to access its details.

Step 3 On the Basic Information tab page, click Import from Local to upload the
product model file obtained in 1.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html
https://iot-developer.obs.cn-north-4.myhuaweicloud.com:443/smokeDetector.zip

Figure 3-15 Product - Uploading a product model

----End

Registering a Device

Step 1 In the navigation pane, choose Devices > All Devices, and click Register Device.

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

Ensure that the device and the product created in 3 belong to
the same resource space.

Product Select the product created in 3.

Node ID This parameter specifies the unique physical identifier of the
device. The value can be customized and consists of letters and
numbers.

Device Name Customize the device name.

Authenticatio
n Type

Select Secret.

Secret Customize the device secret. If this parameter is not set, the
platform automatically generates a secret.

After the device is registered, save the node ID, device ID, and secret.

----End

Initializing a Device
NO TE

Demo: entry/src/main/ets/pages/Index.ets

1. Enter the device ID and secret obtained in Registering a Device and the
device connection information obtained in 1. The format is ssl://Domain
name:Port or ssl://IP address:Port.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

private device: IoTDevice | null = null;

// Replace the access address, device ID, device secret, and certificate path with your own ones. (Use
the corresponding certificate when connecting to Huawei Cloud. The certificate file is stored in
resource/resfile. Download the certificate file.)
this.device = new IoTDevice ("ssl://Domain name:8883","deviceId","mySecret","filePath");

2. Call the init method to establish a connection in either asynchronous or
synchronous initialization mode.
// Perform initialization in asynchronous mode.
this.device.init().then((data: boolean) => {
// Connection succeeded.
}).catch((err: string) => {
// Connection failed.
})

// Perform initialization in synchronous mode.
// await this.device.init();

3. Check device logs. The device is successfully connected.
IoTDA_SDK# connect result is {"code":0,"message":"Connect Success"}

4. After the device is created and connected, it can be used for communication.
Call the client method of the IoT Device SDK to obtain the device client. The
client provides communication APIs for processing messages, properties, and
commands.

Reporting a Message
NO TE

Demo: entry/src/main/ets/pages/MessageSample.ets

Message reporting is the process in which a device reports messages to the
platform.

1. After the device is initialized and connected to the platform, call the
reportDeviceMessage method of the client to report device messages and
call the publishRawMessage method to report messages through custom
topics.
 // Report messages through system topics.
 const reportMessage: DeviceMessage = { content: this.message }
 this.device.client.reportDeviceMessage(reportMessage)
 .then((data: IoTMqttResponse) => {
 LogUtil.info(TAG, `report deviceMessage success ${JSON.stringify(data)}. DeviceMessage is $
{JSON.stringify(reportMessage)}`);
 })
 .catch((error: IoTMqttResponse | string) => {
 LogUtil.error(TAG, `report deviceMessage failed ${JSON.stringify(error)}`);
 })

 // Report messages through custom topics starting with $oc, which must be configured on the
platform first.
 const topic = `$oc/devices/${this.device?.deviceId}/user/test`;
 const rawMessage: RawMessage = {
 topic: topic,
 qos: 0,
 payload: this.message
 }
 this.device?.client.publishRawMessage((rawMessage)).then((res: IoTMqttResponse) => {
 LogUtil.info(TAG, `publish rawMessage(${rawMessage.topic}) success, message is $
{JSON.stringify(rawMessage)}}`);
 }).catch((error: IoTMqttResponse | string) => {
 LogUtil.error(TAG, `publish rawMessage(${rawMessage.topic}) failed, error is $
{JSON.stringify(error)}}`);
 });

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

 // Report messages through custom topics not starting with $oc (controlled by device topic policies).
 const topic = "hello/world";
 const rawMessage: RawMessage = {
 topic: topic,
 qos: 0,
 payload: this.message
 }
 this.device?.client.publishRawMessage((rawMessage)).then((res: IoTMqttResponse) => {
 LogUtil.info(TAG, `publish rawMessage(${rawMessage.topic}) success, message is $
{JSON.stringify(rawMessage)}}`);
 }).catch((error: IoTMqttResponse | string) => {
 LogUtil.error(TAG, `publish rawMessage(${rawMessage.topic}) failed, error is $
{JSON.stringify(error)}}`);
 });

2. The logs show that the message is successfully sent.

Figure 3-16 Logs for reporting messages through system topics

Figure 3-17 Logs for reporting messages through custom topics (starting with
$oc)

Figure 3-18 Logs for reporting messages through custom topics (not starting
with $oc)

3. On the IoTDA console, choose Devices > All Devices and check whether the
device is online.

Figure 3-19 Device list - Device online status

4. Select the device, click the button to access its details page, and enable
message tracing.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Figure 3-20 Message tracing - Starting message tracing

5. The message tracing results show that the platform successfully receives the
message from the device.

Figure 3-21 Message tracing - Viewing device_sdk_java tracing result

NO TICE

Message tracing may be delayed. If no data is displayed, wait for a while and
refresh the page.

Reporting Properties
NO TE

Demo: entry/src/main/ets/pages/PropertySample.ets

1. After the device is initialized and connected to the platform, call the
reportProperties method of the client to report device properties.

const properties: ServiceProperty[] =
[
 {
 "service_id": "smokeDetector",
 "properties": {
 "alarm": 1,
 "temperature": Math.random() * 100,
 "humidity": Math.random() * 100,
 "smokeConcentration": Math.random() * 100,
 }
 }
]
;

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

this.device.client.reportProperties(properties)
 .then((data: IoTMqttResponse) => {
 LogUtil.info(TAG, `report properties success ${JSON.stringify(data)}, properties is $
{JSON.stringify(properties)}}`); })
 .catch((error: IoTMqttResponse | string) => {
 LogUtil.error(TAG, `report properties failed ${JSON.stringify(error)}`);
 })

2. The logs show that the properties are successfully sent.

Figure 3-22 Logs for reporting properties

3. On the IoTDA console, choose Devices > All Devices, and click the target device
to access its details page. The latest reported property values are displayed.

Figure 3-23 Product model - Property reporting

Reading and Writing Properties
NO TE

Demo: entry/src/main/ets/pages/PropertySample.ets

1. After the device is successfully initialized, call the propertyListener method of
the client to set the property callback interface.
– Property reading: Only the alarm property can be written.
– Property reading: Assemble the local property value based on the API

format.
let propertyListener: PropertyListener = {
 onPropertiesSet: (requestId: string, services: ServiceProperty[]): void => {
 this.logArr.unshift(`${new Date()}: onPropertiesSet requestId is ${requestId}, services is $
{JSON.stringify(services)}`)
 // Traverse services.
 services.forEach(serviceProperty => {
 LogUtil.info("onPropertiesSet, serviceId is ", serviceProperty.service_id);
 // Traverse properties.
 Object.keys(serviceProperty.properties).forEach(name => {
 LogUtil.log(TAG, `property name is ${name}`);
 LogUtil.log(TAG, `set property value is ${serviceProperty.properties[name]}`);
 })
 })

 // Change the local properties.
 this.device?.client.respondPropsSet(requestId, IotResult.SUCCESS);
 },
 onPropertiesGet: (requestId: string, serviceId?: string): void => {
 this.logArr.unshift(`${new Date()}: onPropertiesGet requestId is ${requestId}, serviceId is $
{serviceId} and respondPropsGet`)
 LogUtil.info(TAG, `onPropertiesGet, the serviceId is ${serviceId}`);

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

 const serviceProperties: ServiceProperty[] = [
 {
 "service_id": "smokeDetector",
 "properties": {
 "alarm": 1,
 "temperature": Math.random() * 100,
 "humidity": Math.random() * 100,
 "smokeConcentration": Math.random() * 100,
 }
 }
];
 this.device?.client.respondPropsGet(requestId, serviceProperties);
 }
}
// Set the property listener.
this.device.client.propertyListener = propertyListener;

NO TE

● The property reading/writing API must call the respondPropsGet and
respondPropsSet methods to report the operation result.

● If the device does not allow the platform to proactively read data from the device,
the onPropertiesGet method can be left not implemented.

2. Run the preceding code to set the property listener. On the device shadow
page of the platform, check the value of alarm, which is 1. Change the value
to 0, and check the device logs. The results show that the device receives a
request for setting the value of alarm to 0.

Figure 3-24 Device shadow - Viewing property (Alarm)

Figure 3-25 Device shadow - Configuring property (alarm)

Figure 3-26 Checking property setting results

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Delivering a Command
NO TE

Demo: entry/src/main/ets/pages/CommandSample.ets

You can set a command listener to receive commands delivered by the platform.
The callback API needs to process the commands and report responses.

1. Command processing in the CommandSample example: Print the received
command, and then call respondCommand method to report the response.
 let commandListener: CommandListener = {
 onCommand: (requestId: string, serviceId: string, commandName: string, paras: object): void => {
 const command = `requestId is ${requestId}, serviceId is ${serviceId}, commandName is $
{commandName}, paras is ${JSON.stringify(paras)}`;
 LogUtil.info(TAG, `received command is ${command}`);
 // Process commands.

 const commandRsp: CommandRsp = {
 result_code: 0
 }
 this.device?.client.respondCommand(requestId, commandRsp).then((data: IoTMqttResponse) => {
 LogUtil.info(TAG, `respond command success ${JSON.stringify(data)}, commandRsp is $
{commandRsp}}`);
 }).catch((err: IoTMqttResponse | string) => {
 LogUtil.error(TAG, `respond command failed ${JSON.stringify(err)}`);
 })
 }
 }
 this.device.client.commandListener = commandListener;

2. After the preceding code is executed to set the command listening, deliver a
command on the platform, in which serviceId is smokeDetector, command
name is ringAlarm, and duration is 20.

3. Check the log, which indicates that the device receives the command and
reports a response successfully.

Object-oriented Programming
NO TE

Demo: entry/src/main/ets/pages/ProfileSample.ets

Calling device client APIs to communicate with the platform is flexible but requires
you to properly configure each API.

The SDK provides a simpler method, object-oriented programming. You can use
the product model capabilities provided by the SDK to define device services and
call the property reading/writing API to access the device services. In this way, the
SDK can automatically communicate with the platform to synchronize properties
and call commands.

Object-oriented programming simplifies the complexity of device code and
enables you to focus only on services rather than the communications with the
platform. This method is much easier than calling client APIs and suitable for most
scenarios.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

ProfileSample demonstrates the process of object-oriented programming.

1. Define a smoke detector service class, which is inherited from
AbstractService. (If there are multiple services, define multiple service
classes.)
class SmokeDetector extends AbstractService {

}

2. Define service properties. Private variables start with underscores (_). Use
@Reflect.metadata ("Property", { name: "string", writeable: boolean}) to
indicate a property. The name must be the same as the property name in the
product model. writeable indicates whether the property is writable.
 @Reflect.metadata("Property", { name: "alarm", writeable: true })
 private _smokeAlarm: number = 1;

 @Reflect.metadata("Property", { name: "smokeConcentration", writeable: false })
 private _concentration: number = 0;

 @Reflect.metadata("Property", { name: "humidity", writeable: false })
 private _humidity: number = 0;

 @Reflect.metadata("Property", { name: "temperature", writeable: false })
 private _temperature: number = 10;

3. Define service commands. The SDK automatically calls the commands below
when the device receives commands from the platform. The name
corresponds to command_name of the product model, and method
corresponds to the method for receiving the command. The input parameter
and return value type of the command cannot be changed.
The following code defines a ring alarm command named ringAlarm. The
delivered parameter is duration, which indicates the duration of the ringing
alarm.
 @Reflect.metadata("DeviceCommand", {
 name: "ringAlarm",
 method: (paras: object): CommandRsp => {
 let duration: number = paras['duration'];
 LogUtil.log(TAG, `duration is ${duration}`);
 return IotResult.SUCCESS;
 }
 })
 private _alarm: Function = () => {};

4. Define the getter and setter methods.
– The device automatically calls the getter method after receiving the

commands for querying and reporting properties from the platform. The
getter method reads device properties from the sensor in real time or
from the local cache.

– The device automatically calls the setter method after receiving the
commands for setting properties from the platform. The setter method
updates the local values of the device. If a property is not writable, leave
the setter method not implemented.

– Click Generate on the DevEco Studio and choose Getter and Setter, and
then modify the method. The setter and getter interfaces are
automatically generated.

 public set smokeAlarm(value: number) {
 this._smokeAlarm = value;
 if (value == 0) {
 LogUtil.info(TAG, "alarm is cleared by app");
 }
 }

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

 public get smokeAlarm(): number {
 return this._smokeAlarm;
 }

 public set concentration(value: number) {
 // Read-only fields do not need to implement the set method.
 }

 public get concentration(): number {
 return Math.floor(Math.random() * 100);
 }

 public set humidity(value: number) {
 // Read-only fields do not need to implement the set method.
 }

 public get humidity(): number {
 return Math.floor(Math.random() * 100);
 }

 public set temperature(value: number) {
 // Read-only fields do not need to implement the set method.
 }

 public get temperature(): number {
 return Math.floor(Math.random() * 100);
 }

5. Implement the constructor to initialize properties and commands.
 constructor() {
 super();
 const fields = Object.getOwnPropertyNames(this);
 this.init(fields);
 }

6. Create a device and register the smoke sensor service.
// Create a device service.
const smokeDetector = new SmokeDetector();
this.device.addService("smokeDetector", smokeDetector);

7. Enable periodic property reporting.
// Enable periodic property reporting.
this.device.getService("smokeDetector")?.enableAutoReport(10000);

8. Execute the preceding code to check the logs of reported properties.

9. Check the value of the alarm property in the device shadow on the platform.
The value is 1. Change the value to 0 and check the device logs.

Figure 3-27 Device shadow - Viewing property (Alarm)

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Figure 3-28 Logs for successful device property setting

10. Deliver the ringAlarm command on the platform. Check the device logs,
which indicate that the ringAlarm command is called and a response is
successfully reported.

Change History

Table 3-8 Change history

Version Change Description

0.0.1 New
function

Added the capability of connecting to the Huawei Cloud
IoT platform to facilitate service scenarios such as access,
device management, and command delivery.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2025-06-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

	Contents
	1 Overview
	2 SDKs for the Application Side
	2.1 Application Java SDK
	2.2 Application Python SDK
	2.3 Application .NET SDK
	2.4 Application Go SDK
	2.5 Application Node.js SDK
	2.6 Application PHP SDK

	3 Device SDKs
	3.1 Overview
	3.2 IoT Device Java SDK
	3.3 IoT Device C SDK for Linux/Windows
	3.4 IoT Device C# SDK
	3.5 IoT Device Android SDK
	3.6 IoT Device Go SDK
	3.7 IoT Device Tiny C SDK for Linux/Windows
	3.8 IoT Device Python SDK
	3.9 IoT Device ArkTS (OpenHarmony) SDK

